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The local kinetics of an interacting defect species is treated on the assumption that local thermal equilib
rium prevails, and a thermal equilibrium diffusion coefficient appropriate to any locality is derived in its 
general form. The annealing of an interacting defect species to sinks in the lattice is then shown to be 
identical with that of noninteracting defects having a diffusion coefficient 

£>eff= 2nanCna°Dna/2 

where cna° is the concentration far from the sink of an nth. order cluster of type a, and Dna is its diffusion 
coefficient. The importance of the particular case when cna° achieves the thermal equilibrium value CnJ, is 
noted, and the range of applicability of this diffusion coefficient is discussed. 

I. INTRODUCTION 

THE theoretical description of the annealing of a 
single species of defects out of a crystal lattice is 

considerably complicated by the inclusion of an inter
action between the defects. For the case of noninter
acting defects in an unstrained lattice, it can be shown1 

that the diffusion equation 

VD-Vp(r,t) = dp(t,t)/Mt (1) 

with D the diffusion tensor of the perfect lattice, and 
p(t,i) the probability of occupation of a potential defect 
site at r,t always gives a good description of the anneal
ing process. Since the defects do not interact, D is a 
constant throughout the good lattice. The diffusion 
equation may therefore, in principle, be solved subject 
to reasonable boundary conditions at the sites of 
efflux of the defects from the good lattice by means of 
an eigenfunction expansion of p(r,t) in the form 

P(*>t) = Hn<Xnpn(r) exp(~\j) . (2) 

When an interaction between the defects is intro
duced, Eq. (1) with a constant D fails to give an ac
curate account of the kinetics, because the interaction 
forces cause local modifications of the diffusion coef
ficient which may result in radical changes in mobility 
of the defects in the lattice. This is particularly the case 
when an appreciable number of defects become tightly 
bound into clusters whose migration rate is signifi
cantly different from that of the individual defects. 
Recognition of this type of behavior has lead to at
tempts to describe the kinetics in terms of a diffusion 
coefficient for the individual clusters and the rela
tive proportions of the various clusters present. Thus, 
Koehler, Seitz, and Bauerle2 noted that in quenched Au, 
the vacancies spend a time T<L paired into divacancies, 
as compared with n in the form of monovacancies, 
and therefore the effective diffusion coefficient of the 

* Supported in part by the U. S. Atomic Energy Commission. 
1 C. P. Flynn, Phys. Rev. 133, 587 (1964). 
2 J. S. Koehler, F. Seitz, and J. E. Bauerle, Phys. Rev. 107, 1499 

(1957). 

defects is expected to have the form 

#=(TlZ>l+r2AD/(Tl+T2). (3) 

Here, D\ and D2 are the diffusion coefficients of mono-
vacancies and divacancies, respectively, as defined for 
cubic lattices by the relationship 

dNa/dt 
J s 

gradcads, (4) 

where the left-hand side represents the rate of passage 
of defects a through the surface s in the presence of the 
concentration distribution ca{x). 

One may note in passing that for complexes the defi
nition of the diffusion coefficient by means of Eq. (4) 
is only meaningful when coupled with a thermal equi
librium postulate, because the possible jumps of the 
complex will not, in general, possess the lattice sym
metry. This symmetry is only obtained on averaging 
the properties of the complex over the various rotations 
appropriate to the lattice symmetry, and is lost by the 
translational diffusion in a concentration gradient unless 
mechanisms operate to restore the local equality of the 
population of different rotational isomers of the com
plex. A further difficulty in defining the diffusion coef
ficient of complexes springs from the fact that the con
figuration of all complexes of order n>l, other than 
fee divacancy, is changed by some of the possible dif
fusion jumps of its constituent defects. However, one 
may still define a diffusion coefficient for each con
figuration of a complex of a given order making use of 
the lattice symmetry and the thermal equilibrium postu
late mentioned above, together with random flight 
arguments. In what follows we will specify by Dna and 
Cna{t) the diffusion coefficient defined in this way, and 
the local concentration of a particular configuration a 
of an wth-order cluster. 

The concept of local thermal equilibrium is of further 
importance in one approach to the kinetics of systems 
of interacting defects which we will adopt here, for the 
determination of the local population of various com
plexes by the thermal equilibrium conditions results in 
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a coupling of the gradients under which the different 
complexes diffuse. I t has been remarked by de Jong and 
Koehler3 that this coupling helps to modify the diffusion 
coefficient given by Eq. (3) into the form 

D= (P i r i+4Z? 2 r 2 ) / ( r 1 +4r 2 ) , (5) 

where the factor 4 is attributed in part to the coupling 
of the gradients, and in part to the greater mass trans
port produced by motion of the divacancy. 

