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Moreover, the loss rate due to migration may be seen 
from Eq. (28) to take the form 

dc2/dt=-(3b/R*)D2C2, (40) 

so that for the approximate steady state 

8c2/c2^(ba2/56R*)A(T). (41) 

This shows that for Au at 300 °K with 5b=R, a separa­
tion of the sinks by 50a is sufficient to ensure the validity 
of Eq. (37). For Ag at room temperature, the analogous 
distance is some thousands of lattice spacings. 

Finally, it is interesting to re-examine the work of de 
Jong and Koehler3 in the light of what we have found 
here. These authors study the growth of stacking fault 
tetrahedra under the assumptions: (a) that growth 
occurs by absorption at the corners of the tetrahedra at 
a rate found by assuming that the defect concentration 
is constant through the lattice, and (b) that the diffusion 
coefficient for voids is the local thermal-equilibrium 
value corresponding to the average defect concentra­
tion. The assumption (a) has previously been shown by 
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the author1 to lead, in general, to a quite incorrect esti­
mate of the defect loss rate. However, when one specifies 
a single atomic site as an infinite sink, this approxima­
tion leads to an erroneous estimate by only about a fac­
tor 2, because the gradients driving such a slow dif­
fusion process are indeed almost negligible. Since, in 
this isolated case, the occupation probability of a poten­
tial defect site does not fall to zero at sites neighboring 
the sink, the averaging process involved in finding Eq. 
(21) from Eq. (13) does not occur, and the diffusion 
coefficient (13) may therefore be more appropriate than 
(31). Thus, provided the defect absorption occurs in 
regions of atomic dimensions near the tetrahedron 
corners, the assumptions made by de Jong and Koehler 
could give a reasonable description of the annealing. 
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between the HP calculation of the total energy of the 
order-disorder transformation and specific-heat meas­
urements of this energy. A consequence of present screen­
ing calculations1'2 is the ordering energy is long-range 
and oscillatory. The magnitudes of even the far-
neighbor ordering-energy terms are not negligible while 
the second-neighbor energy may be as high as 30% of 
the first-neighbor term. Walker and Keating4 recently 
measured the neutron diffuse scattering of /?-CuZn. 
Although they do not obtain explicit order parameters, 

4 C. B. Walker and D. T. Keating, Phys. Rev. 130, 1726(1963). 
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Harrison and Paskin (HP) have calculated the ordering energy of /3-CuZn using recent theoretical tech­
niques of treating electron screening and Mott's polar model of an alloy. Good agreement is obtained be­
tween the calculated total energy of the order-disorder transformation and specific-heat measurements. A 
consequence of the HP calculation is that the ordering energy is long-range and oscillates in sign. Walker 
and Keating recently measured the neutron diffuse scattering of /3-CuZn above the critical temperature Tc 

and find their data are in agreement with order calculated by only considering a nearest-neighbor interaction. 
Using the Cowley statistical theory of order, we compare the order generated by a nearest-neighbor inter­
action and the long-range interaction of HP at a temperature 1.1 Tc. We find the average behavior of the 
order generated by the nearest-neighbor and long-range interaction to be similar. The major difference 
is the nearest-neighbor interaction generates order that asymptotically, varies smoothly with neighbor dis­
tance whereas the order resulting from the long-range interaction fluctuates markedly about the nearest-
neighbor generated order. This result may explain the success of statistical theories, based on nearest-
neighbor interactions, in both order-disorder of alloys as well as in some magnetic systems which are also be­
lieved to have a similar long-range oscillatory interaction. 
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they find the over-all diffuse scattering is in agreement 
with calculations of the order propagated from a phe-
nomenological nearest-neighbor interaction. 

