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A quantum-mechanical analysis of the Faraday rotation and the Voigt effect has been carried out for both 
the oscillatory and long-wavelength regions. Expressions have been developed for these effects from the off-
diagonal and diagonal components, respectively, of the conductivity tensor; the latter has been obtained in 
the form of the Kramers-Heisenberg dispersion relations through the use of first-order time-dependent 
perturbation theory. The results, which have been calculated for a simplified two-band model, are generalized 
to apply in the high-field case as well as the low-field limit. Through the introduction of a phenomenological 
relaxation time, r, line shapes have been calculated for both the direct and indirect transition for the Faraday 
and Voigt effects. These have been obtained as a function of frequency for various values of magnetic field 
and relaxation times. The results obtained enable the evaluation of g factors from experimantal line shapes. 

INTRODUCTION 

RECENTLY, a number of experimental and theoret­
ical papers have been reported on the Faraday-

rotation due to interband transitions, particularly in 
the low-frequency region.1'2 These results have indicated 
that the earlier theoretical developments were either 
incomplete or inappropriate as far as the quantitative 
interpretation of these results is concerned. The first 
approach to the problem was a qualitative one by 
Stephen and Lidiard3 who made the prediction that 
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18, 75 (1960); B. Lax and Y. Nishina, J. Appl. Phys. Suppl. 32, 
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J. Kolodziejczak, and B. Lax, Phys. Rev. Letters 9, 55 (1962); 
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of the International Conference on the Physics of Semiconductors, 
Exeter, 1962 (The Institute of Physics and The Physical Society, 
London, 1962), p. 288; T. S. Moss, A. K. Walton, and B. Ellis, 
Proceedings of the International Conference on the Physics of 
Semiconductors, Exeter, 1962 (The Institute of Physics and The 
Physical Society, London, 1962), p. 295; S. D. Smith, C. R. 
Pidgeon, and V. Prosser, Proceedings of the International Con­
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Proc. Phys. Soc. (London) 77, 1042 (1961); I. M. Boswarva, 
R. E. Howard, and A. D. Lidiard, Proc. Roy. Soc. (London) A269, 
125 (1962); J. Kolodziejczak, B. Lax, and Y. Nishina, Phys. Rev. 
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some sort of singularity in the Faraday rotation would 
be observed near the energy gap. They based their 
prediction on an expression obtained for a single classical 
oscillator of the form 

(1) 
OV-co2)2' 

where coc is the cyclotron frequency, coo is the bound 
oscillator frequency, co the frequency of the infrared or 
optical wave, and 6 the Faraday angle. Although 
qualitatively Eq. (1) properly embodies the physical 
phenomenon involved, it was shortly pointed out by 
Lax4 that this expression was inappropriate and that 
in order to properly explain the singularity, which was 
subsequently obtained experimentally by Brown5 and 
also by Walton and Moss,6 it was necessary to take 
into account the band properties of the semiconductor 
and to obtain the dispersion corresponding to the 
absorption near the energy gap. The expression obtained 
on this basis was shown, for the dominant term, to be 
of the form4 

cocyH 
B d ^ E(^-co)~3 /2 , co>co,, (2a) 

ed {o>g-o>)-v\ 
CO 

0)<0)g. (2b) 

4 B. Lax, Proceedings of the International Conference on Semi­
conductor Physics, 1960 (Czechoslovakian Academy of Sciences, 
Prague, 1961), p. 321. 

5 R. N. Brown, Masters thesis at MIT, 1958 (unpublished). 
6 A. K. Walton and T. S. Moss, Proc. Phys. Soc. (London) 78, 

1393 (1961). 
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These expressions are appropriate for photon energies 
near the energy gap. Equation (2a) represents the 
oscillatory case just above the gap and in essence is the 
correct result if the less dominant terms are neglected. 
However, for the region below the gap it was soon, 
recognized that the single term (2b) was inadequate 
to describe the total dispersion and that additional 
terms were required, particularly in the low-frequency 
limit. Lax and Nishina7 obtained such expressions 
through the use of the Kramers-Kronig relations. 
However, it was subsequently recognized on theoretical 
grounds by Kolodziejczak, Lax, and Nishina8 (KLN) 
and also pointed out by Boswarva, Howard, and 
Lidiard9 (BHL) that these results were in error; the 
expressions derived were essentially for the diagonal 
components of the dispersion tensor and therefore gave 
an (incorrect) low-frequency behavior that went as 
X-1. Independently, subsequent experimental observa­
tions of Smith, Pidgeon, and Prosser,10 Piller and 
Potter,11 and also of Moss, Walton, and Ellis12 clearly 
demonstrated a X~2 behavior. A (phenomenological) 
semiclassical theory was subsequently developed by 
KLN8 which did exhibit the X-2 low-frequency depend­
ence which satisfied the appropriate Kramers-Kronig 
relations and exhibited the correct symmetry properties. 
At the same time, Boswarva, Howard, and Lidiard9 

developed the quantum-mechanical Kramers-Heisen-
berg approach to the problem. Unfortunately, they 
made an assumption with respect to the momentum 
matrix elements which led to results which did not 
satisfy the low-frequency limit and consequently they 
they added a correction term. 

The object of the present paper is to modify and 
extend the BHL treatment and to obtain expressions 
for the Faraday rotation which are of the same form in 
the long-wavelength limit as the KLN semiclassical 
expressions. To do this we shall follow the BHL 
approach and notation to the point of departure which 
is essentially that the matrix elements for the left and 
right circularly polarized waves, in the presence of a 
magnetic field, differ by the same order of magnitude as 
the eigenvalues and are not equal as assumed by BHL. 
However, it should be pointed out that an assumption 
still must be made to obtain quantitative results, and 
this will subsequently be discussed. We shall also use 
the quantum treatment to obtain expressions for the 
Voigt effect and to obtain the line shapes in the oscil-

7 B. Lax and Y. Nishina, Phys. Rev. Letters 6, 464 (1961). 
8 J. Kolodziejczak, B. Lax, and Y. Nishina, Phys. Rev. 128, 

2655 (1962). 
9 1 . M. Boswarva, R. E. Howard, and A. D. Lidiard, Proc. 

