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Elastic Atomic Scattering 

CHRISTIAN LEHMANN* AND MARK T. ROBINSON 

Solid State Division, Oak Ridge National Laboratory^ Oak Ridge, Tennessee 
(Received 7 November 1963) 

Atomic collisions in the radiation damage of solids can be described by repulsive potentials for which the 
scattering integrals cannot generally be evaluated in closed form. However, the evaluation becomes possible 
when the actual interatomic potential is replaced by certain truncated power potentials which match the 
actual potential in value and in slope at the minimum distance. The usefulness and accuracy of such matching 
potentials are discussed and numerical examples are given for the scattering angle, the "time integral," and 
the energy transfer in the cases of an exponential potential and of an exponentially screened Coulomb po­
tential. The agreement with the exact numerical solutions is surprisingly good. 

I. INTRODUCTION 

A DETAILED analysis of the slowing down of 
energetic atoms in solids is fundamental to the 

theory of radiation damage and sputtering. If the energy 
of the atoms is not too great, its slowing down may be 
attributed to its elastic encounters with the atoms of the 
solid, energy losses by electron excitation being ignored. 
If the energy of the moving particle is not too small, its 
interactions with the target particles may be regarded 
as isolated from each other and the classical theory of 
scattering from a conservative, central, purely re­
pulsive potential may be applied. The conditions for the 
applicability of classical mechanics have been discussed 
before.1,2 For most applications in the intermediate 
energy region, it is sufficient to evaluate the asymptotic 
properties of the particle trajectories. In fact, the 
validity of the two-body treatment of atomic slowing 
down problems in solids depends in a general way on 
the actual particle trajectories adhering rather closely 
to their asymptotes. Unfortunately, the classical scat­
tering integrals can be evaluated in closed form in terms 
of standard tabulated functions only for a limited group 
of power potentials.3 For the potentials of primary 
interest in radiation damage theory, it is necessary to 
use approximation methods or to evaluate the integrals 
numerically. It is the purpose of this commmunication 
to investigate the accuracy of some of the approximate 
treatments of the scattering integrals which have been 
proposed for radiation damage applications. This will 
be accomplished by the systematic discussion of a class 
of matching potentials, using in part a perturbation 
expansion, and by the direct numerical comparison of 
the approximate solutions with recently published 
tables of exact values.4 
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Consider, as in Fig. 1, a moving atom, the projectile, 
of mass mi and initial laboratory (L) kinetic energy E, 
to be scattered by an initially stationary atom, the 
target, of mass W2. The location of the asymptotic 
trajectories of the two particles in the L system can be 
given in terms of the center-of-mass (cm.) scattering 
angle 0 and the "time integral" r which describes the 
location of the cm. when the distance between the two 
particles is a minimum. The two scattering integrals 

J R 
drlr*f(r)-y\ (1) 

T = (2P_jS)Ui_ i ^ { [ / W ^ - C l - ^ A 2 ] - 1 ' 2 } , (2) 
JR 

where 
/ W = [ l _ , 2 A 2 _ 0 W / E r ] l / 2 j ( 3 ) 

Er=AE/(l+A), and A=mi/m\\ s is the impact 
parameter, r is the (variable) interatomic separation, 
(j> (r) is the potential of interaction, and R is the distance 
of closest approach, defined by /(/?) = 0. Figure 1 shows 
the L coordinates of the two particles and of their 
cm. when r=R. Note that in conventional scattering 

PATH OF PROJECTILE ATOM 

PATH OF TARGET ATOM -

FIG. 1. Trajectories of the particles in a two-body collision. The 
positions of the particles are shown at their minimum separation. 
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r, INTERATOMIC SEPARATION 

FIG. 2. An actual potential, <£(f), matched by a series of 
truncated power potentials, Vn(r). 

theory,3 where the detector of the scattered particle is 
regarded as very far from the scattering center, the 
"time integral" may be neglected, but that this cannot 
be done in discussing multiple scattering problems in 
solids, for now the "detector" is the next scattering 
center and is only distant by an amount of the same 
order as ^ and r. 

