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that the configuration of the 4 / electrons is different in 
the two materials. 

VIII. SUMMARY 

Using the Mossbauer effect, the hyperfine structure 
of Tm169 in Fe2Tm has been studied as a function of 
temperature. The results have been adequately ex
plained by a relatively simple treatment of the Tm-ion 
energy levels and straightforward evaluation of the 
hyperfine interaction. Using the measured value of 
Tm169 nuclear ground-state moment, various nuclear 

1. INTRODUCTION 

EQUATIONS of motion for the macroscopic mag
netization of a sample under the combined action 

of external magnetic fields and a "heat ba th" have been 
very useful in the study of magnetic resonance and 
relaxation. Bloch's1 equations and later modifications2,3 

were the first ones to be suggested on phenomenological 
grounds, where the main assumption was made that the 
effects of the bath can be described by means of two 
constants, the so-called relaxation times, to be de
termined from experiment. Microscopic theories of the 
relaxation of the spin system were presented soon 
afterwards, beginning with the well-known work of 
Bloembergen, Purcell, and Pound,4 where the bath was 
approximated to be an external fluctuating field. This 
latter semiclassical approximation was eliminated and a 
quantum-mechanical treatment of the problem was 

* Operated with support from the U. S. Air Force. 
1 F. Bloch, Phys. Rev. 70, 460 (1946). 
2 For this and other topics in this paper see A. Abragam, The 

Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961). 
3 C. P. Slichter, Principles of Magnetic Resonance (Harper and 

Row Publishers, New York, 1963). 
4 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 

73, 679 (1948). 

and electronic quantities have been derived and found 
in general to be in satisfactory agreement with previous 
results. 

ACKNOWLEDGMENTS 

The author would like to thank R. E. Watson for 
many enlightening discussions of the values of (r~z) 
values and shielding corrections discussed in the text, 
and J. H. Wernick for preparing the Fe2Tm used in this 
experiment. V. Jaccarino, L. R. Walker, and G. K. 
Wertheim have provided useful discussion and 
comments. 

presented in the pioneering work of Wangsness and 
Bloch5 and Bloch.6,7 Redfield,8 Fano,9 and other 
authors10-12 have subsequently given similar theories. In 
all these theories, the bath was considered as a quantum-
mechanical system, that remained in thermodynamic 
equilibrium, while its exchange of energy with the spin 
system was taken into account. These theories have 
provided a derivation of the phenomenological equa
tions while they pointed out the limits of their validity, 
and have given a microscopic determination of the 
relaxation times. They have also yielded much more 
general equations7'8'10*n of motion for the statistical-
mechanical density operator of the spin system, which 
determines all its observable properties. 

In the theories mentioned above, some assumptions 
were made, which were clearly stated in the works of 
Bloch,5-7 Fano9 and Abragam.2 In particular, the sta-

5 R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953). 
«F. Bloch, Phys. Rev. 102, 104 (1956). 
7 F. Bloch, Phys. Rev. 105, 1206 (1957). 
8 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957). 
9 U. Fano, Phys. Rev. 96, 869 (1954). 
10 K. Tomita, Progr. Theoret. Phys. (Kyoto) 19, 541 (1958). 
11 P. Hubbard, Rev. Mod. Phys. 33, 249 (1961). 
12 V. M. Fain, Zh. Eksperim. i Teor. Fiz. 42, 1075 (1962) 

[English transl.: Soviet Phys.—JETP 15, 743 (1962)]. 
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A quantum-statistical-mechanical theory of spin resonance and relaxation is presented, which avoids the 
assumptions of earlier theories, is capable of extension to other than the lowest Born approximation for 
the strength of the relaxation mechanism, and is applicable over a broader range of physical situations. 
From the Liouville equation for the combined system of spin+bath, the theory yields a non-Markoffian 
equation for the time development of the statistical density operator for the spin system alone. Detailed con
sideration is given to the response of the spin system linear in the driving field, and an equation for the 
steady-state spin density operator is deduced. A simple application exemplifies the new features of the 
theory and it is shown that it describes the phenomenon of "motional" narrowing. The response to an 
arbitrary external field is studied with particular reference to the problem of approach to thermal equilibrium 
and the phenomenon of spin resonance saturation. The latter is considered in some detail for a system of 
independent spins, for which an equation for the steady-state magnetization is derived and discussed. 
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tistical-mechanical assumptions were made at a certain 
strategic point of the calculation, that the spin and bath 
systems are uncorrelated and that the bath remains in 
thermodynamic equilibrium. Both of these assumptions 
are unsatisfactory. The first one is clearly wrong if made 
for all times, for it amounts to ignoring the interaction 
between the system of interest and the bath. I t can, 
however, yield valid results if made, as was the case 
with these theories, at the appropriate stage of the 
calculation. Even then, however, it entails a certain 
approximation as to the strength of the spin-bath 
interaction. In particular, all the theories mentioned 
above treat the interaction only in the lowest Born ap
proximation. I t is not clear that the method of deriva
tion of the equation of motion for the spin density 
operator which was adopted in these works, apart from 
its mathematical complexity, is capable of extension to 
stronger interactions. The second assumption amounts 
to the repeated random phase assumption for the bath, 
the unsatisfactory nature of which has been pointed out 
recently by Van Hove.13 In addition, on account of the 
method of derivation, which bases its considerations on 
the short time development of the system, these theories 
are valid only if the bath provides a sufficiently rapidly 
fluctuating environment for the spin, i.e., only if 
TC/T/^X, where TC= correlation time for the bath and 
r r = a measure of the relaxation time. Thus, important 
physical phenomena are left out of the range of validity 
of these theories. 

In this paper we are concerned with the same prob
lem, which in its generality is that of obtaining an equa
tion of motion for a subsystem from the Liouville 
equation of motion for the whole, isolated system. A 
method for the derivation of equations of motion of 
subsystems has recently been proposed,14,15 which avoids 
these assumptions and restrictions. This method was 
arrived at16 as a generalization of the work of one of 
us.17 We have, however, profited from the elegant work 
of Zwanzig,18 who clearly and concisely stated the 
essence of this point of view, in connection with the 
derivation of the master equation for approach to 
equilibrium and the generalization of Onsager's theory 
of irreversible processes. 

We have applied here this method to the problem of 
spin resonance and relaxation.19 The main characteristic 

13 L. Van Hove, Physica 21, 517 (1955); 23, 441 (1957). 
14 P. N. Argyres, Proceedings of the Eindhoven Conference on 

Magnetic and Electric Resonance and Relaxation, edited by J. Smidt 
(North-Holland Publishing Company, Amsterdam, 1963), p. 555. 

16 For a different approach see P. L. Kelley, thesis submitted to 
the Massachusetts Institute of Technology in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy (1962). 

16 P. N. Argyres, MIT Lincoln Laboratory, Solid State Research 
Report No. 4, p. 32, 1961 (unpublished). 

17 P. N. Argyres, Phys. Rev. 117, 315 (1960). See especially 
Appendix C. 

18 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); Lectures in 
Theoretical Physics, edited by W. E. Brittin (Interscience Pub
lishers, Inc., New York, 1961), Vol. I l l , p. 106; Phys. Rev. 124, 
983 (1961). 

19 For a preliminary report see P. L. Kelley and P. N. Argyres, 
Bull. Am. Phys. Soc. 7, 92 (1962). 

of the theory is that, in contrast to the earlier theories, 
it yields a non-Markofhan equation of motion for the 
spin system which is valid for all times. This enables the 
equation of motion to be valid for arbitrary rc/r^ In 
addition, it can in principle describe the effects of the 
spin-bath interaction to arbitrary order. Although the 
method can be applied equally well to the study of the 
bath and its evolution in time, we have restricted our 
attention here to the spin system only, characterizing 
mathematically the dissipative behavior of the bath by 
the existence of the correlation time rc. In the study of 
the driven steady state, whenever it exists, the non-
Markofhan character of the equation of motion results 
in a description of the effects of the spin-bath interaction 
that involves the frequency of the driving field. Thus, 
this theory predicts in general non-Lorentzian absorp
tion line shapes. The exact shape is determined by the 
frequency spectrum of the bath correlation functions. 
The results of the previous theories5-12 are obtained 
from this theory in the lowest Born approximation for 
the strength of the relaxation mechanism and for 
Tc/rr<£\, while the statistical assumptions mentioned 
above are avoided. 