The diffusion coefficients given in Eq. (5) is not yet 
of the correct form for describing the diffusion of 
vacancies and divacancies to sinks, for Eq. (5) gives a 
local concentration-dependent diffusion coefficient, and 
takes no account of the range of concentrations through
out a lattice necessary to produce the gradients which 
drive the diffusion. Thus, the excess defect density out
side the sinks falls to zero at the sink surface. One may 
note in this respect that in relatively low-temperature 
annealing experiments, where the equilibrium concen
tration of divacancies may be negligible, the conse
quence of equilibration during migration is that the 
divacancies can never reach the sink whatever their 
actual concentration in the lattice. In this way the 
spatial variation in defect concentration can cause a 
dependence of diffusion coefficient on position which 
must be taken into account in finding the net defect 
flux to the sinks. 

In what follows, we will first derive the general form 
of the local thermal equilibrium diffusion coefficient. 
I t is then shown that regardless of the degree of equi
librium present, an almost exact solution of the kinetics 
of the interacting defects may be found for the descrip
tion of annealing to localized sinks. The range of 
validity of the particular solution found by assuming 
that thermal equilibrium occurs in the lattice is then 
discussed. 

II. LOCAL DIFFUSION IN THERMAL EQUILIBRIUM 

Let us suppose that in the defect species to be studied, 
the defects interact in a relatively short-ranged fashion, 
or are at a sufficiently low density in the crystal that we 
can divide the defect population into clusters inside 
which the defects interact, but without interactions oc
curring between one cluster and its neighbors. Fur
ther, we will postulate that the concentrations of the 
different complexes present in a locality of the lattice 
are those given by the thermal equilibrium condition. 
This second assumption ensures that while the total 
concentration c(x) of defects in the lattice may depend 
on position, the proportions of the various clusters 
at r depends only on c(r). 

With n and a specifying the order and configuration 
of a cluster as before, we may write 

c(r) = T,ncna(r), (6) 
n,a 

3 M. de Jong and J. S. Koehler, Phys. Rev. 129, 49 (1963). 

where the summation extends over all configurations of 
all orders of cluster present. I t has been shown by 
Brooks4 that for a fixed defect concentration in thermal 
equilibrium in a given region 

Cna(r)=l3nacin(r), (7) 

where ci(r) is the concentration of single defects at r 
(the subscript a may be omitted in this instance) and 
Pna is given by 

Pna = 7na eXp(~Bna/kT) , (8 ) 

where Bna is the energy loss of the lattice on forming 
the complex from isolated defects, yna is a configura-
tional factor, and k and T have their customary signifi
cance. One may therefore rewrite Eq. (6) in the form 

*(r) = Ew0«rfi»(*). W 
net 

From differentiation of Eq. (7), it is found that 

CncT1 (r) gradena (r) = tier1 (r) grad^i (r) , (10) 

so that the relative equilibrium gradients under which 
the clusters of different orders diffuse are proportional 
to their order. By definition, the number of defects 
passing through a surface s in unit time is given by 

dN r 
— = T , n D n a gradcna(r)-ds 
dt na J s 

= ^" 1( ' )E n2cna(r)Dna J grader) .ds (11) 

from Eq. (10). The local thermal equilibrium diffusion 
coefficient is defined by 

dN r 
— = D I gradc(r)«ds 
dt J, 

= Dcr\r)Z nhna{r) [ g r a d e r ) . d s , (12) 
na J s 

where use has been made of Eqs. (7) and (9). By com
parison of Eqs. (11) and (12) one finally obtains the 
local diffusion coefficient 

D(f) = E n*Cna(r)DnJL n*cna(r) • (13) 
na na 

Within the restriction to local equilibrium kinetics, 
Eq. (13) should be of quite general application. Thus, 
in the case of equilibrium between single and paired 
defects, one finds 

D(r) = (aDx+icJ)*)/ (ci+4c2). (14) 

4 H. Brooks, in Impurities and Imperfections (American Society 
for Metals, Cleveland, Ohio, 1955), pp. 1-27. 
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III. DIFFUSION TO SPHERICAL SINKS 

Having obtained an expression for the local annealing 
behavior of the clusters, one may now write down the 
diffusion equation describing the migration process to 
the sinks: 

V'D(t)Vc(r) = dc(r)/dt. (15) 

Equation (15) must be solved subject to the usual 
boundary condition of zero excess concentration above 
the thermal equilibrium value at sink sites. Unfortu
nately, the equation is nonlinear in c for values of c such 
that DT^DI, SO that the standard procedures used in 
linear diffusion problems are not available here. How
ever, the solution of the linear problem does suggest 
an approach which is valuable in the nonlinear case also. 