Under circumstances where 8 is small, that is, for Er 

or s large, the integrals (1) and (2) may be treated with 
sufficient accuracy by the momentum (impulse) ap­
proximation (MA).1,2,5 The exact interatomic potential 
<t> (r) is regarded as a perturbation and the integrals are 
evaluated from this viewpoint. A detailed discussion 
of the MA has been given by Lehmann and Leibfried.2 

On the other hand, when 6 is not small, the exact po­
tential may be replaced by an approximate one for 
which the scattering integrals may be evaluated in 
terms of tabulated functions. We shall discuss a family 
of such approximations which includes as special cases 
the well-known hard-core approximations,6-8 the 
energy-independent matching potentials,1,9 and various 
more elaborate matching potential procedures.8,10,11 

The approach is essentially an elaboration of the work 
of Leibfried and Oen11 and includes their results as a 
special case. While several useful remarks about the 
accuracy of the various approximations will be made, 
the most convenient test of their value is based on 
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comparison with exact numerical solutions of Eqs. (1) 
and (2). 

II. GENERAL DISCUSSION OF THE 
MATCHING POTENTIALS 

Since our discussion has been restricted to purely re­
pulsive potentials, it is required that 

cf>(r) ^ 0 and cj>'(r)^0 0<r<*> (4) 

where the prime means d/dr. Furthermore, in order that 
the integral in Eq. (2) be defined, it is necessary that 
limr.*oor0(r) = O. No other general restrictions of <j>(r) 
will be made. The potential </>(>) will be approximated 
by matching to it the family of truncated power 
potentials 

Vn(r)=(an/n)Z((3n/r)n-l2, 0<r<(3n, 

= 0, 0 » < r < « > , 

where an and /3n are constants and where the index n 
can take on any value, positive or negative. The dif­
ference between the exact and approximate potentials is 

A w ( r ) = * ( r ) - 7 » ( r ) . (6) 

The parameters an and /3n will be evaluated by matching 
Vn(r) to cj)(r) in value and in slope at the point of mini­
mum separation of the two interacting particles; that 
is, it is required that 

An(R) = An'(R) = 0, (7) 

from which follow immediately 

an= - ZntW+Rt'iR^-gn'iRVR"-1, (8) 

pn=R[_-R<i>f{R)/anJ>\ (9) 

where 
gn(r) = r<V(r) . (10) 

I t is evident that for Vn{r) to be a plausible approxima­
tion to <j>(r), it must be positive and must obey 
limr_>oofFnW = 0, which requires a » > 0 and /3n>0. 
Hence, in addition to the restrictions (4), it is necessary 
that 

n4>{R)<-Rcj>,{R) or gn'(R)<0 (11) 

from which it can be seen that, for any R, there is a 
maximum value of n corresponding to a plausible ap­
proximation. At wmax, Pn becomes infinite and the ap­
proximation corresponds to one suggested by Holmes 
et al.10 Inserting Eqs. (8) and (9) into (5), 

Vn{r) = cj>{R) + lRcl>f(R)/nJ\- (* / r ) n ] 0 < r < / 5 „ , 

(12) 

Two limiting cases of Eq. (12) may be mentioned: 

Vo(r)=cl>(R)+Rcl>f(R)\n(r/R) 0 < r < / 3 0 , 
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where p0=R exp[-4>(R)/R4>'(R)~] and 

F _ » = F H C M = <*>(#) , 0<r<R, 
= 0, R<r<<*>, 

which is the potential corresponding to scattering from 
an impenetrable sphere. Thus, the well-known hard­
core (HC) approximation6-8 is included in the family 
Vn(r), although in a somewhat different guise than 
usual. Figure 2 illustrates schematically a family of 
approximations matched to an actual potential in the 
manner specified in Eq. (7). Note that this matching 
scheme produces parameters which are (generally) 
functions of both energy and impact parameter. 

