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An examination of the approximation of separability is made for the pairing Hamiltonian 

H~ S €k(aifah-\-a-$a-h)—G 2J a^a^a-iai; 
fc>0 k>Q,l>0 

separability being denned as the decomposition of the amplitude of any configuration in the eigenfunctions 
of the pairing Hamiltonian as a product of factors, one factor associated with each occupied level. This 
approximation is found to be inadequate for the single-particle energy-level spacings and values of G 
typically used in nuclear calculations. A somewhat less restrictive approximation is introduced which leads 
to considerably improved solutions of the pairing Hamiltonian. The results of the approximate calculations 
are compared with available exact solutions and the agreement is found to be extraordinarily good. 

I. INTRODUCTION 

IN a previous paper,1 we developed an approach to 
the treatment of pairing forces in nuclei, which has 

the virtue of never giving a "trivial" (A=0 in quasi-
particle language) solution for a nonzero pairing inter
action, no matter how weak the pairing interaction 
may be. The one approximation made in our treatment 
is separability. By separability, we mean that the 
amplitude of any configuration is a product of factors, 
one factor being associated with each occupied level in 
the given configuration. This approximation, among 
others, is also made in the quasiparticle treatment of 
pairing interactions. The purpose of this paper is to 
examine in detail some of the implications of separa
bility and to point out a less drastic approximation 
which leads to considerably improved values for 
approximate eigenvalues and eigenfunctions of the 
pairing interaction. 

II. EXAMINATION OF SEPARABILITY 

We consider a system having two pairs of particles 
and at least five levels available for occupancy by a 
pair, in order to investigate separability. The pairing 
Hamiltonian which we discuss is 

and 

fc>0 k>0,l>0 
aja-ja-idi, (1) 

where ek is a single-particle energy; ak^(ak) is a fermion 
creation (annihilation) operator; — k indicates the time 
reversal partner of k, and G is a constant-pairing inter
action matrix element. The arguments that we shall 
develop concerning the Hamiltonian of Eq. (1) are also 
pertinent to the more complicated pairing interactions 
of the forms 1-22 and 1-23. 

For a system with two pairs of particles, we have the 
exact relations1 

C i , m ( £ i , m — X ) : --GZCi,t+GT,Cm,t (2) 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 R. R. Chasman, Phys. Rev. 132, 343 (1963). This paper will 
be referred to as I, and equations from it will be given as 1-15, e.g., 
for Ref. 1, Eq. (15). 

C2,m{E2,m — X) — G ]£ C2j£+G: ]C C m,t j (3) 

where dj is the probability amplitude of the configura
tion having levels i and j occupied, A is the eigenvalue 
of the Hamiltonian, and 

Eij—2ei-\-2ej=Ei-\-Ej. (4) 

The subscripts 1 and 2 denote the lowest and next to 
lowest single-particle levels. We specialize our discussion 
to a system of nondegenerate levels 

Ei9*Ej (5) 

for all i and j . Separability is formulated as 

Cu^DiDj, (6) 

where D{ and Dj are numerical factors associated with 
the levels i and j , respectively. Subtracting Eq. (3) from 
Eq. (2), making use of Eq. (6), we obtain 

M(-L-)-
V D2 /\Ei-Ei/ 

D„ 

Dm(Ei,m—\)—G Ylt*i,zDt 
(7) 

As Eq. (7) is valid for all levels m other than 1 or 2, we 
may consider any two levels mo and no and employ 
Eq. (7) to obtain 

(Dmo—Dm)G 2l Dt = DmoDno (Eno—Emo). (8) 

«5*1,2 

If, in place of Eq. (3), we use the relation 

Czim{Ez,m—\)~G 2_i Cz,t~\~G 2L Cm,t, (3) 

we obtain, in place of Eq. (8) 

(DmQ—Dno)G^2 Dt = DmQDno(Eno—Em). (8') 

A comparison of Eq. (8) and Eq. (8r) leads us to the 
result 

D2=Dz, (9) 
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since, if we take Dmo—DnQ, Eq. (8) leads us to 

En^~ -G,m0 , (10) 

which is in conflict with Eq. (5). However, if we inter
change the roles of m0 and no with 2 and 3 in the 
derivations through Eq. (8'), we conclude 

Dm0— &n0, (11) 

which again implies Eq. (10). We see that separability 
leads to contradictions for systems of nondegenerate 
levels. We rewrite Eq. (8) in the form 

(Dmo—Dm) — DmoDm (Em—Emo)/G zL Dt, (8 ) 
^ 1 , 2 

which suggests that separability becomes a better 
approximation as the energy levels approach each other 
in value for constant C, or as G is increased and the 
energy spacing held constant. Equation (8") also 
implies that separability will become a better approxi
mation as we increase the number of levels since 
E M I , 2 A increases. Generally, the single-particle spac-
ings and values of G used in nuclear calculations are 
such as to suggest that separability is not a particularly 
good approximation. 