Roy, Soc. (London) A269, 125 (1962). 
10 S. D. Smith, C. R. Pidgeon, and V. Prosser, Proceedings of 

the International Conference on the Physics of Semiconductors, 
Exeter, 1962 (The Institute of Physics and The Physical Society, 
London, 1962), p. 301. 

11 H. Piller and R. F. Potter, Phys. Rev. Letters 9, 203 (1962). 
12 T. S. Moss, A. K. Walton, and B. Ellis, Proceedings of the 

International Conference on the Physics of Semiconductors, Exeter 
(The Institute of Physics and The Physical Society, London, 
1962), p. 295. 

latory region for both the Faraday rotation and the 
Voigt phase shift. 

FARADAY EFFECT 

From the time-dependent perturbation theory, the 
current density vector may be obtained and it can then 
be shown that the conductivity tensor for all transitions 
is given by 

ie2 1 iPkkSPk't* Pkk'iPk'k*) 
*«= L E — + , (3a) 

m2h k kf o)khf I tt+coM' w ~ <*kk' J 

ie2 {Pkk'tPk'k3' Pkh^Pk'k1} 

*a= I E , (3b) 
m2hco k k' [ CO+COM/ oo—ookk' J 

for the diagonal and off-diagonal components, respec­
tively, where Pkw is the momentum matrix for the transi­
tions between states k and k' and includes both the 
magnetic-field and the spin-orbit coupling 

P= p+*A+ (l/2m2)(S xvV). (4) 

In order to show the appropriate form of the off-
diagonal component of the conductivity tensor in the 
presence of the magnetic field, we use the usual approx­
imation that the conduction current is small compared 
with the displacement current (a<Ko)e) and hence the 
Faraday rotation is given to a good approximation by 
the expression 

e^-K^aJlce, (5) 

where <rxy is the dispersive or nondissipative part of the 
conductivity. Here Ke is the dielectric constant and e 
is the permittivity of the medium; mks units are used 
throughout. We assume that the medium is gyrotropic, 
for which we have axy= — <ryx. Using (3b) and the above 
symmetry property, we can interchange PkkfXPk'ky and 
—Pkk'yPk'kx to obtain for 0 

iK.u*e* Pkk>xPk>ky 

e= E L . (6) 
m2hec k k' a)kjc'2—o>2 

The validity of the step leading to Eq. (6) hinges upon 
the choice that the model exhibits cubic symmetry, 
since when one performs a 90° rotation about the z 
axis, which takes x —>y and y—> — x, one also trans­
forms the k and k'. However, because of the cubic 
symmetry, the energy denominators remain unchanged. 
As shown by BHL, the above expression can be trans­
formed by means of the introduction of momentum 
operators corresponding to polarization vectors of two 
circularly polarized components rotating in a clockwise 
and counterclockwise sense, respectively (i.e., P±—Px 

±iPy); substitution for Px and Pv and the application 
of Hermiticity conditions gives 

| f t * + | 2 - \Pw-\*=2i(Pwyph>h'-Pw*PVh*). (7) 

Substitution of Eq. (7) into (6) subject to the inter-
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change of —Pkk>yPk'kx and Pkk'xPk'ky as just discussed 
gives the BHL result; however, we shall depart from 
the representation they obtained as follows: We write13 

- J E W . 

4m2hec k k' 

,.+ |2 Pkk> 

( W M ' + ) 2 — o ) 2 (ctikk' ) 2 — ^ 
(8) 

where we have a different denominator for each of the 
two sets of transitions since the eigenvalues associated 
with the two operators differ in accordance with the 
selection rules determined by the matrices. The matrix 
element of Vkkf+ is zero for one member, and that of 
Pkk~ is zero for the other member of the " ± " pair of 
excitations. The cokkf± are defined by 

a)kk>±:=o)kk>±yH, (9) 

where, for the direct transition 

«**' —> cojbfc=o)g+ (n+i)a)c+pz2/2jj,h, (9a) 

and for the indirect transition 

+pi2/2mih+p22
2/2m2fi, (9b) 

where coa is the frequency corresponding to the energy 
gap, the coc are the cyclotron frequencies, y= (gc+£v) 
Xfjis/^h) is the appropriate effective gyromagnetic 
ratio for the transition between valence and conduction 
bands, IIB is the Bohr magneton, and kd/fi represents 
the phonon involved in the indirect transition. 

In accordance with the above representation for the 
two sets of eigenvalues for left and right circularly 
polarized waves we can show that the matrix elements 
P+ and P~ also differ by the same ratio. It has been shown 
theoretically by BHL and it is also known from experi­
ment that the correct theory must give 6 —» 0 as 00 —» 0. 
Hence, if we set co=0 in Eq. (5), we obtain 

\Pkk>+\2 |iV~'2 

* *' (ukk>+)2 * *' (mk' ) 2 
(10) 

We shall further argue for our model14 that the above 
equality holds for each set of transitions kk' so that 

Pkkf+ Pkk~ Pkkf 

1= s . (11) 0>kk' Oikk' 0>kk' 

The above is quite reasonable from the following 

- E £ | P * 
8m2hce k w 

SyHo) 

physical arguments: We can consider each set of 
levels as discrete, since the energy bands are quasi-
continuous, and that the transition between two 
complementary levels is equivalent to the classical 
situation treated by KLN. Therefore, from the corre­
spondence principle, the Faraday rotation for each of 
these transitions must also go to zero, which then 
justifies the equality (11). 

As the magnetic field is increased the matrix elements 
also increase linearly in proportion to the field. The above 
expression essentially compares the matrix elements 
about the mean of the two circularly polarized compo­
nents ; it is not an expansion as a function of the total 
magnetic field but only an increment about each 
magnetic level which is split by the field. In this regard 
it differs from the treatment of Bennett and Stern15 

and of Roth.16 

Substituting (11) into (8), and after some algebraic 
manipulation, we obtain 

0=-
-UV'V 

4m2hec & *j 

X 

EE|JV| 2 

h———)• 
W M ' 2 \ ( « t t ' + ) 2 — W 2 (COM' )2—CO2/ 

(12) 

We can examine Eq. (12) in the limit of small yH; 
it reduces to 

PA* |* co2(7H) 

irPcfit k v cott' (co*fc<2—co2)2 
(13) 

Here | Pm \ 2/W> is, aside from a constant factor, just 
the oscillator strength. Equation (13) is of the identical 
form as that obtained from the semiclassical theory of 
KLN and disagrees with the results of BHL based on the 
assumption that |Pft&'+| ~ |P^'""|. Furthermore, BHL, 
in order to obtain the proper low-frequency limit, i.e., 
0^co2, had to add a correction term to satisfy this 
criterion. The above result (13), when evaluated for a 
simple parabolic conduction and valence band by 
integrating over the quasicontinuous values of the 
momentum, gives five terms; these are given for the 
direct and indirect transitions in the paper by EXN. 