I t will be recalled that with a constant diffusion coef
ficient and for localized sinks (dislocation loops, clusters, 
stacking fault tetrahedra, and the like) which are ran
domly dispersed through the good crystal, we first as
sign to each sink a volume from which the defects are 
likely to anneal to that sink. On idealizing the problem 
with the supposition that these volumes, and the position 
of the sink in the volume, have some convenient geom
etry, the annealing problem may be simulated by solv
ing the diffusion equation inside the individual cell, sub
ject to zero derivative conditions at the surface and zero 
concentration at the sink. For a uniform initial distribu
tion of defects at concentration Co, and concentric spheri
cal sinks, radius b, and diffusion volumes, radius R} one 
finds in this way5 

c(r,t) = Y<n an(^nr)~l $m\n{r—b) exp(—Aw
2Z>0, (16) 

where \n is the nth root of the equation 

tsin\n(R-b) = \nR. (17) 

The interesting point concerning this solution is that 
the eigenvalue corresponding to the smallest eigenvalue 
Xo describes the annealing of all except a fraction 
^b2/R2 of the defects and, moreover, that the defect 
absorption rate found from use of this eigenvalue alone 
differs only by ^b2/R2 from the steady-state rate of 
absorption from an infinite diffusion field. The net con
tribution of the eigenfunctions for n>0 is a small 
transient whose amplitude is negligible for b<£R. Thus, 
in practice, to find the defect loss rate at a spherical 
sink, we need only solve Laplace's equation 

V2c(r) = 0 (18) 

and knowing the diffusion coefficient, the defect loss 
rate may be written down from the concentration gradi
ent at the sink. 

The reason for this simplification rests on the fact that 
the great majority of defects reaching the sink have to 
migrate from the outer parts of the diffusion volume. 
Compared to the rate at which defects reach the sink, 
the rate of change of the average number of defects near 

«F. S. Ham, Phys. Chem. Solids 6, 335 (1958). 

the sink is very small, and a close approximation to 
steady-state conditions is the consequence. However, 
this is also true in the case where the diffusion equation 
varies with position: The majority of the defects lie 
initially at distances ~R from the sink, so that quasi-
steady-state conditions will prevail. Thus, the nonlinear 
problem also may be solved to a good approximation 
by determining the solution of 

V-Z)(r)Vc(r) = 0 (19) 

for diffusion out of an infinite volume. 
Fortunately, Eq. (19) is quite easy to solve for the 

case of spherical symmetry. Noting that according to 
the thermal equilibrium conditions, D(r) is actually a 
function of concentration only, we may immediately 
integrate the equation twice to obtain 

ai+a2/r= D(c)dc, (20) 

where a\ and a2 are constants of integration. On chang
ing the variable to c\ one finds 

a2 f 
0iH—= / ci l Z n2cnaDnadci 

r J na 
(21) 

na 

where use has again been made of Eqs. (6) and (7). 
The arguments given above show that Eq. (21) holds 

provided that thermal equilibrium exists throughout the 
lattice, but as we will now demonstrate, its range of 
validity is, in fact, much wider. The exact description of 
the annealing behavior of an interacting defect species 
is available from the coupled set of partial differential 
equations which give the time dependence of the con
centrations of the various clusters (see, for example, 
Ref. 3): 

DnaV
2Cna+ <Pna(Cly C2p, * ' *, Cnfa ' * ') = dCna/dt, (22) 

where the different equations are generated by running 
n and a over all orders and types of complexes present. 
The function <p(c) describes the rate of change of cna{t) 
due to transformations among the clusters. 

On multiplying each of Eqs. (22) by its order n and 
adding the whole set together, one finds after trivial 
manipulations 

V2 J2 nCnaDna+Jl n<pna(ci, C2fa ' ' , Cn(i> ' ' ') = dc/dt. 

na na (23) 

Here we have made the obvious identification 
Cz== / jnct tlCna* 

The second term on the left vanishes, 
since no defects are created by means of the transforma
tions between clusters; moreover, in the quasisteady 
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state, the right-hand side also vanishes. Thus, we have 

V 2 E w B A « = 0 . (24) 
na 

On integrating twice, Eq. (21) is reproduced for the case 
of spherical symmetry, although more generally, since 
the Cna are no longer restricted to thermal equilibrium 
proportions. 