It follows from Eq. (12) that 

dVn(r)/dn>0, (14) 

which expresses the order of the approximate potentials 
with respect to each other. If 0(r) is replaced in Eqs. (1) 
and (2) by Vn(r), no change occurs in the lower limit 
of the integrals, on account of the matching in Eq. (7). 
Hence, denoting the approximate values of 6 and r 
by 0aPp(») and rapp(w), it follows from Eqs. (1) and (2) 
and the inequality (14) that 

dda,Pp(n)/dn^0 and dr&pV(n)/dn^0 (15) 

which express the order of the approximations with 
respect to each other. The positions of the exact values 
in the sequences (15) depend upon whether or not 
An(r) is ever negative, a question which is examined in 
Appendix A. If Ak(r)>0, then 9app(k)>6 and all n<k 
correspond to approximations of less accuracy than this 
one. If k can be chosen so that gk(r) [Eq. (10)], always 
obeys gk(r)<0 and gk"(r)>0, then A*(r)>0 whatever 
the values of r and R. These conditions are sufficient, 
but, for k>l, the second one is not actually necessary 
so that caution in applying these remarks is warranted. 

The accuracy of the Vn(r) as approximating po­
tentials for scattering problems may be investigated in 
more detail by regarding An(r) as a perturbation, in a 
manner reminescent of that used by Lehmann and 
Leibfried in their discussion of the MA.2 The treatment 
here is much simpler, since the limits of the integrals in 
Eqs. (1) and (2) are not changed when Vn[f) replaces 
(f> (r): Methods of complex integration are not required 
and the restriction that $ (r) be a regular function is un­
necessary. The perturbation treatment of 6 is outlined 
here; that for r is exactly similar and will be omitted. 
First, replace <£(r) in Eq. (1) by Vn(r)+An(r). Then, 
define 

fn(r) = ll-s*/r*-Vn(r)/ErJ» (16) 

hn(r) = An(r)/Elfn(r)J. (17) 

As long as |A„(r)| <1 for R<r<<*>, fir) in the inte­
grand of Eq. (1) can be expanded and then 

0=x-£<?*(») , (18) 

with 
/•oo 

0k(n) = 2syk dr[hn{r)J{r"fn{r)-]-\ (19) 
J R 

where 
Y*=(2£)! /22W. 

That the condition for the convergence of the sum (18) 
is the same as for the expansion of f(r) may be seen as 
follows: The extreme value of hn(r) is defined by 

\hn(r)\^\. (20) 

Since Y&+v<Y/b, it is easily seen from Eq. (19) that 

\Ok+v(n)\^\dk(n)\ (21) 
or that 

00 00 

E 0*(»)<0o(») E X* = 0o(»)/(1-X) if X<1, (22) 
fc=0 k=0 

which is to say that the sum (18) converges for A<1. 
Now, since f(r)>0, except at r=R where it vanishes, 
hn(r)<l as long as A„(r)>0; that is, as long as 
Vn(r)<(j)(r). At r=R, application of L'HospitaPs rule 
to the right-hand member of Eq. (17) shows that 
hn(R) = 0, in view of Eq. (7) and the fact that V* (r) <0. 
Since the magnitude of hn(r) is unaffected by changing 
the sign of A„(r), it is clear that \hn(r) | <1 as long as 
Vn(r)<2<t)(r). This latter condition for the convergence 
of the sum (18) is sufficient, but not necessary. Since it 
is an easy matter to construct examples of <t>(r) for 
which the sum does not converge, some caution is again 
warranted in applying these ideas to potentials more 
exotic than those discussed below. From the inequalities 
(21) and (22), the error of retaining the terms k = 0, 
1, • • •, K—l in the sum (18) is easily seen to be 