We now return to the quantum-mechanical expression 
of Eq. (12). Expansion in partial fractions gives 

1 

[ c o 2 - ( 7 # ) 2 ] W (a>-yH)2(a>kk>-a>+yH) 

1 1 

(o+yB)*(mk'+u+yH) (a>+yH)2(cokfc,-a>-yH) (a>-yH)2(a>kk>+o>-yH)\ 
(14) 

18 This expression was independently derived by H. S. Bennett (private communication). 
14 As regards this assumption, L. M. Roth has made the following comments in a private communication. "The co2 dependence 

comes from the cancellation between the energy shifts yll and the H dependence of the matrix elements. The present paper 
uses a model for which the cancellation comes about for each transition. This is analogous to the work of Rosenfeld [see Van 
Vleck, Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932), p. 368]. BHL assume that the cancella­
tion comes about entirely from other bands, which seems less reasonable. At any rate, the correct answer would probably lie 
in between." 

15 H. S. Bennett and E. A. Stern, University of Maryland Technical Report No. 197, 1960 "(unpublished). 
W1, M.. Rpth? Phyg, Rev. 133, A542 (1964). 
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Direct Transition 

For the direct transition, we have mk> —>o)kk=o)g+(n+l)o)c-{-(pz
2/2fxh). To obtain the contribution to the 

rotation for a transition between a given pair of Landau levels we must integrate over pz. We have 

1 r /xcoc r 

- U*p-+Z dp,, 
WJ n 2ir2h2J 

where the factor coc= eH/fxc essentially accounts for the density of states. Performing the integration over fdpz 

we obtain for a single Landau transition 

Xe
1/V«coc(2/*)8/2

i _ , J SyHu 
Od (Landau) = _ 

128xm2«fc5/2 l [ a > 2 - ( Y f f ) 2 ] W 2 (a>—yff)2(<o„-«+Yff)1/2 

1 1 1 

(a)+Yfi)2(«»+w+TH)1 '2 (w+yHy(o,n-o>-yHyi* (a-yB)*(an+u-yB)1'1 

where 

w»=Wfl+(w+i)wc. 

(15) 

To obtain the line shape in the vicinity of a Landau level we assume co^>yH, extract the terms with the singularities 
since these will be the terms making the major contributions near the given Landau level, and then introduce a 
phenomenological relaxation time r, by letting co —> co—i/r; the justification for this last step can be obtained from 
the introduction of a damping term in the classical equation of motion for the bound oscillator. 

0d (Landau) = | P A J 2 R e | \ (16) 
1287rm2^2co l [ ( co n - co -Y#)T+; ] 1 / 2 [ (co„-co+7#)r+*] 1 / 2J 

letting X= (con—co)r and Y=yHr, we finally obtain 

< — i . — « 
L[(X-F)H-I] 1 / 8 

fo(Landau) = A\ { [ ( X - F ) 2 + l ] l / 2 + ( X - Y)}1'2 

l [ (X-F) 2 ' ^ " " 

Kx+Yy+iyi* 
where 

{[(X+F^+l^+CX+F)}1'2!-, (17) 
• } • 

6£imi2cefibf2o) 
|P**|2 . (17a) 

In Figs. 1(a) and (b), we have plotted the expression in the braces to obtain contributions to the line shapes 
in the vicinity of the frequency corresponding to the transition between the given Landau level and its complement, 
for various values of yHr. 

If one wishes to be able to compare experimental data with the theoretically calculated line shapes, then it is 
necessary to evaluate the background rotation since it will in general contain terms which will contribute to the 
rotation, and hence to the line shapes in the vicinity of the Landau level. The evaluation of the background rotation 
involves summing'over all the Landau levels for the expression in Eq. (15). Now XU —> fdn —> \/o>efdx, where we 
define x= (w+|)coc. Performing the integration then gives us the result 

ire
1/V(2Ju)3/2co f - 8 7 # c o 1 

^(background) = \Pkk | 2 V 2 + (a>,-C0+7#)1/2 

64:Trm2ce^2 I [co2- ( T # ) 2 ] 2 ( C O - Y # ) 2 

1 1 1 1 
( w , + w + 7fl)l/2 ( ^ 7 t f ) l / 2 + (w + w _ T f l ) l / 2 . (18) 

(co+ 7 #) 2 (a>+yH)2 (u-yH)2 J 

In the vicinity of the energy gap we assume co^>yH, extract the dominant terms, and let co—»co—i/r. This leaves 
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us with 

v<2 (background) — " 
Ke

1I2e2(2fi)w 

64TTW 2 C€^ 2 COT 1 / 2 

Pkk\
2^{l^g-^-yE)r+iJI2-l^g-^+yE)r+iJI2} 

and letting X= (o)g—o))r and Y=yHr, we obtain 

2A 
^ ( b a c l c g r o u n d ) = - - { { [ ( X + F ) 2 + l ] 1 / 2 + ( X + F ) l 1 / 2 - { [ ( Z - F ) 2 + l ] l / 2 + ( X - F ) } 1 / 2 } . 

0)CT 

(19) 

(20) 

We have plotted the expression in the braces in (20) in Figs. 2(a) and 2(b) with Y=yHr as parameter. We note 
from the (COCT)-1 in (20) that as r becomes large, the relative contribution of the background to that due to the single 
Landau level, becomes smaller. Furthermore, in most experimental arrangements at high fields where line-shape 
study is meaningful, we would expect cocr to be of —100; consequently, as a comparison of Figs. 1(a) and 1(b) 
with 2(a) and 2(b) shows, the background may be neglected compared with the contribution from the single 
Landau level transition. Hence in the vicinity of the energy gap the first singularity is due to the first Landau 
transition. 