The constants of integration are readily evaluated 
from the conditions 

cna=0, at r=b (25a) 

Cna=Cnot°, C=CQ, Sit / = 00 ( 2 5 b ) 

where cna° is the concentration of the complex n, a as 
c tends to its maximum value CQ. In this way, one finds 
the values 

0i = a>2/b=Z ncn«°Dn<x, (26) 
na 

and therefore 

E nCna(r)Dna= ft"&A)£ nCna°Dna. ( 2 7 ) 
na na 

By taking the radial derivative sXr=b and integrating 
over the surface of the sink, the number of defects 
entering the sink in unit time is found as 

dN 
—=4irbj:ncnJ>Dna. (28) 
dt »« 

Rather surprisingly, this is just the defect loss rate 
which would be found if concentrations cna° of defects 
were allowed to diffuse without interactions. 

The effective diffusion coefficient Dea may be defined 
from analogy with the relationship similar to Eq. (28) 
which is found when the diffusion equation is a constant, 
namely, 

dN/dt=4:TrbcoDeii. (29) 

Comparing Eqs. (24) and (25), one then finds 

Dett = Co-1 £ nCna°Dna , ( 3 0 ) 
na 

or, substituting for co> 

DeH = 2 nCnaDna/Y, ncna°. ( 31 ) 
na na 

The diffusion coefficient given by Eq. (31) has been 
derived for spherical sinks only. In fact, the range of 
validity is wider, as will be discussed in the next section. 
For the special case of single and paired defects, one 
finds that the flux of defects to the sink is described by 

D9tt = (*i°Z>i+2<*°Z>a)/W+2c2°). (32) 

It is interesting to note that Eq. (27) defines the 
profile of the concentration of defects in the presence of 
the sink. Figure 1 shows the thermal equilibrium profile 
for three different concentrations of vacancies in Au at 

r/b 

FIG. 1. Relative vacancy concentration c/co near a localized 
sink of radius b in Au at 300°K for the following values of c0: 
(I) co-^0; (II) co~2X10-5; (III) co = 2X10"4. The broken line 
shows the relative divacancy component C2A20 for case II. 

300°K. To obtain these distributions we have used the 
relationships 

D2= (v2a?/6) exp(~EJ/kT), (33) 
and 

c2=6a2exp(B/kT). 

Equations (33) may be obtained from Ref. 3 (with the 
exception of the second equation where a factor 8 is 
given in place of the factor 6 found here from the type 
of random flight arguments mentioned in the Intro
duction). We have also used the values v\~vi and 
Em

1-EJ+B = 0.26eV. 
From Fig. 1 it will be seen that, as the defect concen

tration increases, the profile tends away from that found 
with a constant diffusion coefficient in a manner which 
exaggerates the gradients near the sink. This is a conse
quence of the fact that the divacancies diffuse faster 
than the singles, so that the equilibrium profile has 
smaller gradients away from the sink where the concen
tration of divacancies is largest. Close to the sink 
where only single vacancies exist, the gradients are 
enhanced in order to maintain the increased quasi-
steady-state flow. 

IV. DIFFUSION TO NONSPHERICAL 
SINK GEOMETRIES 

In general, a localized sink will not be spherical, so 
that the theory given above does not necessarily hold. 
In the case of a constant diffusion coefficient, it has been 
shown by Flynn1 that the absorption rate of defects at 
a nonspherical sink is the same as that at a spherical 
sink whose radius equals the electrostatic capacity of a 
conductor having the dimensions of the nonspherical 
sink. 

When the defects interact, this theorem retains its 
validity with an effective sink radius unchanged by the 
interactions. To prove this, we note that according to 
Eq. (24) the quantity Y^na nCnaDna can be expanded in 
terms of the customary solutions (A tfl-\-Btrl~v) Yin (6, <p) 
of Laplace's equation. Differentiation then reveals that 
the coefficient B0 alone determines the flux of defects 
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through a surface surrounding the sink, and comparison 
with the analogous electrostatic field shows that the 
value of Bo corresponds to that of a spherical sink with a 
radius equal to the capacitance of the actual sink 
geometry. One may therefore write the defect annealing 
rate for any degree of equilibrium and any sink geom
etry in the form 

dN/dt=4*cJ>«ttD<it=4rbM E ncna
0Dnoi, (34) where 

with Deft given by Eq. (31) and beu by the electrostatic 
capacitance appropriate to the sink geometry. 