€x= E ek(n)<dK(n)/(l-\)<d0(n)\K/(l-X) (23) 

as long as X<1. 
In the discussion thus far, it has been assumed that 

the parameters of the matching potential are evaluated 
according to (7) and are functions of both Er and s. 
For many applications, a more convenient matching 
procedure replaces R in Eq. (7) by the distance of 
closest approach in a head-on collision: That is, the 
matching is carried out only for s=0, and an and /3n 

are retained for s=^0. This produces parameters de­
pending only on Er. The truncated Coulomb approxi­
mation discussed by Leibfried and Oen11 is of this type, 
although they mention the possibility of the more 
general matching procedure also. The most familiar 
form of the hard core approximation6 is also of this 
type. When "head-on" matching is used, the limits of 
the integrals in the expressions for 0aPpM and raPp(#) 
are no longer independent of n. Thus, although the 
order of the Vn(r) is still correctly given by (14), one 
can no longer deduce (15) from it. The presence of ja 
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FIG. 3. The difference functions Ai(r) and A2(f) for a 
Born-Mayer potential. J5r=0.30 CBM. S = 2 #BM. 

cutoff in the potential now affects the scattering: For 
s^Pnj both 0aPpM and rapv(n) vanish. This cutoff com­
plicates the discussion of just where the exact solutions 
stand in the sequence of approximations, but has the 
advantage for many purposes of producing a finite total 
cross section for scattering from these potentials. The 
perturbation expansion of these approximations has not 
been attempted, but numerical examples of their use 
will be given. If R in Eq. (7) is replaced by an arbitrary 
value of r, chosen as "typical," parameters can be de­
rived which are independent of both Er and s. This 
procedure produces the approximation used in early 
discussions of atomic slowing down problems in solids.1,9 

III. NUMERICAL EXAMPLES 

The approximations 0apP(w) and r a p P W can be 
evaluated in terms of elementary functions only for 
n=l, ± 2 , and — <*> (HC).3 The necessary formulas, 
obtained by integrating Eqs. (1) and (2) with <j>(r) re­
placed by Vn(r), are collected in Appendix B. Instead 
of 0, most of the numerical tests employ the fractional 
transferred energy 

T/rmax=sin20/2, (24) 

where Tmsx=4Er/(l+A). The examples given are 
chosen to illustrate the surprising accuracy of the 
truncated Coulomb and truncated r~2 approximations, 
as well as to demonstrate some of the points discussed 
in the foregoing paragraphs. To emphasize the nature of 
the matching procedure, we will designate by Vn

s(r) 
the approximations based on matching at R(Er,s) and 
by Vn°(r) the "head-on" approximations based on 
matching at R(Erfi). When no superscript is used, the 
remarks apply to both approximations equally, 

For atomic interactions in solids, it is sometimes ap­
propriate to use the exponential (Born-Mayer, Hunting­
ton) potential 

<ABM (r) = CBM exp (—r/#BM) . (25) 

The approximation Vn(r) is plausible for R/aBM>n 
and lies below 0 B M M for R/dBM>n+l. Thus, only 
FHC (r) and F_ 2 M are always plausible. Figure 3 shows 
plots of Ai(f) and A2(r) for <£BMM> at E r = 0 . 3 CBu 

(corresponding to an L kinetic energy of 13.5 keV for 
Cu-Cu interactions, if the parameters of potential I I 
of Gibson et al.,12 are used). The example is chosen to 
illustrate both a crossing (A2<0 sometimes) and a non-
crossing (Ai>0 always) approximate potential. Figure 4 
shows the relative differences between the approximate 
and the exact4 values of T/Tma* for several approximate 
potentials. For small impact parameters, where 
KR/aBM<2, both Vis and Vi° underestimate T/Tmax. 
The implausibility region of V2