Direct Transition—Long-Wavelength Limit 

To obtain the behavior of the Faraday rotation due to the direct transition in the long-wavelength limit we must 
sum over the contributions from transitions to all Landau levels and hence must start with Eq. (18). In this limit, 
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however, we have ov^>o>, yH. Letting x= (l/o)9)(co+yH); y= (l/o)g)(o)—yH), we obtain 

K^W^2^2 \ SyHu 1 1 
ed—> \pkk\

2\ + C(i-^)1/2+(i+^)1/2] C(i+*)1/2+(i-*)1/a] 
*-° 64:7rm2ceh^ t [co2- (7# ) 2 ] 2 {ugyY (o>gx)2 

Now x, y<Kl; hence we can expand (21). When we do this we obtain 

^ e
1 / V ( 2 M ) 3 / 2 \ co27# 

(21) 

( -^~)\Pkk\> . (22) 

Indirect Transition 

For the indirect transition we have 

<*k» = <*g+ ( » i + i ) « 0 1 + (n2+h)a>C2+ (p1
2/2m1h)+ (p2

2/2m2h)±kd/fi. 

To obtain the contribution to the rotation for a transition to a given Landau level in the conduction band we let 

r r miW2a)clcoc2 

k k' n\ n% 

J J 16TT4^4 

and perform the indicated integration of Eq. (14) over fdpizdp2i only. This, together with some algebraic manip­
ulation, leads to the expression 

KWirnxm^Wwacpct f -87#co 1 
ft (Landau) = \Pkk' \2\ lncoi2H ln[(coi2—co+7#)r] 

256Tzm2ce¥ I [co2- (yH)2J (co-yH)2 

1 1 1 ] 
ln[(coi2+aj+7jE?')r] ln[(coi2—co—yE)r~\-\ ln[(coi2+co—7#)r] \ , (23) 

(co+ 7 #) 2 (co+ 7 #) 2 (co-7#) 2 1 

where, in order to make the argument of the logarithms dimensionless, we have anticipated the subsequent intro­
duction of r and multiplied numerator and denominator of Eq. (14) by r where appropriate. Here, 

C012= 0)g+ (tli+ J)C0C1+ (^2+J)C0C2± kd/fl. 

To obtain the line shape in the vicinity of a given Landau level due to transitions to that level, we proceed as 
before. We put (coi2—o)zLyH)r-^ [(coi2—u±yH)T+i~], however, where the terms are of the form (coi2+cod=7fir)r 
we need not introduce the damping since these terms do not give rise to singularities. We seek 

Re1** (mxni2yi2o)cl<»C2 ( - SyH 
ft(Landau) = 1 Pkk' \2\ lncoi2r+Re ln[(coi2—co+yH)r+f\ 

256irzm2ceh4o) [ co 

- l n [ ( c o i 2 + c o + 7 ^ ) r ] - R e ln[ (coi 2 -co-7i7)r+i ]+ln[(coi2+co-7i?) r ] . (24) 

Defining X= (coi2—co)r, Y=yHr, and Z=QOT we obtain 

[ - 1 6 F 1 
ft(Landau)-^ - T - ( l n Z + | ) + l n [ ( X + F ) 2 + l ] - l n [ ( X - F ) 2 + l ] , (25) 

where 
Kell2e2(m1m2y

i2o)ci^c2 
B = IP**, I*. (25a) 

5127r3w2c;e&4co 
Figures 3(a) and 3(b) are a plot of the expression { l n [ ( X + F ) 2 + l ] - l n [ ( X - F ) 2 + l ] } . The term ( - 1 6 F / Z ) 
X ( InZ+i ) is part of the background and need not be considered separately since it will be included in the total 
background when we integrate over all of the Landau levels. 

As for the case of rotation due to direct transitions, one must evaluate the contribution to the indirect rotation 
due to the background. In the latter case it is necessary to sum over two sets of Landau levels, one each for the 
conduction and valence bands, since there are no selection rules restricting the indirect transitions. A double 
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integration gives 

•JS7MwiW2)
8/2a> f -SyHa 1 

0* (background) = \Pkk' |2i Ug2 lnco/H (<*></—o)+yH)2 ln[ (<*>/—oi+yH)r~\ 
512wzm2ceh4 I [co2- (7#)2]2 (oj-yH)2 

1 1 
-(co/+<o+7#)2 ln[(o>/+«+7fl)r] fa'-u-yB)* ln[(o>/-co-T#)r] 

(co+7#)2 (co+7#)2 

+ (W+u-yH)2 ln[(co/+co-7^)r] j , (26) 

where co/=coa+(&0/^) to take account of the phonon involved in the transition. 
Again in the vicinity of the energy gap we assume oy$>yH and let COT —» (cor—i) where singularities exist. Letting 

X = (coj—o))r, Y=yHr, and Z=UT we obtain 

0,-(background) = {-32ZF(lnZ+0.597)+ (X+ F)2 ln[(X+ F ) 2 + l ] - ( X - F)2 l n [ (X- F)2+1]}. (27) 
2cOClCOc2T

2 

The expression (27) holds subject to the assumption that X<3CZ, which defines our region of primary interest. 
However, if one plots ( X + F ) 2 l n [ ( X + F ) 2 + l ] - ( X - F ) 2 l n [ ( X - F ) 2 + l ] in the limit of large X, one sees that 
it diverges as 4XF( l+2 lnX). In this limit, however, one must include the terms that arise from (cog

f+cozkyH)ry 

namely ( X + 2 Z + F ) 2 l n ( X + 2 Z + F ) - ( X + 2 Z - F ) 2 l n ( X + 2 Z - F ) since here X » Z . When this is done, the 
indirect background rotation goes to zero and the mathematical consistency is maintained. Experimentally one 
would always have Z^>X and wClr, coC2r^>l; the background contribution would then be small compared with the 
rotation due to the single Landau level. 