It is interesting also to consider the case of sinks hav
ing cylindrical symmetry in an attempt to discuss dif
fusion to dislocations in the presence of interactions be
tween the diffusing defects. We therefore solve Eq. (24) 
in cylindrical coordinates to obtain in place of Eq. (21) 

ai+a2 lnr=]C ncnaDn (35) 

Difficulty is encountered in applying the boundary 
conditions at large r because of the logarithmic diverg
ence of the left-hand side of Eq. (31). However, com
parison with the analogous equation when D is constant 
shows that for steady-state annealing, the effective 
diffusion coefficient is given once more by Eq. (31). 

V. THE THERMAL EQUILIBRIUM APPROXIMATION 

It is clear that the approximation of local thermal 
equilibrium is appropriate to small concentration gradi
ents, for the migration is then slow, and the defect popu
lation has sufficient time to equilibrate during diffusion. 
For localized sinks, the gradients are largest near the 
sink, so that it is in this neighborhood that the approxi
mation first breaks down. The migrating complexes 
have a lifetime and a mean path which are independent 
of their environment. Thus, the occurrence of local 
thermal equilibrium depends on the relative sizes of the 
mean path of the complexes, and the distance over 
which the concentration of the complexes must change 
significantly. 

During annealing with a constant diffusion coef
ficient to localized sinks, radius b, the defect concentra
tion essentially falls to zero in a distance ~b outside the 
sink. When interactions between defects are added so 
that the effective diffusion coefficient becomes Deu 
rather than Di, the gradients close to the sink are in
creased by a factor Deu/Di in order to accommodate 
the increased defect flux, and the concentration de
crease therefore occurs in a distance ^Dib/Dea (see 
Fig. 1). Given a mean path X of the complexes, one then 
sees that the complexes cannot reach the sink if 
Dib/DeftX)>>l and that, under these circumstances, the 
thermal equilibrium conditions will effectively be satis
fied throughout the lattice. 
$ To exemplify the discussion, one may again consider 
the annealing of single and divacancies in Au at 300 °K. 

Using Eqs. (33) one finds 

l+24**'*TciDt/Di 
£>effX2/A = [ Z V ^ V ^ P l ] 1 ' ^ , 

l+2W*kTci 

l+4*iA(r) 

\+24eBIkTc1 

£A(T)/U2ji*o, (36) 

A(T) = exp[(EJ-EJ+B)/kTl, (37) 

and we have written X2 for the mean divacancy path* 
A(T) has a value of about 3X104 for Au at 300°K, so 
that with ci<3X10~4 thermal equilibrium conditions 
will be approached at all points for sinks with b>300a. 
For samples quenched from temperatures below 900°Cr 

this criterion becomes b>60a. For Ag at room tempera
ture, eBlkT^W, so that the second term in the denomi
nator dominates for even moderate defect concentra
tions. One then finds D^D^DtePW/lWtJH, 
which indicates that almost macroscopic sinks are 
needed in order to assure local thermal equilibrium 
everywhere. At around 900°C, however, the equilibrium 
in Ag adopts a form analogous to that in Au at room 
temperature. 

It is important to note that the breakdown of thermal 
equilibrium near the sink does not affect the validity 
of the expressions (28) and (31) for the defect loss rate 
and effective diffusion coefficient, for these are quite 
generally applicable to the quasisteady state. However, 
in order to find the kinetics resulting from any given 
annealing situation, one needs also the value of the 
Cna°, which must be furnished by further consideration of 
the boundary conditions of the problem. In the relatively 
wide range of circumstances where thermal equilibrium 
is attained in the bulk lattice, the solution is immedi
ately available, for then the cna take their thermal equi
librium values cna\ which may be found from the concen
tration c of defects remaining in the lattice. The thermal 
equilibrium diffusion coefficient 

#eff = L nCnJDnJYL Wn (38) 

then describes the annealing. 
We will now examine the range of circumstances 

under which we may apply Eq. (37) to our relatively 
simple example of mixed single and divacancy annealing 
to an isolated sink. Because divacancies diffuse more 
rapidly than single vacancies, the thermal imbalance 
of the defect population which arises from steady-state 
annealing is always in the direction of a divacancy 
deficiency, the vacancies being unable to maintain the 
thermal equilibrium divacancy population in the face 
of rapid divacancy migration. 