In the first three sections we consider the response of 
the spin system, linear in an external, time-varying 
driving field, a problem of considerable interest.20 The 
general formalism is applied and the equation for the 
steady state is obtained in the lowest Born approxima
tion for the spin-bath interaction. This equation is 
applied to the simple system of independent spins with 
the bath taken to be a randomly fluctuating magnetic 
field, where it is demonstrated that an equation for the 
steady-state magnetization exists and which describes a 
phenomenon that may be considered as the prototype 
of "motional" narrowing. A macroscopic, classical deri
vation of this particular result is discussed in the 
Appendix. Finally, a general discussion of the linear re
sponse for arbitrary spin-bath interaction is given and 
it is indicated how approximations other than the 
lowest Born approximation can be obtained. The im
portant question of the quantitative criterion for the 
validity of the lowest Born approximation is not dis
cussed in general. 

In the following section the equation of motion for a 
general spin system is obtained. This includes the 
description of the approach of the spin system toward 
equilibrium and of the phenomenon of spin resonance 
saturation. Although no comparison with experiments 
is attempted, in the last section the general results of the 
theory are demonstrated in the case of a system of inde
pendent spins in a bath of a certain range of finite 
temperatures in a typical spin-resonance experiment for 
driving fields of arbitrary strengths. An equation for the 
steady-state magnetization is obtained with four relax
ation times, all dependent in general on the frequency 

20 See, for example, R. Kubo and K. Tomita, J. Phys. Soc. 
Japan 9, 888 (1954); also Refs. 2 and 3. 
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and strength of the driving field. Some of the conse
quences of this equation are discussed in special cases. 
In particular, it is pointed out that a qualitative de
scription of the various aspects of the phenomenon of 
resonance saturation with increasing strength of the 
driving field, e.g., the difference in the saturation be
haviors of the absorption and dispersion signals, is 
included in this equation. 

The applicability of the general formalism to more 
realistic models is obvious and will be reported in other 
publications. 

2. EQUATION OF MOTION FOR THE LINEAR 
RESPONSE OF THE SPIN SYSTEM 

We consider an arbitrary spin system in interaction 
with external fields and another system, to be taken 
eventually to act as a heat bath. From the Liouville 
equation of motion of the combined system, we derive 
an equation of motion for the spin system alone. Only 
the response linear in the driving field is considered in 
this section. 

Let the Hamiltonian of the total system be 

HT(t)=A0+B+V+A1(t) 

= Ho+V+A1(t) = H+A1(t), (2.1) 

where A o is the Hamiltonian of the spin system in any 
external static fields of force, Ai(t) its interaction energy 
with a weak driving field, B the Hamiltonian for the 
bath, and V the interaction between the two systems. 
The Liouville equation for the density operator p{t) of 
the total system is (h= 1) 

i{d/dt)p{t)^lHT{t)At)^^T{t)p{t). (2.2) 

Here we introduce the Liouville-operator 3CT corre
sponding to the operator HT. Since we shall make ex
tensive use of this formalism in the following, we point 
out that we shall denote a Liouville-operator corre
sponding to an operator, say A, by the same letter in 
script form, i.e., <$. Liouville-operators operate in the 
space of operators rather than states of a system. 

The density operator for the spin system may be taken 
as 

er(*) = tr *>(*), (2.3) 

where tr& denotes the trace operation over the bath 
variables only. Clearly, the expectation value of an 
observable Q of the spin system alone is given by 

(Q)=TvQP(t) = trQa(t). (2.4) 

tr is the trace operation over the spin variables only and 
T r = t r tr&. Furthermore, it can easily be verified that 
a(t), as defined in (2.3), has all the properties of a 
density operator: it is Hermitian, i.e., a^(t) = a(t); it is 
normalized, tro-(/) = 1; and its diagonal matrix elements 
in any representation for the spin system are non-
negative. 

In order to obtain the response of the system to the 

first order in the driving perturbation Ai(t), we assume 
that before the disturbance is turned on, say at t=Q, the 
system is in thermodynamic equilibrium at temperature 
r= (*0 ) - i , i . e . , 

P(0) = f(H)^exp(-l3H)/Tr{exp(-t3H)}, (2.5) 

where H=Ho+V. I t is then clear that the linear re
sponse is described by pi(/), the linear part of p(t) 
— / ( # ) , that satisfies the inhomogeneous equation 

d 
i-pi(t)=^Pl(t)+a1(t)f(H), Pi(0) = 0. (2.6) 
dt 

The linear response of the spin system is then com
pletely determined by <ri(t) = tvhpi(t)y which has the 
properties a^ (t) = <ii (/), trcri (t) = 0. 

In order to derive an equation of motion for <ri(i), we 
separate the density operator pi{t) into two parts, the 
part we are interested in and the remainder. Thus, it 
proves convenient to write14 

p1(t)=f(B)<r1(t)+Vl(t). (2.7) 

Clearly y]i{t)=<9pi{t), where 

<P= 1 - / ( 5 ) tr* (2.8) 

is a projection operator ((P2=(P) in the space of operators 
for the total system. In terms of ai(t) and ?7i(/), Eq. 
(2.6) for pi(t) becomes a system of coupled linear 
differential equations, namely, 

d 
i—<n{i) = la0+trbOf(B)2<Ti(t) 
dt 

+txhVrJ1(t)+trba1(t)f(H), (2.9) 

d 
i-r)i(t)=(W0+(S>V)rn(t) 
dt 

+6>Vf(B)a1(t)+6>a1(t)f(H). (2.10) 

Here we have made use of a number of relations that are 
direct consequences of the definitions; e.g., tr&77i(/) = 0, 
(P3Co=3Co(P, (Prn(t) = Tn(t), (Pf(B)a1(t) = 0. An equation 
for ai(t) is then obtained by solving Eq. (2.10) for rji(t) 
in terms of <ri(t) with the initial condition ??i(0)=(Ppi(0) 
= 0, and substituting into Eq. (2.9) for ai(f). A formal 
solution of Eq. (2.10) is obtained by the standard 
method of "variation of constants." Since the solution 
to the homogeneous equation is S(/)*?i(0) with 

S(0 = exp{-i(3C0+(TO)0, (2.11) 

we have 

i f t ( 0 = - * / rfrS(Z-r) 

X(P{Vf(B)a1(r)+a1(r)f(H)}. (2.12) 

Substitution of this expression for rji (t) into (2.9) yields 
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the linear equation for <xi(t) 

d 

—o-i(/)=-ia<pi(t)+e(t,{(ri}) 

where 

e(t,{ai}) = -tri\iVf(B)a1(t) 

-iai(t)<r(0)+D(t), (2.13) 

+ • 0 / dTS(,t-r)(PVf(B)<n(T) , (2.13a) 

D(t) 
Jo 

drS(/-T)(Pai(T)/(f l ) , (2.13b) 

andcr(0) = t r 6 / ( # ) . 
Equation (2.13) in conjunction with the initial con

dition <ri(0) = tr&pi(0) = 0 determines completely the 
time evolution of the linear response of the spin system. 
I t is clear from its derivation that this equation is exact 
and valid for all times t. The first term in (2.13) de
scribes the unperturbed motion of the spin system. 
Q(t,{ai}) describes the effects of the bath alone on the 
dynamics of the spin system. The first term of 6 in 
(2.13a) gives the first-order effects of the interaction V. 
I t can always be absorbed into do without any loss of 
generality; a simple renormalization of the unperturbed 
energies of the spin system and the interaction V will 
give tvbf(B)V=0. We shall adopt this renormalization 
in the following. The second term of Q may be con
sidered as a generalized collision operator, correct to all 
orders in V. I t is clear that this term shows "memory," 
i.e., the rate of change of ci(/) at time / due to collisions 
depends on all earlier values of ai(t). The third term of 
(2.13) gives the effects of the driving field, while D{t) 
describes the effects of interference of the driving field 
and the interaction with the bath. I t is clear that in both 
6 and D the collisions are described formally without 
any approximations. 

In order to see more explicitly the nature of the 
equation of motion for <ri(t), Eq. (2.13), we consider 
here the case of a spin system interacting weakly with 
the bath. In the lowest Born approximation the opera
tors 6 and D are of order V2 and are obtained from 
(2.13a) and (2.13b) by replacing S(0 by exp(-iOCrf). 
Thus, after the first-order renormalization, 

d 

dt 

where 

eo(t,{<n}) = -trhV dr 
Jo 

*i(0= -;aO0-iOO+eo(/,{cri}) 

- ia i (0er (O)+0o(*) , (2.14) 

Xexp(-i0Cor) eO/(^)cri(^-r) , (2.14a) 

Do(t)=-trbV dr 
Jo 
Xexp( - i5C 0 r ) a i ( / - r ) /< 1 ) . (2.14b) 

/ ( 1 ) is the term of order V in the expansion of f(H) 
= f(Ao+B+V) in power series in V; the zeroth-order 
term makes no contribution, since <?(%if(Ao+B) = 0. In 
(2.14) (r(0) = tr 6/(27) should be taken for consistency up 
to second order in V, i.e., o-(0) = /(^40)+tr& / ( 2 ) . 