Indirect Transition—Long-Wavelength Limit 

We begin with Eq. (26) since this represents the sum over the contributions from transitions to all Landau levels 
from all Landau levels. As before, letting %= (cc+yH)/o)g

/ and y= (o)—yH)/cog
f with x, y<£\, we obtain 

Ke
lfa#(t»itn%)z,*u ( (l+#)2 ( I -* ) 2 (1-302 (1+j)2 1 

6i= 1 PM |2 ln(l+*) l n ( l - * ) + l n ( l - y ) + \n(l+y) . (28) 
S\2Trzm2ce¥ I x2 x2 y2 y2 J 

Expanding the logarithms and collecting powers of cog we finally obtain 

K^2e2{mxm^2 o>2{yH) 
1 p„., 12 

«-*° 76Swzm2cehA 

VOIGT EFFECT 

(29) 

The Voigt phase shift is given by 
iK}'2 

5 = ((Txx— Vzz) • (30) 

2ec 

Substitution of (3a) into (30) enables us to write 

Ke^e2 1 \Pw*Pwk
x Pkk>xPwkx (Pkk>zPvkz Pkk>zPk>kz\} 

«= E E - ( ) . (3D 

Introducing P±=Px±iPy again, we can obtain 

I Pw+12+ I Pkk -12= 2 {Pw*Pv**+P*k'"P»*) • (32a) 

One could derive the expressions for the Voigt effect with no restrictions on the matrix elements Pw* and Phk>v. 
However, we will choose for our idealized simple band a cubic crystal symmetry for which Pkk>xPk'kx and Pkk'yPk>ky 

may be interchanged as discussed after Eq. (6); this then enables us to write 

Pkk>*Pk>kx^\{\Pkk>+\2+\Pk>k~\2}. (32b) 
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FIG. 3. (a), (b) 
Plot of the line 
shapes obtained for 
the Faraday rota­
tion, indirect transi­
tion, between a given 
pair of Landau levels 
as a function of fre­
quency for different 
values of yHr. The 
constant B of Eq. 
(25a) has been nor­
malized to unity. 

We then substitute (32b) into (31) to obtain the general expression for the Voigt phase shift. 

2IJW+I2 2\Pkk,
z~\2 |P^+|2 \Pkkr Ke

ll2e2u> 
5 = E L 

4m2ech *> w [o)ick>z+(o)kk>z+)2—u2 mw* (o>kk>z )2~u>2 ukk>
+(<j)kk>

+Y—o)2 o>kk> (a)kk> )2 
(33) 

Note that as in the case for the Faraday rotation we have introduced different denominators for the (+) and (—) 
transitions since the k and kf are actually dummy variables and the energy denominators must agree with the 
initial and final states between which the matrix elements are taken. 

Equation (33) represents a situation where, corresponding to each " ± " pair of excitation energies, there are 
two "z" states (i.e., a T doublet in the middle of a a doublet). The frequencies co**/* and ukk>

z± are then given by 

Wfcfc'̂ ajyfc'iYo-iZ, ukk>z±=ukk'
zzLyirH-

In our simple idealized two-band model, we assume, both for analytical tractability and in order to permit 
comparison with the classical case, that gc= gv This then leads to the result that 7*=0. The T doublet then coalesces 
to give two "2" states with a single energy which split the a doublet. We then define 7*=7 and note that o)kk'

z± 

-*a)kk>* and that \Pkk>z±\2-> |P**'*|2. Equation (33) then reduces to: 

KJH 
5 = - •EE ^w \pkk>-\2 

Am2ech h k' [o)kk'z{^kk'zY—^ o>kk'+(o>kk>+)2—o)2 o)w (COM/ )2—CO2 
(34) 

Equation (34) can be used as is as a starting point for evaluating the Voigt phase shift for both the direct and 
indirect transitions with no further restrictions applied to the matrix elements. However, it lends itself to consider­
able algebraic simplification to assume a relation between the \Pkk>

z\ and \Pkk'\ matrix elements in a manner 
similar to that done for the Faraday effect. This is here obtained by letting that part of the expression within the 
braces in Eq. (34) be equal to zero for a>=0 and by further assuming that 

\PwW<*w = 2{\Pw'\)*/{<*w'). (35a) 

Assumption (35a) essentially says that the oscillator strength for the "z" transitions is equal to an oscillator 
strength, suitably averaged for the "=b" transitions. This assumption, together with the substitution co=0 in 
Eq. (34), then gives 

(mk>*)2=o>kk
2-(yH)2, (35b) 

and 
'7#\2 \1 / 2 _ / „/yH\ 

|2 = i | i^ | 
V \0)hk'' ' ^ VcOM// / 

(35c) 
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The particular relation (35a) has been chosen in order to make the long-wavelength frequency dependence exhibited 
by our model agree with that obtained by means of the semiclassical analysis,8 namely that the effect go as co3 

for {o)kkf—o))^>yH. Furthermore, as can be seen from Eq. (35c), this choice is consistent with the theoretical work of 
Burstein et alP who show that due to the "band-wave function" contribution, a second-order term in the magnetic 
field is introduced into the x- and ^-matrix elements (or " ± " ones) but not into the ^-matrix elements. On the other 
hand, the line shape behavior in the vicinity of the gap energy will not depend on any higher order correction terms 
in the magnetic field in the relation between | Puvz | and | Pkk> | since the higher order terms do not give rise to 
singularities. Equation (35a) together with (11) enables us to express the Voigt phase shift in the form 

— e2Ke
mo) \Pkk'\2i o>kk>+ o)kk~ 2o)kk' } 

5 = E L + . (36) 
Am'hec k v cow2 l(co^+)2-co2 (co^-)2-co2 co^ 2 - [ co 2 +( T #) 2 ] J 

We now examine the behavior of h in the limit of small magnetic fields. Expanding Eq. (36) in powers of yH 
subject to the condition that yH<K(o>kk'—o>), we find that 

-2e2Ke^
2 \Pkk,\

2 co3(7#)2 

• I E — . (37) 
yH-*0 m2frec k k, ukk> ( C O ^ - W 2 ) 3 

We next expand Eq. (36) in partial fractions to obtain the most general expression for the Voigt phase shift for 
the model we have chosen [i.e., subject to the conditions on the matrix elements stated in Eq. (35)]. This is 

-e2Kev
2u f - 1 6 C O 2 ( T # ) 

8= E E I ^ " k k i 

Sm2hec * *' ' ' lCco 2 - (7 f i r ) 2 ] (a ) 4 - (7^)>w ' (a>+yH¥(ukk,+o>+yH) ' (co+7#) 2 (co^-co~7#) 

1 1 2 2 1 
+ + , (38) 

(o>-yHy(o>kk,+o>-yH) (o>-yH)2(a>kk,~a>+yH) l * W + 0 ) fflW-8)J 

where we have here put £22=co2+(7#)2. One also notes from either (34), (36), or (38) that for H=0, 5=0 , and 
o-zx— &zz as expected. 