I t is interesting to note that the failure of separability, 
as seen in the disagreement between Eq. (5) and 
Eq. (10) is a direct consequence of the exclusion 
principle. The restrictions on the summations on the 
right-hand sides of Eqs. (2), (3), and (3') are just the 
expression of the exclusion principle. If we do away with 
these restrictions, we are not able to obtain the result 
of Eq. (10). We know that separability is exact for a 
system of degenerate energy levels and also for a system 
having only one pair of particles. I t is for just these 
systems that the effects of the exclusion principle are 
mitigated; i.e., if we have only one pair, all levels are 
accessible and for the degenerate system all levels are 
equivalent. In general, separability is inconsistent with 
the exclusion principle. 

III. MODIFIED APPROXIMATION 

I t was pointed out2 that the errors introduced into 
the approximate eigenfunctions of Eq. (1) through the 
use of Eq. (6) are manifested in the higher order 
amplitudes of the approximate wave function; separa
bility gives higher order amplitudes which are smaller 
than the corresponding amplitudes in the exact wave 
function. By an nth order configuration, we mean one 

in which n of the levels, which are occupied in the most 
probable configuration, are unoccupied. In order to 
obtain improved approximations for the eigenfunction 
and eigenvalue, we introduce P new variational param
eters into the treatment; P is the number of pairs in 
the system. In I, we considered a system having two 
pairs of particles, and we shall re-examine such a 
system with our modified treatment. For a system of 
two pairs, we replace Eq. (6) by 

Citj=FnDiDj, (12) 

where Fn is a variational parameter depending only on 
the order n of the configuration i, j . We set 

F o = l , 
(13) 

and F% will be the only variational parameter to be 
determined for a P= 2 system. 

In I, based on Eq. (6), we set 

C = -
^l,m^2,n Ci ,wC2,i 

Cl,: Cl, 
(14) 

for all second-order configurations rn, n. The approxi
mation of Eq. (12) leads us to 

W,TOG2,« W |TOC2>; 
Cm,n—Fl — — F2-

C\,2 Cl,2 
(15) 

for the second-order configurations. For our derivation, 
it is convenient to set 

= 1+0, (16) 

but ft is not necessarily small and is not treated as a 
small quantity. For the zeroth-order amplitude, we 
have1 

C l f 2(£i.2-X) = G £ Cltt+G £ C2tt, (17) 

and we combine this with the relation for the first-order 
amplitude Ci,m given in Eq. (2) to obtain 

Clim(Eifm — X) = C i , 2 ( ^ l , 2 _ X) 

-G\ £ C2 ,*-L £. ,«! . (18) 
L ty^2 t^m J 

By algebraic manipulation of Eqs. (15)-(18), we obtain 

and 

G\>rrT Cl,t C2,m C2,t"~\ C<L 

-\Em-E2+Gj:~+G- 0G £ \ = GZCht+G 
7 l f2J ^ i fcrfL Ci , : Cl,2 t^l,2,m C l Ci.: Ci,2 L 

E — = G E 
m^l,2 Ci,2 ™^1.2 Em — E2+G E ^ l (Ci,t/Ci,2) + G(C2,m/Ci,2)—pG E ^ l , 2 , m (C2>i/Ci f2) 

E ^ l (Ci,t/Cit2)-{- (C2,m/Ci,2) 

(19) 

(20) 