One can easily show that if the divacancy population 
is suppressed by 8c2, then the local production rate 
resulting from the deviation from equilibrium is 

dc2/dt=28v! exp[~ (Em'+B)/kT}52. (39) 
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Moreover, the loss rate due to migration may be seen 
from Eq. (28) to take the form 

dc2/dt=-(3b/R*)D2C2, (40) 

so that for the approximate steady state 

8c2/c2^(ba2/56R*)A(T). (41) 

This shows that for Au at 300 °K with 5b=R, a separa
tion of the sinks by 50a is sufficient to ensure the validity 
of Eq. (37). For Ag at room temperature, the analogous 
distance is some thousands of lattice spacings. 

Finally, it is interesting to re-examine the work of de 
Jong and Koehler3 in the light of what we have found 
here. These authors study the growth of stacking fault 
tetrahedra under the assumptions: (a) that growth 
occurs by absorption at the corners of the tetrahedra at 
a rate found by assuming that the defect concentration 
is constant through the lattice, and (b) that the diffusion 
coefficient for voids is the local thermal-equilibrium 
value corresponding to the average defect concentra
tion. The assumption (a) has previously been shown by 

INTRODUCTION 

HARRISON and Paskin1 (HP) have calculated the 
ordering energy of /3-CuZn using recent theoreti

cal techniques of treating electron screening2 and Mott's3 

"polar model" of an alloy. Good agreement is obtained 

*This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 A. Paskin/Bull. Am. Phys. Soc. 7, 216 (1962); R. J. Harrison 
and A. Paskin, J. Phys. Radium 23, 613 (1962). 

2 B. D. Silverman and P. R. Weiss, Phys. Rev. 114, 989 (1959); 
W. Kohn and S. H. Vosko, ibid. 119, 912 (1960); R. J. Harrison 
and A. Paskin, J. Phys. Soc. Japan 15, 1902 (1960). 

3 N. F. Mott, Proc. Phys. Soc. (London) 49, 258 (1937). 

the author1 to lead, in general, to a quite incorrect esti
mate of the defect loss rate. However, when one specifies 
a single atomic site as an infinite sink, this approxima
tion leads to an erroneous estimate by only about a fac
tor 2, because the gradients driving such a slow dif
fusion process are indeed almost negligible. Since, in 
this isolated case, the occupation probability of a poten
tial defect site does not fall to zero at sites neighboring 
the sink, the averaging process involved in finding Eq. 
(21) from Eq. (13) does not occur, and the diffusion 
coefficient (13) may therefore be more appropriate than 
(31). Thus, provided the defect absorption occurs in 
regions of atomic dimensions near the tetrahedron 
corners, the assumptions made by de Jong and Koehler 
could give a reasonable description of the annealing. 
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between the HP calculation of the total energy of the 
order-disorder transformation and specific-heat meas
urements of this energy. A consequence of present screen
ing calculations1'2 is the ordering energy is long-range 
and oscillatory. The magnitudes of even the far-
neighbor ordering-energy terms are not negligible while 
the second-neighbor energy may be as high as 30% of 
the first-neighbor term. Walker and Keating4 recently 
measured the neutron diffuse scattering of /?-CuZn. 
Although they do not obtain explicit order parameters, 

4 C. B. Walker and D. T. Keating, Phys. Rev. 130, 1726(1963). 
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Harrison and Paskin (HP) have calculated the ordering energy of /3-CuZn using recent theoretical tech
niques of treating electron screening and Mott's polar model of an alloy. Good agreement is obtained be
tween the calculated total energy of the order-disorder transformation and specific-heat measurements. A 
consequence of the HP calculation is that the ordering energy is long-range and oscillates in sign. Walker 
and Keating recently measured the neutron diffuse scattering of /3-CuZn above the critical temperature Tc 

and find their data are in agreement with order calculated by only considering a nearest-neighbor interaction. 
Using the Cowley statistical theory of order, we compare the order generated by a nearest-neighbor inter
action and the long-range interaction of HP at a temperature 1.1 Tc. We find the average behavior of the 
order generated by the nearest-neighbor and long-range interaction to be similar. The major difference 
is the nearest-neighbor interaction generates order that asymptotically, varies smoothly with neighbor dis
tance whereas the order resulting from the long-range interaction fluctuates markedly about the nearest-
neighbor generated order. This result may explain the success of statistical theories, based on nearest-
neighbor interactions, in both order-disorder of alloys as well as in some magnetic systems which are also be
lieved to have a similar long-range oscillatory interaction. 