In order to be able to analyze these expressions in 
terms of the separate properties of the bath, it is useful 
to expand V in a complete set of operators uKvK, i.e., 

V = Y,UKVK (2.15) 

where uK and vK operate in the spaces of the bath and 
the spin system, respectively. Bearing in mind that 
exp(—iXot)V=exp(—iHot)V exp(iH0t), we find from 
(2.15), (2.14a), and (2.14b) 

<3o(*,{<ri}) 

= — Z / dr{cK\(r)[vK9 exp(-;a0T>xcri(/— r ) ] 
*x Jo 

—C\K(—T)[VK, exp(—ia0r)(Ti(*—T>X]} , (2.16a) 

A)00 = E dr d^cxK(-T-i^)\j)K,exp(-ia0r) 
«x J o ./ o 

X f t i O - r ) / ( i 0 ) exp( /3 ' a 0 K] . (2.16b) 

We note that in these expressions, all reference to the 
bath has been concentrated in the quantities cK\(r), 
which are the thermodynamic (nonsymmetrized) corre
lation functions for the Heisenberg operators uK(t) 
— exp {i(&t)uK of the bath, defined by 

cKx(T) = tYbf(B)uK(t+T)ux(t) = trbf(B)uK(r)ux. (2.17) 

We suppose now that the bath can be characterized 
mathematically by the fact that there exists a time rc, 
called the correlation time for the bath, such that for all 
the thermodynamic correlation functions cK\(r) and all 
temperatures higher than (&/3)-1 we have 

CK\(T) = 0 for | r | > r c . (2.18) 

One condition that is necessary for this to be true for 
arbitrarily long times is that the energy spectrum of the 
bath be continuous, otherwise cK\(r) are quasiperiodic 
functions of r, as it is evident from their definitions. 
Thus, we effectively deal with the bath in the limiting 
case of an infinite Poincare period. Of course, condition 
(2.18) is more stringent than the qualitative require
ment of the continuity of the energy spectrum and 
provides a mathematical characterization of the dissi-
pative behavior of the bath. 

The solution of Eq. (2.14) describes the complete time 
development of ai(t) from / = 0 to very long times, where 
presumably a steady state is attained. An equation for 
the steady state itself, when it exists, can be obtained 
from (2.14) with the help of the assumption (2.18) for 
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the bath on the basis of the following argument. We 
take Ai(t) to be given quite generally by 

which have the property JK\~(co) = J'K\+'(co) tanh(0co/2), 
it is seen that 

4i(0 = E<r- ' "^ i («) , (2.19) 

where for each co the summation goes over co and -co. 
Now we seek a solution of (2.14) of the form 

<ri(0 = E « r t o ^ i ( « , 0 ; *i(«,0-+*-i(«), (2.20) 
co t—>oo 

where ^ w goes over the same frequencies as in (2.19). 
Thus, (2.20) describes for very long times a steady state 
0"i(s) (0 = Z)« ^~*wVi(a)). In order to find an equation for 
o-i(co), we substitute (2.20) and (2.19) into (2.14) and 
study it in the limit t—>oo. The expression (2.16a) for 
the collision term for long times is evaluated by noting 
that for t> rc the upper limit of the integral can be put 
equal to rc, due to the condition (2.18). Thus, the values 
of cri(co,/) that enter the integral are from cri(co, t— rc) to 
<ri(o)}i), which for t—->& can be taken, in accordance 
with (2.20), to be equal to cri(co). The evaluation of the 
other terms of (2.14) is straightforward. We thus find 
that if a steady-state solution 01 <*> (/) = ]£„ e~io}ta1(o)) of 
(2.14) exists for long times, 0*1 (co) satisfies the equation 

—icocri (co) = — i Qo<ri (co)+Co (co)cri (co) 

-;ai(co)cr(o)+A)(co), (2.21) 
where 

e 0 ( c o ) c r i ( c o ) = — £ [VK, iK\+(cO— ao)[v\,CTi(G>)'] 

+i*x~(co- ^o)C^x?o-i(co)]+], (2.21a) 

* L Jo 

Xfti(co)/(^o)exp(/3'ao>x 

Here £a,b']+=ab+ba and 

(2.21b) 

/.CO 

J*\H<») = / dre^c^ir) (2.22a) 
Jo 

[and similarly for i«x(co)] are the one-sided Fourier 
transforms of the symmetrized and antisymmetrized 
correlation functions cK\±(r) = (i)£cK\(T)zkc\K(— r ) ] 
= ±:C\ll

±(~T) [and of the nonsymmetrized CK\(T)~], 
while 

j*\(P'; 
/.CO 

)';a))= dTe^cU-T-ip'), (2.22b) 
Jo 

which has the property JK\(/3;O)) = JK\(O)). In terms of 
the more usual Fourier transforms 

/«x±(«) = — f dre^c^Hr), (2.23) 

/

+0O 

-co 

where 

du'J^Wdfa-u'), (2.23a) 

6(x)= / dreixT=ir8(x)+i(l/x)p. (2.23b) 
- / 

Usually the parts of (2.21a) arising from (l/x)p can be 
combined with —idLoaifa) of (2.21) and may be viewed 
as giving the renormalization of the spin energy spec
trum due to the interaction with the bath, to second 
order in V. Since, however, they depend on coy they are 
not simply shifts of the resonant frequency; they also 
affect the shape of the resonance line. The parts as
sociated with the 8(x) may be viewed as describing the 
relaxation of the spin system through energy conserving 
processes. For a more general derivation and discussion 
of the equation for the steady state see Sec. 4. 

More explicit forms of (2.21) are obtained by recog
nizing that for an arbitrary function c/>(Ofco) we have 
( s | 0 ( a o ) ( ) | / ) = <Hcos—CO,/)(J|Q|s'), where Ao\s) = <a8\s) 
and Q is any spin operator. 

In a semiclassical treatment where the bath is treated 
classically but the temperature effects are described 
correctly, we must identify the classical bath correlation 
functions with the symmetrized quantum-mechani
cal correlation functions cK\+(r) = trbf(B)(^){uK(T)u\ 
+U\UK(T)}. j ~ can be expressed in terms of j + by use of 
(2.23a) and the aforementioned relation between J~ 
and J+, 

If the bath can be approximated as a random field of 
force, then /3 = 0 and Co(co) and Z>o(co) have the particu
larly simple form 

e0(co)cr1(co)= - £ [VK, i*x(co-a0)[*>x,o-i(co)]], (2.24a) 

£>o(co) = 0 . (2.24b) 

An application of these equations will be made in the 
next section. For this case of a classical bath, a deriva
tion of (2.21) with e0(co) and Z>0(co) as given by (2.24) 
can be obtained directly, as is shown and discussed in 
the Appendix. 

I t must be observed that in Eq. (2.21) for the steady 
state, the description of the effects of the spin-bath 
interaction includes the driving frequency co. This is 
clearly a result of the "memory" of the collision opera
tor. I t is quite important, as we shall demonstrate in the 
next section, because the absorption line shape is no 
longer Lorentzian, but it depends on the frequency 
spectrum of the bath correlation functions. 

In order to make connection with earlier theories, we 
show now that the "memory" effects can be approxi
mated in a way that leads to a Markoffian equation 
of motion for the spin system valid only for long times, 
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i.e., t>rc, and under an additional restriction for the 
strength of the spin-bath interaction. We note that for 
t>rc, due to condition (2.18) the upper limit in the 
integrals (2.16) can be put equal to infinity and thus 
Go(J,{°"i}) and D0(t) are of order V2. We may then use 
(2.14) to write for t>rc: 

exp(—ia0T)<T(t— T) 

= a(t)+i J dr exp(—I&QT) 
Jo 

Xai(t-T')f(A0) + O(Te/Tr), (2.25) 

where r r is a measure of the relaxation time and is of 
order V~2, Substituting this into expression (2.16a) for 
the collision term, we find, for t>rc and r c /r r<Cl, the 
Markoffian equation of motion 

d 
—<ri(m) (/) = - i ( W m > 00+ e0

(mWm) (t) 
dt 

-iai(t)*(p)+D0(t)+E(t), (2.26) 

where 

+ D ' « x ~ ( - O o K en<-> « ] + ] , (2.26a) 

= £ ^*" ,Ce0(w)-Co (">>i< B )(«), (2.26b) 
CO 

for 4i(*) given by (2.19). Here 
cr i^(«)= (co- a o ) - 1 ^ ) / ^ ) (2.26c) 

is the steady-state <ri(co) in the absence of any collisions; 
in the case of direct resonance, i.e., for co = cos—cos> with 
<$| Gi (w) /G4 0 ) |O^0 , o-i<°>(w) does not exist, but E(co) 
is well defined and is equal to its limiting value as co 
approaches cos—cos> smoothly in (2.26b), as can be 
verified directly. 