2 J. O. Rasmussen (private communication). 
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Equations (19) and (20) reduce to 1-15 and 1-16 for 
/3=0. We obtain similar equations for C2>m by inter
changing all subscripts 1 and 2 in Eqs. (19) and (20). 
Equations (19), (20) and their analogs for C2,m are 
solved iteratively for a given value of /3. The develop
ment from Eq. (17) to Eq. (20) for the case 0=0 is 
discussed in more detail in I. If there is degeneracy at 
the Fermi surface and the levels at the Fermi surface 
are only partially occupied, e.g., levels 2 and 3 are 
degenerate in the P=2 case, the equations are slightly 
different but the problem can still be treated without 
any difficulty. After the iteration process is completed, 
we have all of the first-order amplitudes and now we 
compute the factors Di to associate with each level. 
Normalizing 

we set 

and 
(^2,1 / <p*2,l 

Dm=\ 
(Ci,m/Ci,i-\-Ct,m/Ci,i) 

(l/D1+l/Di) . 

(21) 

(22) 

(23) 

for all levels m other than 1 or 2. In terms of the D's, 
the zeroth-order amplitude is DJ)2\ the first-order 
amplitudes are DiDm or D2Dm and the second-order 
amplitudes are (l+/3)DmDn. Our sole motivation for 
defining the amplitudes in this way is to make a com
putation of the eigenvalue feasible. Defining amplitudes 
in this way, it is possible to compute the eigenvalue X 
for a given value of @ as 

<*|H|¥> 
(24) 

with some minor modifications of the summation 
techniques of Mang and Dietrich.3 We repeat the 
calculation for several values of /3 in order to minimize 
X with respect to fi. This completes the calculation for 
a system of two pairs. 

For a general system containing more than two pairs, 
we have 

CiJ,k... = FnDiDjDk'-, (25) 

where the number of subscripts on dj,k.'. is equal to 
the number of pairs in the system. Equation (13) still 
defines Fo and Fi. The derivation of the P equations 
equivalent to Eq. (19) and Eq. (20) is carried through 
in much the same way as for the P = 2 system. The 
important thing to note is that F2 (or /?) is the only one 
of our variational parameters that enters the computa
tion of the first-order amplitudes, no matter how many 
pairs we may have in the system. The higher order 
parameters Fn(n>2) do enter the calculation, however, 
when we compute X using Eq. (24). The procedure that 
we have adopted is to make some guess of the param
eters Fn in terms of F2 when we minimize X with respect 
to F2. After minimizing X with respect to F2, we keep F2 

3 H. J. Mang and K. Dietrich (unpublished). 

FIG. 1. Comparison of exact and approximate third-order 
amplitudes. The curve connects the exact values of C^s.e/Ci.M 
computed in Ref. 2 and the open circles give the values of 
FS(D^D5D&/DID2DZ) computed with the techniques of this paper. 

and all of the D's fixed and vary F% until X is minimized 
with respect to Fz. After fixing F3, we continue by vary
ing Ft, etc. The first guess that we used for Fn in our 
calculations was 

Fn= (F , ) - 1 (26) 

for ri> 2; but in all cases that we used it we found that 
this guess consistently underestimated the magnitudes 
of the higher order variational parameters. At the end 
of the complete variational procedure, we had values 
of Fn larger than the estimates of Eq. (26). In place 
of Eq. (26), we have adopted a power law with a second 
difference of 1/2 in the exponent, i.e., 

F^(F2)^ 
F4= 0F2)

4-5 

F5=(F2)7-0, 

(27) 

etc. We find that Eq. (27) gives a fairly good first guess 
of the higher order variational parameters. Whether we 
use Eq. (26) or Eq. (27) when minimizing X with respect 
to F2, we find the values of Fn to be pretty much the 
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TABLE I. Comparison of eigenvalues. 

FIG. 2. The variational parameters /? and F3 — 1 
as a function of G. 

same when we complete the entire variational pro
cedure. This agreement leads us to believe that the 
variational parameters are meaningfully evaluated even 
though we do not vary all of the parameters simul
taneously. For n>P/2+l, small changes in Fn do not 
affect the eigenvalue, so these parameters are not given 
reliably by the calculation. 