Direct Transition 

To obtain the contribution to the rotation for a direct transition between a given pair of Landau levels we must 
integrate out pz from Eq. (38) (where COM/ —> o)kk=o)g+(n-jr^)coc+pz

2/2fxh=o)n-j-pz
2/2fjLh). This gives 

-e2Ke
l^(2fiy^^ ( -16o>2(7#)2 1 

dd (Landau) = \Pkk \2\ 1 
12^m2¥'2ec I [co2- ( 7 # ) 2 ] [ > 4 - {yHY~]o>n

112 (a>+yH)2(o>n+u>+yH)V2 

1 1 1 

+ + : + 
(co+7#)2(co„-co-7#)1 / 2 (co-T#) 2 (co,+co-7#) 1 / 2 (co-7#) 2(co,-co+7#) 1 / 2 

2 2 1 
. (39) 

O2(con+12)1/2 Q2(a>n-tt)V
2\ 

The line shape near a Landau level is obtained as for the Faraday direct, by taking o)^>yH, picking out the singular 
terms, and letting co —> ca—i/r, giving 

dd (Landau) 

-Ke
1^e2(2fjL)^T1^o)c f 1 1 2 } 

' " ' " R e - - — + - — - — , (40) 
12Swm2h^ec^ l [ ( « » - "+7 'H)r+iJ / 2 [ ( c o n - c o - 7 # ) r + r ] 1 / 2 [(cow-co)r+i]1 / 2 

where for co^>yH, 0 —> co. Letting X= (con—co)r and Y=yHT, 

17 E. Burstein, G. S. Picus, R. F. Wallis, and F. Blatt, Phys. Rev. 113, 15 (1959). 
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(X2+l)1 '2 
C(X»+l)w+x]W-

[ ( X + F ) 2 + i ] i « 
{ [ ( X + F ) * + l ] w + ( X + F ) } w 

{ [ ( x _ F ) 2 + l ] w + ( X - F ) } y 4 , (41) 
[ ( X - F ^ + l ] 1 ' 2 ] 

where A is given in Eq. (17a). 
The expression in the braces has been plotted in Figs. 4 (a) and 4 (b) with F = yHr as parameter. 
To obtain the background rotation one must sum over n in Eq. (39); this leads to the expression 

e^ 1 ' 2^) 3 ' 2*) 
Sd (background) = ;— | Pick I 

1 
+ 

(co+7#)2 

- 1 6 C O 2 ( Y # ) 2 

Cco2-(Tjff)
2][w

4-(TH)4] 

1 

1/2 

1 
(oig+os+yH) 1/2-

(<o+7fl? 
-(a>9-<o-7H)1/2+ 

( w - Y # ) 2 
-(coa+o)-r£r)1/2 

1 2 2 
(co 9 - W +Y#) 1 / 2 (w9+fi)1 /2 (c^-f t ) 1 ' 2 

(w-yH)2 U2 0 2 
(42) 

Again, in the vicinity of the energy gap we assume O>»Y#, extract the dominant terms, and let co —» co—i/r to 

FIG. 4. (a), (b) 
Plot of the line 
shapes for the Voigt 0.4 
phase shift, direct 
transition, between a 
given pair of Landau t a2 
levels as a function =j 
of frequency for dif- u 
ferent values of 7 # r . « 0 
The constant A of 5 
Eq. (41) has been 
normalized to unity. -0.2I 
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obtain 

2£W(2/i)«/* 
^(background)- 1Pkh|

2 Re{2[(co0-co)r+<]1/2-l(o)g~o)+yH)r+i2112 

6^wm2ecfi5/2ooTlf2 

-L(a>9-a>-yH)T+iy*}, (43) 

which, with the substitution X— (cofl—co)r, Y=yHr, becomes 

2A 
5 (̂background) = — { { [ ( X + F ) 2 + 1 ] ^ + ( X + F)}*/2+ { [ ( X - F ) 2 + l ] 1 / 2 + ( X - F)} 1 / 2 - 2 [ ( X 2 + l ) 1 / 2 + X ] 1 / 2 } . (44) 

cocr 

We have plotted the expression in the braces in Eq. (44) in Figs. 5(a) and 5(b). A comparison of the ordinates 
with those in Figs. 4(a) and 4(b) shows that for the order of magnitude of cocr that one would expect to obtain 
either at high magnetic fields or at low temperatures, the background rotation may be neglected compared with 
the contribution from the single Landau level transition. 

Direct Transition—Long-Wavelength Limit 

To obtain the behavior of the Voigt phase shift due to the direct transition in the long-wavelength limit, we must 
sum over the contributions from transitions to all Landau levels [i.e., £n=o°°—* Jo^dn—* (l/coc) Jo^dx, where 
%= (/z+f )co<J. Hence we start with Eq. (42), subject to the condition that a)g^>yH, co. Expansion of Eq. (42) then 
leads to the result 

21e2Ke^(2fx)^ co3(7#)2 

&*-> \Pkk\
2 . (45) 

40967rm2€^5/2 a>„11/2 

This result shows an co3 frequency dependence as has been discussed following Eq. (35). 

Indirect Transition 

To obtain the contribution to the rotation for an indirect transition to a given Landau level in the conduction 
band, we must, as for the indirect Faraday case, integrate over all values of pzy in both the conduction and valence 
bands. Starting with Eq. (38) and performing the indicated integrations, we obtain 

iTe
1/V(w1w2)

3/2coclcoC2co f - 16co2(T#)2 

5*(Landau) = 1 Pkk> I 2 \ lncOi2r 
2567r3m2£% I [co2- ( Y # ) 2 ] [ C O 4 - ( Y # ) 4 ] 

1 1 1 
• \n[_{o)i2+o)+yH)T~\-\ ln[(coi2—co—yH)r]-\ ln[(co i 2 +co—7#)r] 

(co+7#)2 (co+yH)2 (a-yH)2 

1 2 2 1 
+ ln[ (co 1 2 -co+ 7 #)r ] ln[(co12+0)r] ln[(co12-S2)r] , (46) 

(ai-yH)2 122 O 2 J 

where coi2=co/+(wi+J)cocl+(^2+J)coC2, and we have again anticipated the introduction of r in order to make the 
argument of the logarithms dimensionless. To obtain the line shapes we make the usual assumptions \jSS>yH; 
cor—> (cor—i), where singularities exist] noting that it is necessary to retain all the terms of Eq. (46). 