These observations would at first seem to be in con­
tradiction with the HP ordering energy. Using Cowley's5 

statistical theory of order, we here show that the long-
range, oscillatory energy of HP yields about the same 
average behavior for the order parameters as does a 
simple nearest-neighbor interaction. The major dif­
ference is that the order parameters generated by the 
long-range interaction do not vary smoothly with dis­
tance whereas the nearest-neighbor interaction propa­
gates order that asymptotically does vary smoothly 
with neighbor distance. We have thus shown how dif­
fuse experiments that measure average properties of 
order in 0-CuZn can be well approximated by a nearest-
neighbor interaction even though the ordering energy 
may be of the long-range, oscillatory type found by HP. 
It is also pointed out that for magnetic systems having 
a long-range, oscillatory interaction energy, parallel 
arguments would lead us to expect the same results. 

ORDERING ENERGY OF POLAR MODEL 

In the polar model one considers the two types of 
atoms as point charges in a "sea" of conduction elec­
trons. The magnitude of these point charges are taken 
to be the respective nuclear charges diminished by the 
average electronic charge within the atomic polyhedra 
surrounding the respective ions. The conduction elec­
trons are at first assumed uniformly distributed through­
out the alloy and the redistribution then calculated. For 
/5-CuZn there are one and a half conduction electrons 
per polyhedron. The point charges to be shielded are 
then (J)e at the Zn site and — (J)e at the Cu site. Making 
use of recent screening calculations, HP find E, the 
electronic interaction energy arising from the interac­
tion of these point charges with the screening electrons, 
is given by 

JE= £ Em,n= 52 eZnV(rmn',Zm). (1) 
m>n m>n 

Here Em>n is the interaction energy of ion pair m and n, 
V is the potential at site n due to the screening of the 
ion at site m, rmn is the distance between sites, and Zx 

is the difference between the ionic charge and the aver­
age number of conduction electrons per atomic poly­
hedron [i.e., Zx=±(%)e in 0-CuZn]. A reasonable 
representation for V in /3-CuZn is found to be1 

' Vmn j ^m) ~ 

eZma2 cos(2kFrmn+<l>) 

(2AF)*(l+aY2)Vm»« 
(2) 

where kF is the momentum of an electron at the Fermi 
surface (assumed spherical), a = q/2kF where q is the 
usual Thomas-Fermi screening parameter, and <j> is a 
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FIG. 1. The relative ordering energy Vjo as a function of TJQ the 
distance to the jih site. The energy is relative to the first-neighbor 
energy, for 0 = x/2, and distances are given relative to a/2 where 
a is the lattice parameter. The O's indicate the jih neighbor values 
of 7y0. 

phase factor to take into account deviations from the 
free-electron calculations.1 From estimates of the energy 
of order-disorder, HP find a value of <£^7r/2+0.28 to be 
reasonable. This value of <j> is close to the value for dilute 
solutions of Zn in Cu obtained by Blandin and Friedel6,7 

(following Blatt) who give 0=1.87 rad. The major 
points to note for present considerations are: the pair 
interaction energy described by Eq. (2) is proportional 
to rmn~

z and thus long-range, and the interaction is also 
oscillatory because of the cosine factor. 

The phenomenological ordering energy5 of an AB 
alloy that usually appears in the statistical theories of 
order is 

Vmn= (l/2)[_EmtnUJA) + Em,n(B,B)2-Em,n(^JB) , (3 ) 

where Em>n(X,Y) refers to energy of a pair of X and Y 
atoms at sites m and n, respectively. For AB alloys, 
on the basis of the polar model, Zn(A) = — Zn(B), 
Emin(AJA) = Em,n(B,B) = —Em,n(AJB), and the order­
ing energy is 

vmn = 2Em>n(A,A) = 2e\Zn\V(rmn; \Zm\). (4) 

In Fig. 1, the ordering energy (for <£ = 7r/2) relative to 
the nearest-neighbor energy is given as a function of the 

6 A. Blandin and J. Friedel, J. Phys. Radium 21, 689 (1960); 
Phys. Chem. Solids 17, 170 (1960). 

7 It disagrees with the value of </> obtained by Kohn and Vosko 
(Ref. 2), who, however, point out their technique could not 
match the resistivity data for Zn in Cu. 
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neighbor distance in units of a/2, where a is the lattice 
parameter. The important points to note are: the sec­
ond-neighbor interaction is about 30% of the nearest 
neighbor for this interaction and more distant neighbors 
still give finite contributions (e.g., the eighth neighbor 
is about 5 % of the first neighbor). 