IV. DISCUSSION OF RESULTS 

The treatment developed in this paper gives approxi
mate eigenvalues which are considerably better than 
those obtained in I. In I, Table I, we compared approxi
mate eigenvalues with the exact calculations of Kerman, 
Lawson, and Macfarlane.4 The calculations have been 
repeated for several cases and the errors quoted in I, 
Table I, are reduced by roughly a factor of 20. Using 
Eq. (24), rather than 1-19, reduces the errors by roughly 
a factor of two. The variation of the parameters Fn 

reduces the eigenvalue again by roughly the same 
amount as the use of Eq. (24) and reduces the errors 
by roughly an additional factor of 10. The modified 
treatment of this paper typically gives eigenvalues 
which are less than 10 keV above the exact values of 
Kerman, Lawson, and Macfarlane. As an example, we 
use the ground state of Ni66. For G= 0, the ground-state 

G 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 

^exact 

12.00 
11.3118 
10.3827 
9.1384 
7.5904 
5.8108 
3.871 

-4.7066 

-C'approx ^exact 

0 
0.0007 
0.0022 
0.0032 
0.0033 
0.0034 
0.003 
0.0019 

» See Ref. 2. 

energy is 4.68 MeV; an exact solution of the pairing 
interaction4 gives a ground-state energy of 1.699 MeV; 
the treatment of I gave a ground-state energy of 1.84 
MeV and the treatment of this paper gives a ground-
state energy of 1.706 MeV. 

In order to obtain some feeling of the magnitudes of 
the parameters introduced here and their variations, 
we examine numerically systems of equally spaced 
levels varying such things as G/Ae, P, and L. Ae is the 
single-particle energy-level spacing; P, the number of 
pairs and L is the number of levels. We first consider a 
system of six equally spaced levels, €i= 1 and Ae=l, 
P=3 as exact calculations have been done2 for that 
system. In Table I, we give the exact eigenvalue2 and 
the difference of the approximate and exact eigenvalue 
for several values of G. From Table I, we see that the 

IOOOI 

lOOr-

4 A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys. 
Rev. 124, 162 (1961). 

FIG. 3. The varia
tional parameters 
Fn. The curves con
nect the points com
puted for P = 8 and 
P = 16 using Eq. (27) 
as a starting point 
and the open circles 
give the values of F„ 
for P = 16 using Eq. 
(26) as the starting 
point. 
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FIG. 4. The en
ergy of the first-
excited state above 
the ground state as 
a function of the 
number of pairs. 
The upper curve 
connects the points 
computed with the 
use of the treat
ment of this paper 
and the lower curve 
connects the points 
o b t a i n e d us ing 
separability. 

approximate methods of this paper give the eigenvalues 
almost perfectly for these systems. In Fig. 1, we plot 
C4,5,6/Ci,2,3 and FZ(DADZD()/DID2D<$) for several values 
of G. The excellent agreement between the exact2 and 
approximate third-order amplitudes is strong evidence 
that our procedure leads to meaningful estimates of the 
higher order amplitudes. In Fig. 2, we plot /3 and F3— 1 
as a function of G. For G<0.2, X becomes insensitive to 
small variations in F%. If we regard the size of 0 as a 
measure of the validity of separability, we see that the 
arguments following Eq. (8") are quite valid; as G 
becomes large fi decreases in magnitude. Figure (2) also 
suggests iS<l(F2<2) and if we substitute F 2=2 in 
Eq. (27) and remember the definitions of F0 and Fh we 
may hypothesize that 

Fn<nl. (28) 

For the special case of the first P levels being degenerate 
at energy ei and all other single-particle levels de
generate at some higher energy e2, it is straightforward 
to show that Fn —> n! as G —> 0. In nuclear calculations 
G<l/2Ae, so, Fig. 2 also indicates that separability 
is a poor approximation for nuclear calculations. 

The next series of systems that we wish to discuss 
are those having a constant single-particle spacing 
(Ae=0.25 MeV) and a constant G (G= 0.125 MeV). 
We keep the ratio of P/L fixed at 0.5 and vary the 
number of pairs and levels. In Fig. 3, we plot Fn(n<5) 
for a system having eight pairs and Fn{n<9) for a 

system having sixteen pairs. For the P= 16 system, we 
display Fn computed using both Eq. (26) and Eq. (27) 
as starting points; for the P= 8 system, we display only 
the results obtained using Eq. (27) as a starting point 
(the differences are quite small for the P = 8 system). 
Although the parameters Fn rise more sharply in the 
P= 8 system, the effects on the eigenvalue are consider
ably larger in the P— 16 system. There are, of course, 
many more higher order configurations in the P=16 
system. We have calculated that the probability of the 
system being in a zeroth- or first-order configuration is 
roughly 0.8 for the P=8 system, but decreases to about 
0.4 for the P= 16 system. 