The equation for the steady state can now be found 
immediately to be 

— iaxri<m> (co) = — f aocri(w) (co)+Co (mWm) (co) 

-iai(co)(7(0)+Z>0(co)+E(co), (2.27) 

where e0
(m) and £(co) are given by (2.26a) and (2.26b). 

We note that 60
(m) is independent of co, leading eventu

ally to a Lorentzian resonance line shape, as a function 
of co. This method of derivation of Eqs. (2.26) and (2.27) 
indicates that they are valid only if rc/rr<3Cl. More 
quantitative criteria are obtained by comparing the 
solution of (2.27) with that of (2.21). An example will 
be given in the next section. 

For the case /5=0, the collision operator in the 

Markoffian approximation becomes simply 

e0
(wV"> = - Z K D'«x(- ctoK °-i(m)]] • (2.28) 

This should be compared with (2.24a). 

3. SIMPLE APPLICATION—THE PHENOMENON 
OF MOTIONAL NARROWING 

In order to make some of the results of the previous 
section more concrete and to demonstrate their new 
content, we study below a simple illustrative example. 
We consider the case of a collection of independent spins 
in a typical spin resonance arrangement and in a bath 
taken as a randomly fluctuating magnetic field h&(£). 

Since the spins are independent, it suffices to consider 
only one spin, with magnetomechanical ratio 7. If the 
external magnetic field consists of a static part ho in the 
z direction and a transverse, circularly polarized one of 
frequency co, hi(/) = Ai(i cosco£—j sinco/), we have 

Ao=—o)oIZi (3.1) 

A1(t) = -^(I-e-^+I+e™*), (3.2) 

where I is the spin operator with I±~Ix±:iIyJo)Q=yhois 
the Larmor precession frequency, and COI=Y^I. The 
interaction with the bath is 

V=-yhb(t)-I. (3.3) 

For simplicity we shall further assume a cylindrically 
symmetric environment, i.e., jzz=jz, jxz=jyy=jt, 
J xy— J yz— J zx—V. 

The steady-state magnetization, 

M ( 0 = M(co) exp(—icoO+c.c, 

of this system, linear in hh can be found by first con
structing an equation for it with the use of (2.21) and 
M(co) = ^7 tr{Icri(co)}, where n is the density of the 
spins. In this case of a bath characterized by a given 
random field, the infinite temperature expressions (2.24) 
for <Bo(co) and Z>o(co) are applicable. Since we are inter
ested only in the transverse components of M(co), the % 
component being of order hi2, it proves convenient to 
deal with the combinations M±(o)) = Mx(oi)dziMy(co). 
Making use of the commutation relations for the spin 
operators, I x l = i l , and the invariance property of the 
trace under cyclic permutations, we obtain from (2.21) 
and (2.24b) 

— ia)M±(a)) = z:Fia)oM±(G))+ny tr{/±eo(w)cri(co)} 
+ico1KM,0±M2°) , (3.4) 

where Mz°==ny tr{/2cr(0)} is the equilibrium value of 
the z component of the magnetization. From (2.24a) and 
(3.3) it follows after some rearrangement: 

tr{/±e0(co)(n(co)}=E tr{[iK(co+a0)C/K,/±], IJ<n(o>)}, 
K 

where /c = x, y, z. Again making use of the commutation 



A104 P . N . A R G Y R E S A N D P . L . K E L L E Y 

relations for the spin operators and of the relations 
exp(idoT)I±=exp(:iFio)oT)I±J we find 

tr{7±eo(w)<ri(co)} = -[i,(a)=F«o)+i«(a>)] tr{I±<n(<S)} , 

and thus (3.4) becomes 

[- i(coTw0)+i2(co :=Fcoo)+if(co)]M"±(co) 

= f«oiJ(if#
0dbJf,0)."' (3.5) 

The imaginary parts of jt,z may be viewed as shifts of 
the Larmor precession frequency coo, due to interaction 
with the bath, whereas the real parts play the role of the 
inverse of relaxation times for M±(ca). Both depend on 
the driving frequency co. If written in terms of the matrix 
of the components Mx, My, Eqs. (3.5) differ from the 
phenomenological equations of Bloch,1 apart from the 
trivial linearization of the driving term, in that the 
collisions with the bath are described here by co-de
pendent, complex matrices with off-diagonal elements, 
rather than by co-independent, real and diagonal ma
trices. The solution of (3.5) is immediately seen to be 

M+(w) = icoiM2°[^wo-co)+iz(co-coo)+y«(co)]-S (3.6a) 

M_(co) = 0. (3.6b) 

I t is clear that the resonance line, when measured as a 
function of co, is no longer a simple Lorentzian, but its 
shape depends on the frequency spectrum of the bath 
correlation functions. 

A classical, macroscopic derivation of Eq. (3.5) is 
outlined in the Appendix, under the assumption that it 
is permissible to ignore the statistical correlation be
tween the bath and the spin system at a certain stage of 
the calculation. 

I t is of importance to point out that the steady state 
(3.6) describes the phenomenon of "motional" nar
rowing. A particularly simple example of this phe
nomenon is obtained by considering the previous system 
in the special case where h&(0 is a magnetic field in the 
z direction that jumps randomly between two values 
± 5 / 7 with a probability per unit time (2rc)_1. The 
correlation functions for the bath are then ct(r) — 0 and21 

cz(T)=y2(hb(t+T)hb(t))==52e-Wr<, (3.7) 

and according to (2.22a) 

i2(co) = 52(rc-
1+ico)(rc-

2+co2)-1. (3.8) 

Now the mean power absorption P is given by the time 
average of — M(t)'dhi(t)/dt. For the steady state we 
have, according to (3.6a) and (3.8), 

P(co) = co/ziIm{Jf+(co)} 

« , (3.9) 
(co-co0)4+54+(rc-

2-252)(co-coo)2 

where Im means imaginary part. For very slow variation 
of the field hb(t), i.e., for TC£2>1, JP(CO) has two sharp 

w See, for example, C. P. Slichterj Ref, 3, Appendix C. 

maxima at co=coo±5. For very rapid variations of hb(t), 
i.e., for rc5<<Cl, the absorption curve has a sharp peak 
only at the center frequency co=coo. This elementary 
example of "motional" narrowing has been considered 
before and many authors22-26 have derived (3.9) on the 
basis of different theories. 

A similar calculation gives for the steady state in the 
Markoffian approximation for the system in the cylin
drical!^ symmetric environment, according to (2.27) 
and (2.28), 

M+™ (co) = [icoiAf ,°+£(o))] 

X E ^ c o o - ^ + i . W + i ^ c o o ) ] - 1 , (3.10) 

where in this case 

E(u) = Uz(u-uo)-jz(0)+jt(o))-jt(o)o)~] 

Xfa -wo^wiJ f , 0 , (3.10a) 

with the understanding that for co=co0, E(co) assumes the 
limiting value of (3.10a) as co approaches coo smoothly, 
i.e., it equals Zj/(Q)+jt(o>o)%>iMe°, where /(co) 
= dj(a))/da). We may compare (3.10) with (3.6a) di
rectly, in order to see for this simple case under what 
conditions the memory approximation is precisely valid. 
An analysis of these two expressions yields the following 
result: for |co—o)o\̂ >Tr~

1, i.e., in the wings of the ab
sorption line, the two expressions are identical and thus 
the memory approximation is valid; for |co—coo| < r r

_ 1 , 
i.e., in the central region of the absorption line, the two 
expressions are not the same, but |lf+

Cm)(co) —M+(co)| 
<£C|Jkf+(co)| if Tc/rr<Kl. This is seen by noting that in 
this region jz(cc—co0)—i*(0)^(co—coo)jV(O) and j/(0) 
~Tcjz(0) = O(Tc/Tr), and similarly for jt(u>). Thus, in 
the region of interest the memory approximation is not 
valid for sufficiently long correlation times, i.e., for 
Tcf$Tr. Thus, the full description of the phenomenon of 
"motional" narrowing as exemplified by the previous 
simple system cannot be given by an equation of motion 
for the spin system which has been obtained by the use 
of the memory approximation. 