Because of the range and magnitude of the ordering 
energy, one might expect that statistical treatments 
based on a nearest-neighbor interaction would need 
serious modification. Fortunately, it seems that the 
oscillatory nature of the interaction tends to cause the 
more distant neighbors in effect to nullify one another, 
and allow the nearest-neighbor approximation to be a 
good description. This is demonstrated in the next 
section. 

ORDER PARAMETERS WITH LONG-RANGE 
INTERACTION 

Of the various statistical theories of order available, 
the Cowley theory5 is most convenient for examining 
the relative effects of the long-range ordering energy 
on the order parameters above the critical temperature 
Tc. The basic equations5 relating the order parameter 
aj and the interaction energy for an AB alloy are 

£ ViW+lkTaC1 / ln [ ( l+a») / ( l -a<)] r fa<=0. (5) 

ft l\ 
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FIG. 2. The order parameters aj versus neighbor distance rjQ 
for /3-CuZn at T/Tc —1.10. The + and o symbols indicate positive 
and negative values of aj, respectively. Only a nearest-neighbor 
ordering energy is considered. 

Here aj—1 — 2PABJ where PAB,J is the probability of 
finding an AB pair as j t h neighbors, ^=Boltzmann ,s 
constant, and v# is the ordering energy of Eq. (4). If 
we define vio as the ^th-neighbor ordering energy and 
note for a , « l , f l n [ ( l + a i ) / ( l - a , - ) ] ^ ^ ^ 2 , Eq. (5) 
may be written as a linear set of difference equations 

2 Vijaj+bai= — Vi0, 
i 

(6) 

where V»y=fl#/VLO or all interaction energies are in 
terms of the nearest-neighbor energy z>io and Vj0 is the 
relative interaction energy of the yth neighbor. The 
parameter 

b=(2kTc/v10)(T/Tc), (7) 

may be evaluated in terms of the Cowley theory by 
noting that the critical temperature of Eq. (5) is related 
to the first N terms of the ordering energies as follows: 

(2*rcAio)=-E Vj& (8) 

Here Zj is the coordination number of the 7th neighbor 
times the sign of the order parameter aj for perfect 
order. Making use of Eqs. (6), (7), and (8), we may 
vary the number of terms and magnitudes of the order­
ing energies and examine the variation in the order 
parameters for a fixed Tc. We have evaluated the first 
forty values of a3- at T/Tc= 1.10 (a temperature of 

interest for comparison with the experimental results 
of Walker and Keating4). The linear set of equations of 
(6) were solved numerically for a nearest-neighbor 
interaction and keeping the first forty ordering-energy 
terms of Eq. (4) for <£=7r/2±0.28 and TT/2. 

We have examined the accuracy of the procedure of 
solving the difference equations keeping the first N 
terms in aj and setting the remainder equal to zero. 
The results obtained from a nearest-neighbor interaction 
keeping the first thirty terms are compared with those 
obtained keeping the first forty terms. The magnitude 
of the differences between the two sets of order param­
eters increases monotonically with increasing neighbor 
distance. The relative differences are negligible until 
about the fifteenth neighbor, have increased to about 
ten percent by the twentieth neighbor, and have reached 
thirty percent by the thirtieth neighbor. This indicates 
that meaningful comparisons of the first thirty-order 
parameters may be made on results obtained keeping 
the first forty terms in aj. In Fig. 2 the results for the 
nearest-neighbor interaction are given.8 In Fig. 3 the 
results are given for the long-range interaction with 