Defining X, F and Z as before and expanding the logarithms where necessary, since Z^>X, F we finally obtain 

5,= ^ { - ( F 2 / 2 Z 2 ) ( l + 6 4 1 n Z ) + l n [ ( X + F ) 2 + l ] + l n [ ( X - F ) 2 + l ] - 2 1 n [ X 2 + l ] } , (47) 

where B is given in Eq. (25a). Figures 6(a) and 6(b) plot the expression { l n [ ( X + F ) 2 + l ] + m [ ( X - F ) 2 + l ] 
— 2 m [ X 2 + l ] } . The quantity (— F 2 /2Z 2 ) ( l+64 InZ) is part of the background and need not be considered 
separately. 

The background is obtained, as in the case for the Faraday-indirect, by summing over the two sets of Landau 
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levels in the conduction and valence bands, respectively. This leads to the expression 

e*Ke1'K™im2)mo> f - 1 6 C O 2 ( Y # ) 2 

8i (background) = 1 Pick' I 21 <0</2 l n w „ V 
5l2v3mWec l [ w 2 - ( 7 f f ) 2 ] [ w 4 - ( 7 F ) 4 ] 

1 1 
:(wg'+w+yHy l n [ ( c o / + w + 7 # ) r ] + («, ' -»-<yfl)» l n [ W ~ C O - 7 # ) T ] 

(o+yB)* («+7ff)2 

1 1 
- « + c o - 7 # ) 2 l n [ (w /+o) -7H) r ]H ( < V - w + 7 # ) 2 l n [ ( o > / - « + 7 f f ) r ] 

(co-yH)* ( 0 - 7 F ) 2 

2 2 
W + 0 ) 2 l n [ (co /+0) r ] (<o/-fi)2 l n [ « - 0 ) r ] 

02 02 
• (48) 

Letting X = (o)g'—od)T, Y=yHr, and Z=cor, we can put the background rotation in the vicinity of a Landau level 
for the Voigt configuration, indirect transition, into the form 

-B 
•̂(background) - * {F2(14 l n Z - 2 l n 2 + 3 ) - ( X + F)2 l n [ ( X + F ) 2 + l ] 

2coclcoC2r
2 

- ( X - F)2 l n [ ( X - F ) 2 + 1 ] + 2 X 2 l n ( X 2 + l ) } . (49) 

A similar situation applies for the Voigt indirect the expressions 
background as did for the Faraday indirect background. 
Equation (49) holds in the limit X « Z which experi- *#<» f \Pkk>+\2 

• E E mentally is the region in which we are interested. Here ~ 2m2h k w\ ,+(( ,+)2— 2) 
coclr and wC2r^>l and the background contribution is 
small compared with the rotation due to the single \Pkk~\2 ) 
Landau level. However, in the limit of large X, Eq. (49) H —~ — ~~ r > (51) 
diverges as 4F2 lnX and the hitherto neglected terms of , WM;' ^kh' > ~~w '' 
Eq. (48) must be included, in which case the indirect 2 1 p +12 1 T> —12 
background rotation goes to zero. a

xy= Y Y\ k kk' (52) 
2m2h k v \ (co^+)2-co2 (COM-) 2 -W 2 J ' 

Indirect Transition—Long-Wavelength Limit ,. _ . . rr .. . 
corresponding to the diagonal and on-diagonal compo-

We begin with Eq. (48) since this represents the sum nents, respectively. Using the definition 
over the contributions to all possible Landau levels in . ( . 
the conduction band from all possible Landau levels v —<J ^ta , { ) 
in the valence band. Expansion of Eq. (48), subject to . , . , . , . ... 
,, ,.,. . . £ . 4.1. n. we can also derive expressions for the conductivities 
the conditions co<p>>co, yH. gives the result . k , . , . . , , i • J ^ 7 0 associated with the circularly polarized waves; these 

fK.Wifmm*)*** co3(7#)2 a r e g i v e n b y 

Si—> | P ^ | 2 , (50) 
—° 1920Tdm2h4ec co/4 . ^ ^ - i e 2 f liV+l2 

which again show an co3 dependence in the long-wave­
length limit. 

2m2fi k k' {o)kk>
+(o)kk'++o)) 

(54) 
O^kk' \&kk' — t o ) 

CONDUCTIVITY TENSOR RELATIONS and 
ie2 f \Pkk>+\2 

The conductivity tensor as obtained from first-order cr — ]T) E | 
time-dependent perturbation theory and given in 2m2h * w Ico/ '̂"1"^*/1"—co) 
Eqs. (3a) and (b) can be transformed into some very i p _ i 2 ^ 
simple and useful forms through the introduction of kk' I # (55) 
left and right circularly polarized waves. We obtain o)kk>~~(ukk~+u>)\ 
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The interesting point here is that, although each of 
these conductivities involves either admixtures of Jthe 
matrix elements and eigenvalues for both left and right 
circularly polarized waves or implicitly includes transi­
tions between both sets of levels, a still simpler and 
surprisingly symmetrical form results if we use the 
conditions obtained from the properties of the Faraday 
rotation and given by Eq. (11), namely, 

|PA*'-

(o>kk'+)2 fakk' ) 2 0>kk>2 

We then obtain the following: 

nfih k w wick' iwtt'2— (w±Y.ff)2 
(56) 

This result shows that the form of the oscillator strength 

for the interband transition given by \Pkk'\2/mk' as 
postulated by KLN is indeed justified; furthermore, 
the a± conductivities can be interpreted to first order 
in terms of transforming into a rotating frame in which 
the magnetic field vanishes while the frequency is 
changed from to to cczkyH. 