The case of finite temperature is more involved. For 
the particular case of spin J or arbitrary spin but high 
temperatures, however, an equation of motion for the 
magnetization alone can be given, which also describes 
the phenomena discussed in this section. We shall not 
exhibit this here, as we shall discuss this system in Sec. 6 
for the case of an arbitrarily strong driving field. 

4. GENERAL DISCUSSION OF THE LINEAR RESPONSE. 
HIGHER APPROXIMATIONS 

In Sec. 2 we paid particular attention to the case 
where the effects of the spin-bath interaction are taken 
into account to the lowest order, and discussed the 

22 D. H. Archer, thesis, Harvard University, 1953 (unpublished). 
23 P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954). 
24 H. S. Gutowsky, D. W. McCall, and C. P. Slichter, J. Chem. 

Phys. 21, 279 (1953). 
26 R. Kubo, Nuovo Cimento Suppl. 6, 1071 (1957). 
26 J. H. van Vleck, Ned. Tijdschr. Natuurk. 27, 1 (1961). 
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steady state on the basis of the assumed existence of a 
bath correlation time rc. We now consider the general 
equation for o-i(/), (2.13), valid for arbitrary strength of 
the spin-bath interaction. 

First of all it should be noted that the solution of 
Eq. (2.13) for a(t) is a Hermitian operator, as it should. 
This is proved by noting that (r^(t), due to the structure 
of the operators 6 and D, satisfies the same equation as 
ai(t) and the same initial condition, crit(0) = 0. Also the 
property tr<7i(/) = 0 is satisfied, since (2.13) gives 
d trai(t)/dt=0, on account of the commutator form of 
the terms on the right-hand side and tro-i(0) = 0. 

A complete solution of (2.13) can be obtained by the 
method of Fourier transforms. Introducing 

* i ( s ) = ( dtaW*, (4.1) 
Jo 

with z in the upper half of the complex z plane, and 
similarly for &i(z) and D(z), we obtain from (2.13) 
(after the first-order renormalization) and the initial 
condition (T!(0) = 0 the following equation for a±(z): 

— izfri (z)=—i ® otfi (z)+6 (z) &i (z) 

- i a i ( s M 0 ) + Z > ( s ) , (4.2) 

with ai(z) analytic in the upper half-plane above a line 
parallel to the real axis, since <n(/) = 0 for / < 0 . Here, use 
has been made of the convolution theorem in the 
evaluation of both 6(2) and D(z). We find 

e(z) = i trhV(5l(z)Vf(B), (4.2a) 

D(z) = i triVGlW&axWfiB), (4.2b) 
where 

6i(z) = ij dr^e^^i^o+^V-z)-1 (4.3) 
Jo 

is analogous to the resolvent operator, corresponding to 
the operator tfCo+CPI). The solution of (4.2) can be 
written formally as 

€r1(a) = {f (»-a 0 )+e(s)}- 1 {*Ct iW(r(0)-2>W}, (4.4) 

for l m z > e > 0 . Since now 

\ /.-foo-Hc 

<ri(0 = — / dzdi{z)e~izt
 y (4.5) 

2-7T J—oo+ie 

the time evolution of ai(t) for / > 0 can be obtained by 
analytically continuing &i(z) in the appropriately cut z 
plane and deforming the contour in (4.5) in the lower 
half-plane, so that the techniques of complex integration 
may be used. Such a procedure will yield not only the 
steady state, if it exists, but also the approach to it. I t 
entails, however, the knowledge of all the singularities 
of ai(z) in the plane below the line — °o-f-i€, + co+ie. 
Such a general study is beyond the scope of this paper. 

I t should be noted that no assumption has been made 
go far about the nature or the state of the subsystem we 

have been referring to as bath. In particular, its "size" 
relative to the spin system can be arbitrary and its' 
state can deviate from that of thermodynamic equi
librium. I t is clear that a similar theory can be given 
that treats the two subsystems, spin and bath, in a 
symmetrical way, by adopting a splitting of pi(t) differ
ent from that given by (2.7). 

If the driving interaction is of the form (2.19), i.e., 

; l i (0 = E * - * ^ i ( « ) , 
0} 

then 
1 

Gti(s) = i X ; Cti(co). (4.6) 
a) Z — 03 

I t is then clear from (4.6) and (4.2b) that Ofci(z) and 
D(z) have poles on the real axis at z=oo. D(z) has 
additional singularities due to (ft(3). The solution <ri(z), 
Eq. (4.4), will in general have simple poles (or pseudo-
poles) at s=co plus additional singularities arising from 
D(z) and [i{z— Cto)+e(2)] -1 . If, however, we assume 
that a steady state of the form ffi(s)(/) = £ w <ri(o))e~i<ot 

exists for very long times, it is expected that it should 
arise in general from the contribution of the poles of 
&i(z) at z—o), the contribution of all other singularities 
going to zero as t—»oo. I t is then found that o"i(co) 
= limai(co+ie) for e—»0+, as given by (4.2). In this 
limit (R(z) becomes i0(o>—3e0—(PD), where 0{x) is given 
by (2.23b). 

Discussion of the necessary and sufficient conditions 
for the existence of a steady state for long times is 
beyond the scope of this paper. One obvious necessary 
condition is that the bath have a continuous energy 
spectrum.27 

In the lowest Born approximation for the spin-bath 
interaction, which obtains by dropping (PV in the 
argument of 6, Eq. (4.2) for the steady-state component 
o"i(co) becomes identical to (2.21) with 

eo(a)=-trbVe(<a--Wo)eOf(B), (4.7a) 

J0o(«)= - t r 6 W ( w - X 0 ) a i ( a O / ( 1 ) . (4.7b) 

In order to prove the equivalence of these expressions 
for Co(co) and £>0(co) to Eqs. (2.21a) and (2.21b) in the 
case of a V given by (2.15), it suffices to use the integral 
representation of 6(x), (2.23b). This approximation 
amounts to keeping effectively the bath in thermo
dynamic equilibrium corresponding to its unperturbed 
Hamiltonian B. 

The expressions (4.2a) and (4.2b) for Q(z) and D(z) 
are valid for arbitrary strength of the spin-bath inter
action and provide a convenient basis for other ap
proximations. Clearly, these are determined by the 
approximations to the resolvent operator (ft (2). Such an 
approximation scheme for small V will yield a quanti
tative criterion for the validity of the lowest Born 

27 For a detailed mathematical example see R. Zwanzig, Ref. 18. 
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approximation of the collision operator, which in general 
is expected to be different from rc/rr<3Cl. 

The power series in V for (R(z) is easily obtained by 
iteration of the following identity 

(R 0) = (Ro 0) - &o 0)<F0 (R (2), 

where (R0(z) = (SCo-z)-"1. This is 

! - 0 
•l^BPTXRoW]' 

(4.8) 

(4.9) 

Such an expansion, however, produces in general di
vergences in the scattering and driving operators (4.2). 
These divergences can be eliminated for a large class of 
interactions by a different expansion of the resolvent 
operator (R(z), which is a generalization of the technique 
used by Van Hove13 in the problem of the derivation of 
the master equation for approach to equilibrium. We 
have studied such an expansion for the particular case of 
spin-phonon interaction and shall report it in another 
publication. Fano28 has recently discussed the problem 
of pressure broadening along similar lines. 

5. GENERAL EQUATION OF MOTION FOR 
THE SPIN SYSTEM 

We consider now the case of an arbitrary spin 
Hamiltonian, thus generalizing the results of the previ
ous sections to include the description of the phenomena 
of resonance saturation and relaxation towards thermo
dynamic equilibrium. 