S is shown; the approxi­
mation F2° is never plausible at this energy. The per­
turbation treatment is illustrated in Table I by com­
puting the first two terms in the sum (18) for the PY 
approximation to $BM (r), at Er=0.05 CBM (correspond­
ing to an L kinetic energy of about 2.2 keV for Cu-Cu 
interactions), and comparing these with the exact values 
of 0. The required term 0i(2) is developed in Appendix C. 
I t is evident that the first approximation is already 
very good and that most of the remaining discrepancy 
is removed by the next term in the series. 
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FIG. 4. Relative errors of some approximations to the transferred 
energy for the Born-Mayer potential. £ r=0.30 CBM-

12 J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, 
Phys. Rev. 120, 1229 (1960). 
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TABLE I. First- and second-order r~2 approximations to scattering 
from the Born-Mayer potential at E r=0.05 CBM. 

Impact cm. scattering angle, radians 
parameter, Approximate Exact 

s/aBM 7r-0o(2) *"-0o(2)-0i(2) 6 

2 1.5255 1.5087 L5048 
3 0.9619 0.9387 0.9355 
4 0.5579 0.5363 0.5337 
5 0.2923 0.2758 0.2752 
6 0.1382 0.1286 0.1284 
7 0.0602 0.0559 0.0554 
8 0.0249 0.0228 0.0227 

Screened Coulomb potentials are of particular 
interest in atomic slowing down problems, since they 
have the correct limiting form (V-1) for small inter­
atomic separations. As long as the screening function 
gi(r) is always decreasing, the truncated Coulomb 
approximation, Vi(r), is plausible; if gi"(r)>0, 
Vi(r) <<t>(r). The exponentially screened Coulomb 
(Bohr, Yukawa) potential, 

* B ( 0 =C B (aB/ r )exp( - f / f l B ) , (26) 

which has been very widely used in radiation damage 
problems,1,2'5-11 has both of these properties. The ap­
proximation Vn(r) is plausible for R/aB>n—l and 
Vn(r)<<l>B(r) for R/aB>[_n-\+(n-l)ll2~]. Another 
screened Coulomb potential of interest is the Thomas-
Fermi potential 

0 T F (r) = CTF ( G T F A ) ^ (r/arv) , (27) 

0 1 2 3 4 5 6 7 
IMPACT PARAMETER (s/aB) 

FIG. 5. Comparison of exact and approximate values of the frac­
tional transferred energy for the Bohr potential. Er=0.05 CB. 

T I C A T O M I C S C A T T E R I N G A 4 1 

0 1 2 3 4 
IMPACT PARAMETER (s /a B ) 

FIG. 6. Comparison of exact and approximate values of the frac­
tional transferred energy for the Bohr potential. E r=1.0 CB. 

where \f/(x) is the Thomas-Fermi screening function.13 

Since ^ ' ( # )<0 , and ^"(a;)>0, Vi(r) is always plausible 
and < # T F M . Using Sommerfeld's approximation for 
ypipo) with March's parameters,14 V^{r) is plausible for 
R/aTF>2.212 and < < £ T F M for R/aTF>3.506. 

Several approximations to r / r m a x are shown for the 
Bohr potential in Figs. 5 and 6. The energies correspond 
to L kinetic energies of about 10 and 200 keV, respec­
tively, for Cu-Cu interactions, if Bohr's definition of 
#B is used. Figures 7 and 8 show similar comparisons of 
the time integral r. The excellence of the approxima­
tions Vi8 and V%s is apparent, particularly with respect 
to r / r m a x . The two approximations differ from each 
other so little that the choice between them would be 
made on other grounds, such as the relative convenience 
of Eqs. (B.7) and (B.10) or the existence of an im-
plausibility region in V<LS. The superiority of the trun­
cated Coulomb approximation Fi° to the usual hard-core 
approximation FHC° is evident, as is the superiority of 

13 P. Gombas, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 36, pp. 109-231; O. B. Firsov, 
Zh. Eksperim. i Teor. Fiz. 33, 696 (1957) [English transl.: Soviet 
Phys.—JETP 6, 534 (1958)]. 