DISCUSSION 

We have calculated explicit expressions for the 
Faraday rotation and the Voigt phase shift in the 
oscillatory region from the off-diagonal and diagonal 
components of the conductivity tensor which has been 
obtained in the form of the Kramers-Heisenberg 
relations. In this paper we have expressed these results 
in a more general form which is appropriate both to the 
high-magnetic field limit and/or to the low-temperature 
case, for which yHr^>\. Thus, the expressions we have 
obtained are valid for such materials as indium anti-
monide, where at fields of the order of 100 000 G, the 
results of a theory based on an expansion in powers of 
the magnetic field would definitely be inappropriate. 

The significance of the analysis that we have carried 
out lies in the behavior of the line shapes as a function 
of magnetic field and temperature. The line shapes are 
considerably altered as we go from low values of yHr, 
corresponding to room temperature and/or low fields 
to high values of yHr which are obtained at low temper­
atures and high fields. These results are clearly shown in 
Figs. 1 (a), (b) and 4 (a), (b) which indicate the direct 
transition Faraday rotation and Voigt phase shift, 
respectively. 

It was shown by KLN that in the high-temperature 
case the line shape could be utilized to determine the 
product of 7 and r since the ratio 

Smax/0ma X = COnStX Y # > ( 5 7 ) 

and that since y could be obtained from the separation 
between peaks both 7 and r can be determined. This 
result can, for the direct transition for instance, be 
obtained by expanding Eqs. (15) and (39) in powers 
of yH and then letting co —-> (cj—i/r) where singularities 
exist. The present paper, moreover, shows that in the 
low-temperature and/or high-field limit, the results are 
more direct, since now the separation between the 
maximum and minimum for a given line shape in either 
the Faraday rotation or the Voigt effect gives yH 
directly [see Figs. 1 (b) and 4 (b)], and r can be deter­
mined by fitting the line shape. 

Finally, it should be pointed out that the results 
presented in this paper enable one to determine, from 
the line shape studies, the relative contribution to the 
dispersion due to transitions between free Landau 
states and those due to transitions between exciton 
states. A phenomenological theory based on a simple 
bound state for the exciton indicates that there is a 
marked difference between the line shapes for these 
two types of transitions. At room temperature in 
germanium the experimentally obtained line shapes 
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appear predominantly to resemble the line shapes 
calculated in this paper; these correspond to transitions 
between Landau levels. At low temperatures, where 
exciton transitions should be favored, there is as yet 
insufficient data for a proper comparison. 

INTRODUCTION 

CONSIDERABLE progress has been made recently 
in our understanding of the detailed physics of 

tetrahedrally coordinated solids through the compari­
son of band structure calculations1 and experimental 
ultraviolet optical properties.2 These studies have shown 
in some detail the similarity in band structure of Ge, 
Si, and the group III-V compound semiconductors. To 
a lesser extent this similarity has been shown to extend 
to certain of the group II-VI compounds. Diamond, the 
simplest of all tetrahedrally coordinate solids because 
of its extremely small core composed only the completed 
IS shell has, however, not received the attention neces­
sary to place it on the same basis as the others of its 
class in spite of the fact that extensive band calculations 
were carried out several years ago by Herman3 using 
the orthogonalized plane-wave method. Herman's cal­
culations were subsequently shown to be nearly self-
consistent by Kleinman and Phillips.4 

With the exception of a single recent paper by 
Philipp and Taft,5 no experimental verification of these 
calculations has been made for energies greater than 
that corresponding to the lowest lying transition. In 
view of the fundamental role of diamond in solid-state 

*Work supported by the National Aeronautics and Space 
Administration. 

t Currently at Goddard Space Flight Center under a NASA 
Post-Doctoral Fellowship (on leave from the Physics Department, 
University of California, Santa Barbara, California). 
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2 H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. 

Letters 8, 59 (1962). 
«F. Herman, Phys. Rev. 93, 1214 (1954). 
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physics and the recent interest in its semiconducting 
form, such verification is desirable. 

The present paper reports measurements of the abso­
lute reflection spectrum of a polished, type Ha diamond 
for the region 4 to 30 eV. Dispersion relation analysis 
of the reflectivity was used to obtain the complex 
dielectric constant as well as the optical constants n and 
k. The improved purity of the diamond specimen em­
ployed and increased resolution for energies above 12 eV 
have lead to significant new high-energy results. 

MEASUREMENTS AND ANALYSIS 

The absolute reflection spectrum, between 4 and 30 
eV of a polished specimen of type Ha diamond6 was 
measured at room temperature and at a fixed angle of 
incidence of 20°. The absolute accuracy of the reflectiv­
ity was determined mainly by the experimental scatter 
which amounted at most to 5% in the region between 
12 and 20 eV. Both below and above this region the 
absolute accuracy of the data was about 3% and the 
relative accuracy somewhat better. Averaging of several 
independent measurements allowed structure amount­
ing to 1 or 2% to be determined. 

A Jarrell-Ash one-half meter Seya monochromator 
was used with a bandpass ranging from 3 to 6 A giving 
an energy resolution between 0.005 and 0.1 eV depend­
ing on the spectral region involved. In the important 
region between 12 and 20 eV the maximum spacing 
between source emission lines was 0.7 eV and was more 

6 The type-IIa diamond, a rectangular parallelipiped measuring 
1.09X2.98X4.96 mm and weighing 0.28 carat was graciously 
supplied by Dr. F. A. Raal of the Diamond Research Laboratory ? 
Crown Mines, Johannesburg, South Africa, 

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 1A 6 A P R I L 1 9 6 4 

Ultraviolet Optical Properties of Diamond* 
W. C. WALKER! AND J. OSANTOWSKI 

Physics Department, University of California, Santa Barbara, California 
(Received 7 October 1963; revised manuscript received 26 November 1963) 

The absolute reflection spectrum of type Ha diamond was measured at room temperature from 4 to 30 eV 
and analyzed by dispersion techniques to obtain the optical parameters. Structure observed in the dielectric 
constant near 7, 12, 16, 20, and 24 eV was attributed to interband transitions at critical points in the joint 
density-of-states function. The new high-energy structure near 16, 20, and 24 eV was assigned to transitions 
near the L point of the Brillouin zone. Experimental interband transition energies are compared to band 
theory calculations. 