The equation of motion for the combined system is 
again (2.2). If we let A (t) = Ao+Ai(t) be the total spin 
Hamiltonian and Ho(t) — A(t)+B, we may write HT{t) 
= Ho(t)~{-V. As in Sec. 2, we seek to find an equation of 
motion for the spin density operator o-(£) = tr&p(J), by 
transforming (2.2) into a system of coupled equations 
for o-(l) and to(i) = (?p(t)} where (P is again given by (2.8). 
We thus have 

i(rf/rfO^(0 = CCt(0+tr 6
e O/(5)>(0 + tr6

eUi?(0, (5.1) 

i(d/dt)r1(t) = \Wo(t)+(?V']r}(t)+(?Vf(B)<7(t). (5.2) 

The solution of Eq. (5.2) for 77 (t) can be given in terms of 
the solution of the homogeneous equation, which is now 
denoted by 

§(*/) = ( e x p : / dr\jC0(r)+(PVj\ , (5.3) 

( ) + designating positive time ordering. We thus find 

ri(t) = §(t,0)(?p(P)-i dr§>(t,r)(PVf(B)a(T). (5.4) 
Jo 

Substitution of this expression for rj(t) into (5.1) gives 
the general equation of motion for the spin density 

operator a(t) 

d 

dt 
•*(£)=-ia(t)<r(t)+e(t,{cr})+F(t), (5.5) 

where 

i e(t,{a}) = -trbV dr§>(t,r)Vf(B)a(r)J (5.5a) 

F(t)=-itrbV&(tfl)(?p(p). (5.5b) 

In expression (5.5a) for the generalized collision opera
tor, we have already carried out the first order in V 
renormalization mentioned earlier. The inhomogeneous 
term F(t) depends on the initial state of the total system 
and it vanishes if (Pp(0) = 0. Equation (5.5) is clearly 
valid for all times and for arbitrary V and Ai(t). 

I t can be easily proved that the solution of (5.5) is 
indeed a Hermitian operator, as it should, and that it 
maintains its normalization in time, i.e., tvcr(t) = l. 
Also, one can verify that (2.13) for the linear response 
can be obtained from (5.5) by linearizing it and $(t,r) 
with respect to Ai. The direct procedure of Sec. 2, 
however, is simpler. 

An alternate expression for 6, more convenient for 
perturbative expansions in powers of V, is obtained by 
writing 

S(/,r)-So(^,0)S ,fer)S0-1(T,0), 

where 

So(/,0) = Sb(/)S,(/,0) = exp(~i(BO 

(5.6) 

x ( e x p T / dra{r) J , (5.6a) 

S ' ( / / ) = (exp T / drVf(r)J , (5.6b) 

with V'(t) = S<r1(t,0)V$o(tfl) being the operator V in 
the interaction representation. We thus have 

e(U<r})=-tr6'U(0S.(*) 

x[ rfrS'ferJSrHrJ^W/^Xr), (5.7) 
. / 0 

where V(t) = exp (i(B/) V is the interaction operator in the 
Heisenberg representation for the bath system alone and 
Ss(/) = S5(/,0). Equation (5.7) is identical to the collision 
operator of Ref. 14. 

In the lowest Born approximation for the interaction 
with the bath, the collision operator is seen from either 
(5.5a) or (5.7) to be 

eo(t,{a})= - t r5 -0 (0 / dr§>8(tyT)V(r)f(B)a(r) , (5.8) 
Jo 

28 U. Fano, Phys. Rev. 131, 259 (1963). where §>s(t,r) is given by (5.6a). In terms of the bath 
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correlation functions (2.17), we may express (5.8) in the spin is again given in general by (5.5) where now 
form 

Co( / ,{cr})=-E 
r< e(l,{*})=-trbv[ d rexp[- t (3C 0 +(TO)r] 
/ dT{cKx(T)lvK,§>s(t,t~-T)VX<7(t-T)J J0 

Jo XVf(B)a(t-r), «Uo XVJXB)a{t-r), (5.13a) 

-CXK(-T)[VK, $.(/, t-r)cr(t-T)v{]}. (5.9) F(t)=-i trbV exp[-*(X0+(Pl))(](Pp(O). (5.13b) 

We shall use this equation in the following section. An 
analogous expression can be given for Foit), if we take 
the initial condition p(0) of the total system to be given, 
as in Sec. 2, by f(A0+B+V). For t>rc, where rc is the 
bath correlation time defined by (2.18), the upper limit 
in the integral of (5.9) can be replaced by °o and the 
inhomogeneous term Fo(t) vanishes, on account of the 
property (2.18) of the correlation functions. Thus, in 
the lowest Born approximation and for t> rc, the equa
tion of motion for the spin system is 

dt 
-a(t) = -ia(t)<r(t)+e0(t,{<r}) , (5.10) 

where Co is given by (5.9) with the upper limit of the 
integral taken as co, We note that (5.10) shows 
"memory." 

We may approximate the "memory'' effects of the 
collision operator (5.9) and obtain a Markoffian equa
tion of motion for the spin system, valid only for long 
times, i.e., t>rc, and for rc /r r<Kl, as in Sec. 2. From 
(5.10) we note that for t>rc 

^(r) = S s - 1 (^^)^(0+O(r c / r , ) , (5.11) 

where r r is a measure of the relaxation time and of 
order V~2. Substituting this into (5.8) or (5.9), we have 
for t>Tc and rc/r r<Kl 

d 
-a(m) (,) = -ia(t)a^ ( / ) + e 0

( ^ ( 0 * ( m ) ( 0 , (5.12) 

dt 

where 
/•OO 

e0
(m)(0<r(0 = - t r 6

, O ( 0 / dT{$.(f,T)V(T)}f(.B)*(t) 
Jo 

/•OO 

= - £ / dr{cKx{r)[yK,vx{t,t~r)cr{t)~\ 

- C X « ( - T ) [ ^ , <r(t)vx(t, * - r ) ] } , (5.12a) 

with v\(t, t— r) = Ss(/, t — r)v\. Equation (5.12) is iden
tical to the most general equation for the spin density 
operator derived by Bloch7 and others.8-11 I t has been 
obtained here as a special case and without any sta
tistical assumptions. 

The description of the approach to thermal equi
librium of a spin system is included in the previous 
equations. For such a case, the spin Hamiltonian A is 
time-independent and the equation of motion for the 

I t should be noted that the time dependence of the 
collision operator is of the same form as in the preceding 
section, and thus the techniques discussed there apply 
equally well to this case. We shall not discuss this 
problem here any further. A detailed discussion of this 
problem has been given recently by Sher and Primakoff29 

from a different point of view. 

6. SIMPLE APPLICATION—THE PHENOMENON 
OF SPIN RESONANCE SATURATION 

The very general results of the previous section are 
now illustrated by applying them to the simple system 
of a collection of independent spins in a typical spin 
resonance arrangement as in Sec. 3. The difference here 
is that we consider the driving field to be of arbitrary 
strength and the temperature to be finite. 

The Hamiltonian for the spin system is A(t) = Ao 
+Ai(t), where A0 and Ax{t) are given by (3.1) and (3.2). 
The interaction with the bath is again taken to be given 
by (3.3), with the bath constituting, as before a cylin-
drically symmetric environment, i.e., CK\(T) = CK(T)8-K\ 
= C_K(T)5_KX = y2(hbir)hb-^KXy where JC, X = - 1 , 0 , 1 , h^1 

= (i)(hbxzhihby) and hb°=hbz. 
In order to find the steady state, it is convenient to 

work in a frame of reference rotating around the z axis 
with angular frequency co, so that its x axis lies along the 
driving magnetic field hi, because in this frame the total 
magnetic field is constant in time. In the rotating frame 
the spin density operator is 

<ir(t) = exp(—iulzt)a(t) exp(io)Izt) , (6.1) 

and according to (5.10) its equation of motion for t> rc 

is found to be, in the lowest Born approximation, 

d 
—ar^ = _ i a v r ( / ) + eo*V} . (6.2) 

dt 

From (6.1), (3.1) and (3.2) it is clear that 

i 4 r = - w i / « - A / # = - I . f i > f l , (6.3) 

where A=co0—co and <oe= (coi,0,A) is the effective mag
netic field (multiplied by 7) in the rotating frame. CV is 
similarly obtained from (5.9) and (5.6a). Since 

U(t,t-r) = (exp- I dr'Air')) 

= eioiIzt exp(>-iArT)e-io)I^t-T), (6.4) 
29 A. Sher and H. Primakoff, Phys. Rev. 119, 178 (1960); 130, 

1267(1963). 
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and $e(t,T)<T=U(t,T)<rU-1(l,T), it is found that, because 
of the cylindrical symmetry of the environment, 

e0
r{<7r} = - E / dreimT 

X{c«+(r)[7_«, exp(-»a'T)C/«, ^ ( / - r ) ] ] 

+ C . - ( T ) [ / _ , e x p ( - * a ' T ) [ / „ < r r 0 - r ) ] + ] } , 
(6.5) 

where h=IZi I±i=Ix±Hv If we now assume that a 
steady state exists and that in the rotating frame it 
takes the form crr{i) —xrr(a)) as /—><*>, (6.2) and (6.5) 
give for the steady state the equation 