8 It might be noted that these values are somewhat smaller 
than those given by Cowley (Ref. 5). The asymptotic solution of 
Eq. (6) is readily found to be \aj\ =Cry0"1 exp(—frj0), where 
/=0-i(£_8)i/2 for /?-CuZn. Comparing Cowley's results with the 
present results and the asymptotic expression for a, it is apparent 
that Cowley's order parameters in Table I I for kT/Vi—kA are in 
error. 
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</>=7r/2. The general results for the other <£'s are similar 
to those given in Fig. 3, although the relative values of 
the first- and second-neighbor interaction varies mark­
edly for the three cases. We see that the nearest-neigh­
bor interaction is well represented on the semilogarith-
mic plot of Fig. 2 by a straight line9 over most of the 
range shown here (i.e., about the first 30 neighbors). 
The long-range-interaction order parameters on the 
average lie somewhat above the same straight line de­
scribing the average of the nearest-neighbor-generated 
order parameters but there are large variations in 
specific order parameters. 

We have also examined the effect of temperature on 
the relative order. The general results are the same at 
T/Tc= 1.235 as at T / r c = 1.10 except that the fluctua­
tions at the higher temperature have actually caused a 
reversal in the sign of some of the far-neighbor order 
parameters. At T/Tc—1.10 the order parameters have 
the same sign as the order parameters do below the 
critical temperature where long-range order exists. A 
neighboring site that had an A atom on it for perfect 
order still prefers an A atom at temperatures immedi­
ately above the critical temperature both for the nearest-
neighbor and long-range interactions. At T/Tc= 1.235, 
the nearest-neighbor order is still of the same type as 
below the critical temperature, whereas the long-range 
interaction favors the opposite atom type at some sites 
beyond the thirteenth neighbor. As the order at the 
higher temperatures is smaller and relatively less impor­
tant, no attempt was made to study further the order 
reversal at higher temperatures arising from the long-
interaction. In any event, the general results at the two 
temperatures are the same: the average order generated 
by the nearest-neighbor and long-range oscillatory inter­
action is approximately the same except that long-range 
order produces marked fluctuations in order about the 
average. Thus, we see measurements such as those of 
Walker and Keating4 which reflect the average state of 
order may be well approximated by a nearest-neighbor 
interaction even though the interaction may in fact be 
the long-range interaction described here. The only way 
of distinguishing between the two would be to look at 
the order parameters themselves and see if they do 
indeed fluctuate about a smooth curve as predicted by 
the long-range interaction or whether they are the well-
behaved parameters predicted by a nearest-neighbor 
interaction. 

In the light of the fact that long-range oscillatory 

b I I I I 

9 The semilog plot of the ordering parameter as a function of 
r3'0 should be approximately a straight line on the basis of the 
asymptotic expression given in Ref. 8, 
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FIG. 3. The order parameter aj versus neighbor distance for 
/3-CuZn at T/Tc = 1.10. The + and o symbols indicate positive 
and negative values of a/, respectively. The first forty neighbor 
ordering energies of HP (<f> = T/2) are kept. The dashed line is the 
average order obtained from keeping only the nearest-neighbor 
ordering energy. 

interaction also arise in other phenomena10 involving 
electron interactions, it is tempting to generalize the 
conclusions indicated by the order-disorder results. 
It might therefore be expected, in general, that coopera­
tive effects arising from long-range interactions of the 
form given here will, on the average, be well approxi­
mated by nearest-neighbor statistical treatments. For 
example, the parallel statistical treatments of order-
disorder11 and spin or magnetic disorder,11 suggest that 
magnetic systems having similar long-range oscillatory 
interactions10 will have magnetic critical scattering 
which, on the average, will also be well described by 
a nearest-neighbor approximation. On the other hand, 
if one is interested in the effects of a long-range oscilla­
tory potential this suggests that one should look for 
appropriate fluctuations in the detailed behavior of the 
critical scattering arising from alloy or magnetic 
disorder. 
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