14 A. Sommerfeld, Z. Physik 78, 283 (1932); N. H. March, Proc. 
Cambridge Phil. Soc. 46, 356 (1950). 
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0 • i 2 3 4 5 6 7 

IMPACT PARAMETER (s/aB ) 

FIG. 7. Comparison of exact and approximate values of the 
"time integral" for the Bohr potential. Er=0.05 CB. 

Vi to either of them. For large impact parameter, the 
MA is more accurate than any of the Vn approximations. 
| Generally similar results (not presented here) have 
been obtained on comparison of the approximation Vx

s 

to the exact T/Tm for the Thomas-Fermi potential 
also. For all three of the potentials, Eqs. (25), (26), and 
(27), the relative error of the approximations to T/Tmax 

increases with increasing impact parameter and with 
increasing energy (ignoring complications at high 
energy and small impact parameter caused by crossing 
of the approximate and exact curves). An upper limit 
to the relative error can be estimated from Eq. (23) 
with K=l. The real error actually will be smaller as one 
can learn from comparisons of the exact and approxi­
mate values of 0, T/Tm, and r. The absolute error in­
creases for small s, passes through a maximum and then 
decreases for large s. A similar behavior occurs for the 
absolute error as a function of Er. The approximations 
to r behave in a generally analogous manner. The accu­
racy of the approximate values of r is less than that of 
the approximations to T/Tmax> This result was to be 
expected since the factor r~2 in the integral of Eq. (1) 
emphasizes the region in which the matching of 0(r) 
and Vn(r) was done, whereas the absence of this factor 
in Eq. (2) causes the region of large r to assume greater 
importance. 

IV. DISCUSSION 

As has been shown earlier,11 the approximation pro­
cedure based on matching 4>(r) and Vn(r) at R(Erys) 
can be applied to the differential scattering cross section 
K(T), as well as to 0, T/Tma*, and r. Unfortunately, 
however, K(T) can be expressed explicitly only as a 

function of R and not of T, as would be desired in ap­
plications, since, in general, analytical inversion of the 
relation T=T(R) is not possible. In practical cases 
where K(T) is of interest, as for instance in calculations 
of the stopping power, the general s-dependent match­
ing is not necessarily an improvement over the s-
independent matching at R{Erfi), because the crossing 
of 6 and 0apP due to the cutoff nature of Vn°(r) can lead 
to a fortuitous improvement in K(T). 

The somewhat surprising result that for larger impact 
parameters the present approximations to T/Tmax 

(or to 6) become less accurate than the MA is easily 
explained. If /3n~R were to vanish for large R, the per­
turbation An(r) would become identical to <j>(r). In this 
circumstance, the expansion (18) in terms of An(r) 
would become the same as the MA expansion2 in terms 
of <j)(r). The term 6i(n) would then correspond to the 
(first) MA. In fact, for the potentials (25) and (26), 
pn—R remains finite (and equal, respectively, to 
#BM o r 0B) for large R. Thus, the result of Fig. 5 that 
the MA is more accurate than either V\ or V%s merely 
means that the correction term 6i(n) becomes more sig­
nificant for large s, as is also evident from Table I. 
Since the matching potential method is superior for 
small s9 as is the MA for large s, the two approximations 
supplement each other. However, for the restricted 
range of impact parameters occurring in crystals, the 
matching potential method is mostly superior to the 
MA. 

Extension of the matching potential method to the 
treatment of the complete trajectories of two inter­
acting particles (instead of only to their asymptotes) is 
straightforward. The complete trajectories may be given 
in cm. polar coordinates in terms of Eqs. (1) and (2) 
and of additional similar equations in which the infinite 

IMPACT PARAMETER (s/aB) 

FIG. 8. Comparison of exact and approximate values of the 
"time integral" for the Bohr potential. £ r =1.0 CB. 