- i a v (co)+60
r (o))<rr (a>) = 0 , (6.6) 

where, because of the property (2.18) of the bath 
correlation functions as argued in Sec. 2, 

e0
r(co)^(a)) = - i : [/_„ j+(KO)-ar)iIK,<rr(a>)'] 

K 

+ir(^-aOC/^r(o))]+l, (6.7) 

where j*- are denned by (2.22a). 
As in Sec. 3, it is convenient to use (6.6) and (6.7) to 

construct an equation for the steady-state magnetiza
tion in the rotating frame, Mr(co) = ny tr{Io-r(o;)}, where 
n is the density of the spins. The first term of (6.6) gives 

{-i)ny tr{Iar(7r(o;)} = Mr(co)X6>e. (6.8) 

The second term of (6.6) yields, on account of the 
invariance property of the trace under cyclic per
mutations, 

tr{Ie0
r(co>r(co)} 

= E tr{[i +(/cco+aO[/_K,I], / K M C O ) 
K 

+Vr(«*+a%i-K,r\, i*Wb*)}. (6.9) 

The commutator [I-KyY] can always be expressed as a 
linear combination of the spin components themselves, 
on account of the commutation relations I x l = i l . I t 
can also be proved30 that exp(i6trr)JM can again be ex
pressed as a linear combination of the spin components, 
and thus one finds 

vX 

where y, v, X= — 1, 0, 1 and aM„(0) are as follows: Ian 
— 1 = la-i-i— 1 = 2«i_ i+1 = 2QL_H+ 1 =a:oo= cos0= A/coe 

and lao-i— 2aoi= — «-io= —aio=sin0=a>i/coe, where 6 is 
the angle the effective field <ae makes with the z axis. 
Thus, the first term of (6.9) can be expressed as a linear 
combination of the components of the magnetization 
Mr(co), on account of the commutation rules for the spin 
operators. For the second term, however, this is not 

true, since the anticommutator [ 7 x , / J + cannot be 
transformed in the same way. For spin I=z^ the 
anticommutator is a pure number, and thus the second 
term of (6.9) becomes for all temperatures an inhomo-
geneous term in the equation for the steady-state 
magnetization. For arbitrary spin and high tempera
tures, i.e., 0X(spin energy)«Cl, again the latter term 
becomes a constant. Since to the lowest order in 
ft JK+(o)) = jK(a>) and i r ( « ) = i«(w)(j8w/2), where jK(a) 
is the one-sided Fourier transform of CK(T), we find for 
this case,31 to which we shall restrict our attention from 
now on, 

ny tr{/Me0
r(co)o-r(co)} 

= Z ( - l ) ^ ( K - / * ) a i H - i c . r ( - ^ ) a r x W i « ( - - w 6 - - K a ) ) 

X{(-l)x-K(X+/c)Mx_/(w) 

+ ( V 7 ) ( - W . - K W ) 5 X C € C } , (6.10) 

where e_i=ei=2e 0 =2 and X0=ny2l3I(I+l)/3 is the 
equilibrium susceptibility of the spin system. Combining 
(6.8) and (6.10), we find for Mr(a>) the system of 
equations 

f Tx~i 

A+No 
L T - i 

M/ 

My' 

IMS 

- (A+t fo ) r „ - i • 

Ty-i -(ai+Nd 

« i + # i Tr1 

fTxl~
1u+Dxw{] 

— Niw-{-DyWi 

where the four relaxation times are given by 

-® (6.11) 

Tx~
l = j z (ue)+c2jt'(w)-\ y / (w—w.) 

2 
s2 

+ — j / ( « + « . ) , (6.11a) 
2 

rr^r.-i+^QVCo)-;,'^.)], 

( c - l ) 2 

r.-1=*,jV(«)+ i/(»-a>.) 

(6.11b) 

(<+i)2 

- j V ( « + » . ) , (6.11c) 

1 = ^ - C J I ' ( „ ) 
( c - 1 ) 

y/(o> —C0e) 

(c+1) 1 
+ y/(«+».) , (6. nd) 

30 See, for example, Ref. 7, p. 1217. 

31 Although these statements are not quite correct for the 
imaginary parts of j \ we shall accept them as approximately 
valid, in view of the qualitative nature of our considerations. 
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the two frequency shifts by 

Wo= -cj." M+c2jt" («)+-j«" («-«.) 

2 

(c-D r (.c-1i 
# 1 = * CJ«"(«) j "(W-C0e) 

(c+1) 
j «"(«+&>.) . (6.11f) 

and 

( c - 1 ) 
Dx=jz'(ue) i«'(«—««) 

2 
(c+D 

• j7 («+« . ) , (6.11g) 

( c - 1 ) 
# » = -cj."(u.) j / ' ( « - « . ) 

2 

(c+D 

verified to be in a a ; ' / / coordinate system 

Mx> = MxcosO—Mzsm$=0, My> = My=0, 

Mz> = Mx sind+M, cos0= X0(a>e/y) = X0(/z0
2+W01/2, 

i.e., the steady state describes the thermal equilibrium 
magnetization corresponding to the total magnetic field 
<oe/7, as it should. 

(b) No transverse field. For coi=0 it is clear from (a) 
that the steady state is just the thermal equilibrium 
situation corresponding to a magnetic field h0. This can 
also be established from (6.11) for arbitrary co. 

(c) Very small transverse field. For sufficiently small 
coi the linear response can be obtained by noting that we 
may put s—0, c= 1. I t is then easily checked that (6.11) 
gives all the results of Sec. 3 and their generalization to 
finite temperatures. I t also yields the exact conditions 
for the applicability of the linear description. 

(d) Small transverse field near resonance. If coi<<Ccoo, and 
A~coi<3<coo, we have coe~coi<<Cco~coo, a situation fre
quently encountered in practice. The parameters of 
(6.11) are then considerably simplified, since we can put 
y«(codbcoe)«y«(w), although ooi2TyTz and coirc could be 
large. I t is then found that 

i / ' ( c o + a O , (6.11h) T .-* = j J {<».)+jt'{<*)> Tv-
1=Tr1+fUM,(P)-J''(<**)l 

(6.12a) 

(c-i)2 (c+iy 
Dz = jV ( « - « . ) + i/(co+coe). (6.11i) 

In these expressions s=sin0=coi/coe, e=cos0= A/to„ and 
/(co), j"(co) are, respectively, the real and imaginary 
parts of j(o)). Equations (6.11) represent the gener
alization of the original phenomenological equations of 
Bloch for the steady state referred to a coordinate 
system rotating with the driving field. I t should be 
noted that the relaxation times and the shifts depend on 
all three frequency parameters of the system co, coi, coo. 
The detailed character of the absorption line is thus 
determined by the co dependence of the relaxation times 
and the shifts. 

The system under consideration here has been ex
amined by Bloch7 and Tomita.10 Our analysis differs 
from theirs primarily in that we have allowed for 
memory effects and thus equations (6.11) are not re
stricted to the case of a rapidly fluctuating bath, i.e., 
roughly speaking rc/TXty)Z need not be <^1. In par
ticular, however, (6.11) shows that there are only four 
independent relaxation times and two energy shifts, in 
contrast to five and four, respectively, according to the 
memory approximation.7-10 

The variety of facts contained in the generalized 
phenomenological equations (6.11) is indicated briefly 
below, by consideration of some special cases: 

(a) Static transverse field. For co=0 the rotating frame 
is identical to the fixed frame and the total magnetic 
field G>«/7=ho+hi is along a z' axis inclined at an angle 6 
to the z direction. The solution of (6.11) can then be 

r,-1=2i/(co), 

Dy=Dx=Tx-\No, 

No=-cj."M+jt"(<*) 

Dz=cTz~
l 

(6.12b) 

(6.12c) 

and all the others vanish. Equation (6.11) becomes then 
simply 

M ' x u . + R . C M ' - M ' H O , (6.13) 

where the collision tensor is given by 

R = -

rTV 1 -No 0 ' 

No Tf-1 0 

0 0 Tr\ 

(6.13a) 

and M/=Xo(ho+hi)=(X0/7)(coi,0,coo) is the thermal 
equilibrium magnetization corresponding to the instan
taneous total magnetic field. Thus, the collisions with the 
bath may be said to tend to restore, in the rotating 
frame, thermodynamic equilibrium appropriate to the 
instantaneous value of the total magnetic field. The 
collision tensor, however, still depends on the strength 
of the driving field coi. The steady-state magnetization 
is then 