In Fig. 4, we examine the changes in an estimate of 
an observable property due to switching from separa
bility [using Eq. (24)] to the variational procedure of 
this paper. We examine the energy difference of the 
ground state and the excited state obtained by breaking 
one pair and blocking levels P and P + l . G is again 
0.125 MeV; Ae is 0.25 MeV; L= IP and P is varied. The 
disagreement between the two curves is mostly due to 
the fact that separability does not lead to a ground 
state which is sufficiently depressed in energy. In Fig. 
5, we plot jS for the ground and excited states con
sidered in Fig. 4. We see that ($ decreases as we in
crease the number of levels, again in accord with the 
implications of Eq. (8"). The large values of p for the 
excited states are to be generally expected when levels 
near the Fermi surface are blocked. 

V. CONCLUSIONS 

From the calculations discussed in the previous 
section, it becomes clear that separability leads to 
eigenfunctions and eigenvalues of rather limited 
reliability. We feel that calculations which make use of 
separability, such as quasiparticle calculations, have 
semiquantitative meaning at best and are not reliable 
for details of the pairing eigenfunction. We also feel 
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FIG. 5. The dependence of p on the number of pairs and levels. 
The lower curve pertains to the ground states and the upper curve 
pertains to the excited states. 
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that the methods developed in this paper lead to 
sufficiently accurate wave functions to make meaningful 
comparisons of theory and experiment possible. 
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I. INTRODUCTION 

IT has been emphasized by Faessler and Greiner1 that 
the anharmonicity of the nuclear surface vibrations 

implies in a certain sense a triaxiality of the nucleus. 
In this paper we show that this triaxiality manifests 
itself in the photonuclear giant resonance. The de
generacy of the upper peak, which in the static model2,3 

is due to the equality of the two minor axes, disappears. 
Thus, in a dynamic treatment, there appear three dipole 
peaks which, however, overlap due to the damping of 
the giant resonance. In the remainder of the Intro
duction we first give some background material, and 
then we describe the contents of this paper. 

The collective model of surface vibrations and ro
tations has been spectacularly successful in explaining 
the nuclear low-energy spectrum.4-6 Similarly, the 
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collective model predictions of the most important 
electric dipole transitions have been quite well con
firmed by the experiments within the region of appli
cability, and significantly, the agreement has improved 
with the increase of details of the theory and with the 
improvement of the experimental accuracy.7,8 In the 
present paper we intend to unify these two aspects of 
the collective model of the nucleus, namely the unified 
model and the dipole giant resonance model. In other 
words, we would like to develop the complete quantum-
mechanical collective model of the nucleus, treating all 
collective degrees of freedom as quantum-mechanical 
variables. However, we consider in this paper only 
even-even nuclei. We should emphasize that our treat
ment is phenomenological in that we do not attempt to 
derive the collective Hamiltonian from the nuclear 
many-body problem. Instead, we assume the model and 
determine its consequences in as consistent a way as 
possible. By comparing our results with experiment one 
can then decide the limits of the validity of the model. 

We just note for completeness that a considerable 
amount of work on a "fundamental" level has been 

7 E. G. Fuller and E. Hayward, in Nuclear Reactions, edited by 
P. M. Endt and P. B. Smith (North-Holland Publishing Company, 
Amsterdam, 1962), Vol. II. 

8 J. S. Levinger, Nuclear Photo-Disintegration (Oxford Uni
versity Press, London, 1960). 
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The rotation-vibration model and the hydrodynamic dipole-oscillation model are unified. A coupling 
between the dipole oscillations and the quadrupole vibrations is introduced in the adiabatic approximation. 
The dipole oscillations act as a "driving force" for the quadrupole vibrations and stabilize the intrinsic nu
cleus in a nonaxially symmetric equilibrium shape. The higher dipole resonance splits into two peaks sepa
rated by about 1.5-2 MeV. On top of the several giant resonances occur bands due to rotations and vibrations 
of the intrinsic nucleus. The dipole operator is established in terms of the collective coordinates and the 
7-absorption cross section is derived. For the most important 1~ levels the relative dipole excitation is esti
mated. I t is found that some of the dipole strength of the higher giant resonance states is shared with those 
states in which one surface vibration quantum is excited in addition to the giant resonance. 