C L A S S I C A L T H E O R Y OF E L A S T I C A T O M I C S C A T T E R I N G A43 

upper limits of the two integrals are replaced by the 
values of r, the cm. radial coordinate. A further possible 
extension of the matching potential method would 
involve the use of sums of power potentials, such as 

V(r)=a/r*+l3/r+y, 

for which the scattering integrals remain elementary. 
Attempts to use this form, with the contants evaluated 
by matching <I>(R), 4>f(R), and <t>"(R), have not been 
fruitful, however. 

Besides advantages in handling scattering problems 
analytically, the matching potential procedure dis­
cussed here also would provide a simplification in the 
numerical treatment of complicated slowing down 
problems in solids where a great many subsequent col­
lisions have to be considered.15 The time required by an 
electronic computer for this kind of problem can be con­
siderably reduced without significant loss of accuracy. 

The approximations which have been discussed make 
it feasible to attack some problems closely related to 
radiation damage in crystalline structures: Small angle 
focusing collisions16 can be pursued to larger angles, 
assisted focusing collisions17 can be handled without the 
limitations of the MA, and channeling events18 can be 
investigated for larger amplitudes. These are the ob­
jectives of future work. 
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APPENDIX A 

The Zeros of A»(r) 

The slope and curvature of the difference function 
An(r) may be written from Eqs. (6) and (12) as 

An'(r)=4>'(r)-4>'(R)(R/r)nH R<r<pn (Al) 

A»"(r) = r(r)+(n+l)Z4>\R)/RlWr)»* 

R<r<0n. (A2) 

It is evident that A»"(-R)>0 as long as 

£«"(£)>-(tt+l)<£'(K) or 
Rgn»(R)>(n-l)gn'(R). (A3) 

Thus, since Aw(/?»)>0, An{r) has an even number of 
zeros in R<r<@n (in addition to the one at r=R) as 
long as (A3) holds. If (A3) does not hold, the number 
of zeros is odd. Although the occurrence of these zeros 
can be examined in An(r) itself, it is more convenient to 
use the fact that, as long as they are all real, they are 
separated by (or coincide with) the zeros of An'(r). 

15 M. T. Robinson and O. S. Oen, Phys. Rev. 132, 2385 (1963). 
16 C. Lehmann and G. Leibfried, Z. Physik 162, 203 (1961). 
17 P. H. Dederichs and G. Leibfried, Z. Physik 170, 320 (1962). 
18 C. Lehmann and G. Leibfried, J. Appl. Phys. 34, 2821 (1963). 

These latter are given by the solutions of 

r"+i4>'(r)=R'+14L'(R) (A4) 

which has an obvious solution r=R. There can be 
additional solutions if the left-hand member of (A4) 
has extrema, that is, if there exist solutions of 

r*"( r )=- (»+l )* ' ( r ) (AS) 

for R<r<fin. Thus, the study of Eq. (A5) may sub­
stitute for that of An{r) itself. Note that (A3) becomes 
an equality when r=R is a solution of (A5). This con­
dition, under which An"(R) vanishes, separates two 
regions, in one of which An"(R)>0 and Vn{r)<<j){r) 
near r=R, while for the other, An"(R)<0 and 
Vn(r)><t)(r) near r=R. Hence, the occurrence of r=R 
as a solution to Eq, (A5) represents the critical condi­
tion for Vn(x) to cross 0(r). For potentials #(r) for which 
gn(r) = rn(j)(r) can be found so that gn'(r)<0 and 
gn"(r)>0 in the interval R<r<(3n) the approximation 
Vn(r) will be both plausible and always <<t>(r). This 
situation is true of the potentials considered in this 
communication. 