MS= (XO/TH !+ 
a>(A+NQ)TxTy 

M/= (X0/7> 

i+co1
2r2/r,+(A+^0)2r,r2/, 

cocoiTj, 

] • 

i+»i*r,r.+ (A+iW.r, 

(6.14a) 

(6.14b) 
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Mn -- ( X 0 / T ) U O -
OOQ)l2TyTz 

l+^TyTz+(A+No)2TxTyA 
(6.14c) 

Thus, the situation is characterized by three relaxation 
times, all of which depend on co and coi. If, however, 
^ i r c « l , l t : is c l e a r that Ty= Tx and all relaxation times 
become independent of the strength of the driving field. 
In this case (6.14) become identical to the solution of 
the modified phenomenological Bloch equations,2,3 and 
upon saturation they exhibit the usual saturation 
broadening of the absorption line. Furthermore, in the 
case of "extreme narrowing," i.e., for coorc«l all re
laxation times become constant, and for an isotropic 
environment, i.e., jt — jz, equal to one another. On the 
other hand, for coirc> 1 and at resonance, i.e., co = co0, Tx 

depends on coi, whereas Ty and Tz do not, and in general 
Trx<Tx-\ Ty~

l) in particular Tz~
l<^Tx~\ Ty~

l if 
coorc^>l. Thus, for sufficiently strong driving field, i.e., 
for coircJ>l, the effects of saturation upon the various 
measurable quantities of the steady state is given not 
only through the coi2 of the denominator of (6.14), but 
also through the coi dependence of Tx as given by 
(6.12a). Thus, we note that the behavior of the dis
persion signal upon saturation is not the same as that 
of the absorption signal, as has been observed experi
mentally. We demonstrate this for the case of exact 
resonance (we also ignore here the frequency shift No). 
From (6.14) and (6.12) we find for A=co0—co = 0 

M//(M/)o=M//(M/)o= l/(l+^TyTz), (6.15a) 

(dM x
r/dco0)/ (dM x

r/da>0) 0 T x 

M//(M/)0 Tx0 

' • W W . (MSb) 
jz'(wi)+jt(e>o) 

Here Tx>y,z are understood to be evaluated at reso
nance (A=0) and Txo denotes the value of Tx for 
coi = 0. The symbol ( )o denotes the value of the 
quantity before saturation. I t is clear from (6.15) that, 
while the absorption and z component of the magnetiza
tion saturate (at resonance) in the way expected from 
Bloch's phenomenological equations,1 the dispersion 
derivative saturates more slowly with strong driving 
fields (for coirc> 1). I t is also possible to analyze the line 
width of the absorption line and to demonstrate that it 
could decrease before it increases upon saturation. Both 
of these qualitative features have been observed ex
perimentally. Finally, it is easy to see from (6.14) that 
in the case of extreme saturation, i.e., for Q)i2TyT£2>l, the 
steady-state magnetization in the rotating frame is 
equal to the thermal equilibrium magnetization in the 
rotating frame corresponding to the effective magnetic 
field, (de/y, and a temperature given through /3e 

-/3o;oA/(A2+co1
2r,r,-1). 

(e) Slowly rotating transverse field. If corc<Kl and 

coeTc^Cl, but coi/coo arbitrary, then all relaxation times 
are constant, and for an isotropic environment equal to 
^ = P i / ( 0 ) ] " ~ 1 . The steady-state magnetization is then 
as given by the modified phenomenological Bloch equa
tions,2,3 i.e., 

r c o t A + i r - 1 ) ! 
M/+iM/= (X0/7W l + - ^ - 7 - ; — 7 - I, (6.16a) 

r-2+coe
2 J 

Mt [ oxo 12 "1 
coo . (6.16b) 

r-2+coe
2J 

These expressions are applicable to the case of a purely 
rotating field, i.e., coo=0, and include the result of 
Gorter and Kronig.32 
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APPENDIX 

The classical equation of motion for the magnetiza
tion Mr(/) of a spin system (with magnetomechanical 
ratio 7) in a magnetic field hT (t) is 

dt 
-MT(t) = yMT(t)XhT(t). (Al) 

The magnetic field hr(t) is taken to be the sum of the 
static field h0, the rotating driving field hi(/), and the 
fluctuating field ht(t) of the bath. In a frame of refer
ence rotating with angular velocity — G>O=— 7I10, we 
have 

-Mr'(/) = 7M/(0Xh'(0, 
dt 

(A2) 

where h(£) = h&(/)+hi(/). The primes indicate that the 
vectors should be taken as they appear in the rotating 
coordinate system. In particular, if we take h0 along the 
z direction, we have clearly h± (t) = h±(t) exp(±icoo/), 
hz'(t) = hz(t)y where h±=hx±ihy and similarly for 
M / ( / ) . We write now (A2) as an equivalent integral 
equation 

./0 
(A3) 

Here we have put Mr ,(0) = Mr(0) = M°, which is true 
if we choose the two coordinate systems to coincide at 
/ = 0. We now substitute the expression (A3) for M r ' in 

32 C. J. Gorter and R. Kronig, Physica 3, 1009 (1936); R. 
Kronig, ibid. 5, 75 (1938). 
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the right-hand side of Eq. (A2), and obtain 

d r< 
—Mr '(*) = W drh'(t) 
dt Jo 

X ( h , ( r ) X M r
, ( r ) ) + 7 M ° x h , ( 0 . (A4) 

In order to find the magnetization M (t) proportional to 
hh we write MT(t) = Mo(t)+M(t) and find from (A4) 

- M ' « = 72 I drhb(t)X(hb
f(r)XW(r)) 

dt Jo 

+ 7 2 [ dr{W(t)X (W(r)XMof(r))+W(t) 
Jo 

X C h / W x M o ' W ^ + T M o x h / W , (A5) 

and an analogous equation for M0 '(/). If now we take 
ensemble averages and assume that it is permissible to 
neglect at this point the correlation between the random 
functions h &' (t) and M7 (t) and average them separately, 
and in addition take for convenience (h / ( / ) ) = 0, we find 
from (A5) 

d rl 

- M ' ( / ) = Y2/ drhh
f(t) 

dt Jo 

X ( 1 H ' ( T ) X M ' ( T ) ) + 7 M ° x h / W , (A6) 

where the ensemble averaging for (h&'(/)h&'(r)) and 
(M.'(t)) has not been indicated explicitly. In the sta
tionary frame of reference an equation of motion for 
M(t) is easily obtained from (A6). For simplicity, we 
shall state the result only in the case of a cylindrically 
symmetric environment, i.e., ca!a.(r) = ^ | / ( r ) = c*(r), 
CZZ(T) = CB(T), cXy(T) = cyz(T) = CzX(T) = 0, where cK\(r) 
~y2(hbK(t)hbX(t—T)) are the correlation functions for 

the bath. We find for a transverse, circularly polarized 
driving field hi(t) = hi(i cosut—j sinotf) 

d r< 
—M±(t) = ^Fio)QM±(t)- / drM±{t-r) 
dt Jo 

X (cM+cMe^w^iwiMfe*™*, (A7) 

where as in the text ui=yh\. Seeking now a steady-state 
solution of (A7) of the form M ( 0 - » M ( u ) exp(-ioot) 
+c.c . as t—>oo, we find, making as before use of the 
assumed property (2.18) for the correlation functions, 

[—^(coTco0)+yf(co)+i^(coTcoo)]ilf±(w) 
= i w i i ( ^ ° ± J l f . 0 ) , (A8) 

which is identical to (3.5). 
I t is evident that an identical derivation can be given 

for an equation of motion of the spin density operator, 
when its interaction with the bath can be described by 
^ ( O — S K UK(^K, where uK(t) are random functions and 
vK various combinations of spin operators. This equation 
of motion is identical to (2.14), where Go(£,{o*i}) is given 
by (2.16a) with CK\(T) = C\K(—T) and Do(t) = 0. For the 
steady state this leads to Eq. (2.21), where Go (a;) and 
Z>o(co) are given by (2.24). 

The general response of the system can be obtained in 
the same way. 

This method of derivation is clearly weak, since it 
rests upon the assumption of statistical independence of 
the spin and the semiclassical bath. Clearly this as
sumption is not correct to all orders in the interaction. 
The general method given in the text justifies the use of 
this assumption, in so far as second order effects are 
concerned. This method, however, does describe cor
rectly the "memory" effects, which were not obtained 
by previous theories. 

A similar classical derivation of (A8) has been ob
tained independently by Dr. H. J. Zeiger. 