APPENDIX B 

Scattering Integrals for Approximate Potentials 

The scattering integrals (1) or (24) and (2) are col­
lected here for the readily integrable potentials Vn(r) 
with n=l, ±2 , and — <*> (HC). In each case, the 
quantity given vanishes outside the range O<s<0». 
(Of course, when 0n is a function of s, s>&n can never 
occur.) The following abbreviations are used: 

v=s/i3n and y=an/\n\Er. (Bl) 

Hard-core approximation (n = — °o): 

T/Tm^=ls*/R* (B2) 

Quadratic approximation (n——2): 

0=2 cos-1o-+cos-1[(T-l+2o-2)/p] (B4) 

r / /5„ 2=(l-c7 2) i / 2-(7- 1 / 2 /2) 

Xln{[l+7+271 / 2( l~01 / 2] /p} , (B5) 
where 

p 2 = ( 7 _ i ) 2 + 4 T ( 7 2 4 ( B 6 ) 

Truncated Coulomb approximation (n=l): 

r / r m a x =( i - (7 2 ) / P
2 (B7) 

r( l+7) /7^i=( l -^ 2 ) 1 / 2 -C( l+7)- 1 / 2 /2] 
Xln({2+7+2C(l+7)(l-^)]1 /2}/7p) (B8) 

where 
P2=l+4(r2(l+T)/72. (B9) 
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Truncated r~2 approximation (n—2): 

6/2 = cos-V- [>/(Y+<r01/2] 
Xcos-C(7+<r2)/(l+7)]1/2 (BIO) 

r /f t=[7/( l+7)]( l-<r2)1 / 2 . 

APPENDIX C 

Evaluation of 81 (2) for the Born-Mayer Potential 

For the special case of the potential (25) matched by 
V2

s(r), the definition (19) gives 

d1(2) = s [ drl<j>Bu(r)-V2(r)yErr^f2(r)J 

J R 

= [#BM032)/£r][^22-^)-1/2 

- (l+a2/2Er)-^^22-R2)-ll2l 

- (l+a2/2Er)-^(sCBM/aBMEr) 

XElR/aBM, ( & 2 + £ 2 ) 1 / 2 A B M ] 

+ {l+a2/2Er)-W{a2sp2/2ErR>) 

X{ZW2/R)2-lJl2+(fi2/R) cos"1^/^)} 

- (̂ CBMABM-Er)C ô(V^BM) 

-^(^ABM,(ft2+^2)1/2ABM]. (CI) 

In this expression, K0(a) is the well-known Hankel 
function and E(a,x) is one of the generalized exponential 
integral functions: 

E{a,%)= I (dy/u)e-u=smh-1(x/a)-E(aJx), (C2) 

where u= (a2+y2)1/2. Note that KQ(a) = E(a,°o). In 
Eq. (C2), the function E(a,x) is a generalized expo­
nential integral function which has been tabulated.19 

For large impact parameters, the necessity of double 
interpolation in the tables of E(a,x) makes their use 
difficult and it is more convenient to use an expansion 
of the integral (C2). With the substitution u=r)2+a, 
Eq. (C2) yields 

E(a,x) = (2/a)^2e-a / drje-^il+rj^a)-^2, (C3) 
Jo 

where X= (#2+a2)1/2—a. As long as ?72/2a:<l, the 
binomial in (C3) may be expanded; that is, as long as 
x2<%a2. Inserting the appropriate arguments from 
Eq. (CI), the requirement becomes/32

2<7R2 or (32
2<7s2, 

respectively, in the two integrals. Both conditions are 
met for sufficiently large values of s. After expanding 
(C3) and integrating, there results 

E(a,x) = (T/2ayi2e-a erf (X1'2) 
X{1-(l/8a)[l-2(X/7r)1^-Verf(X1/2)] 
+ (9/128a2)[l-2(X/7r)1/2e-x 

X (l+2X/3)/erf(X^2)]- + . . . } , (C4) 
where 

r 
erfx — 2ir~lj21 du exp (—u2) 

Jo 
is the error function. The series (C4) has the advantage 
of involving only functions of single variables. Since it 
is alternating in sign, the error of retaining only a finite 
number of terms is less than the first term omitted. 

19 Harvard University Computation Laboratory, Tables of the 
Generalized Exponential-Integral Functions (Harvard University 
Press, Cambridge, Massachusetts, 1949). 


