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state and the low-lying states. But since the most 
strongly interacting configurations are the ones which 
we have considered here, we feel that this may not make 
any big improvement in the results and will rather make 
this calculation more complicated. Probably the best 
way will be to use a different two-body potential. The 
nucleon-nucleon potential which we are using here has 
been fitted by the bound state properties of the very 
light nuclei, 2 ̂  A ^ 4. It may be that these parameters 
are not as good for the nuclear levels which we are con­
sidering here. A new set of parameters can be chosen by 
a least-square fit of the ground-state properties and low-
lying states of one of the nuclei in which the closed \p 
shell is either missing one or two nucleons or has one or 

1. INTRODUCTION 

THE physical ideas and mathematical techniques 
developed in the theory of superconductivity1 

have been applied to the problem of the pairing interac­
tion in nuclei to explain low-lying energy levels of heavy 
nuclei.2 According to this theory, a system of nucleons 
which have pairing correlations between them can 
approximately be described as an assembly of free 
quasiparticles which are connected to the original 
nucleons by means of the Bogoliubov-Valatin trans-

* Present address: Department of Physics, Battersea College 
of Technology, London, England. 

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957); N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 
34, 58 (1958) [English transl.: Soviet Phys.—JETP 7, 41 
(1958)]; J. G. Valatin, Nuovo Cimento 7, 843 (1958). This theory 
will be referred to as the BCS theory. 

2 A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936 
(1958); S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. 
Fys. Medd. 31, No. 11 (1959); L. S. Kisslinger and R. A. Sorenson, 
Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No. 9 
(1960). KS will hereafter mean the last paper or its authors. 

two additional nucleons outside. Once these parameters 
are fixed they can be used for other nuclei and by 
comparing the results with the known experimental 
values we can check the accuracy of this type of calcula­
tion. Since in the Hamiltonian of this calculation we 
have not included a two-body spin-orbit interaction, 
therefore, another possibility which must be considered 
is that the nuclear Hamiltonian should contain an ex­
plicit two-body spin-orbit interaction. 
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formation. It is characteristic of this method that the 
Bogoliubov-Valatin transformation is not commutable 
with the nucleon-number operator, and consequently 
the wave function which results does not correspond to 
a system having a definite number of nucleons. Energies 
and other quantities which are calculated with this wave 
function are then interpreted as averages of the corre­
sponding quantities over a set of neighboring nuclei. 

Once the Bogoliubov-Valatin transformation is 
exercised, it seems difficult, if not impossible, to remove 
the nucleon number fluctuation from the wave function 
without losing the essential merit of the theory, the 
energy gap. Lipkin3 has suggested, however, that 
it would be possible to eliminate this effect from 
energy eigenvalues. He has proposed to use the model 
Hamiltonian 

W = H-f(N) (1.1) 

where H is the original Hamiltonian, N is the nucleon 

3 H. J. Lipkin, Ann. Phys. (N. Y.) 9, 272 (1960). 
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is the original Hamiltonian and N is the nucleon-number operator. The introduction of the term X2̂ V2 
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number operator, and f(N) is a function of N which 
will be specified below. We consider interactions only 
between like nucleons but not between proton and 
neutron. Since any eigenstate of H is an eigenstate of 
N, it is also an eigenstate of 5C, although the converse 
is not true in general. Denote by 3>oM the lowest 
eigenstate of H with an eigenvalue Eo(n), 

H$o(n) = E0(n)<$>o(n), N<f>0(n) = n$0(n). (1.2) 

Then we have 

OC$o(n) = {E0(»)-/(»)}*o(»). (1.3) 

If f(N) is chosen in such a way that $o(n) with different 
n are all degenerate eigenstates of 3C, in other words, 
if {Eo(n) — f(n)} is independent of n, then the model 
ground state which will be a superposition of $ o W s 

belongs to the same eigenvalue of X as that of the true 
ground state which has a definite number of nucleons. 
As far as the energy of the ground state is concerned, 
this model Hamiltonian defines an eigenvalue problem 
which is equivalent to the original one, and the nucleon-
number fluctuation will not do any harm. 

The problem is then to find the function f(N). If 
f(N) is a slowly varying function of N, a power series 
expansion 

f(N) = \1N+\*N*+>--, (1.4) 
with 

Xw=Xm(0), Am(»)=(w!)-y«/(»)/d»* (1.5) 

will be useful. We suppress the argument n of \m(n) 
when n=0 or the n dependence is irrelevant. Perhaps 
f(N) will be accessible only in this form. For a system 
of very large number of particles, the linear approxima­
tion to f(N) as in the BCS theory will be sufficient. 
The number of nucleons outside of the closed shells is, 
however, not very large and f(N) may considerably 
deviate from its linear approximation. An extensive 
calculation was done by Kisslinger and Sorenson2 (KS) 
using the BCS theory and many detailed properties of 
low-lying levels of singly-closed-shell nuclei were 
explained. Kerman, Lawson, and Macfarlane4 (LKM) 
examined the accuracy of KS's result and found that 
the ground-state energies are usually not given to better 
than 500 keV, while excitation energies of the low-
lying states are correct within 200 keV. The inac­
curacy seems to be mainly due to the nucleon-number 
fluctuation. 

In this paper we study the pairing interaction in 
nuclei using a model Hamiltonian 

W=H-\iN-\2N\ (1.6) 

A prescription is given to determine the coefficients Xi 
and X2. Strictly, for excited states different values of Xi 
and X2 than those for the ground state will be required, 

4 A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys. 
Rev. 124, 162 (1961). KLM will hereafter mean this paper or its 
authors. 

but we use for simplicity the same Xi and X2 as deter­
mined with respect to the ground state. The method is 
first illustrated in Sec. 2 in the case where all levels are 
degenerate5 and then applied to realistic cases with 
nondegenerate levels in Sec. 3. Quadrupole and other 
interactions are not considered in this paper. Only 
spherical nuclei are treated but the extension to 
deformed nuclei will be straightforward. The result is 
compared with those of KS and KLM (Sec. 3B). It is 
observed that the effect of the nucleon-number fluctua­
tion is satisfactorily suppressed and an excellent 
accuracy is attained for the ground state. In addition 
to the ground state and excited states with nonzero 
seniority, our theory can describe excited states with 
seniority zero concerning which the BCS approximation 
says nothing (Sec. 3C). The spurious states can satisfac­
torily be removed. Odd nuclei are discussed in Sec. 3D. 

In the BCS approximation the residual pairing 
interaction between quasiparticles is ignored, but it is 
in fact not very small. Because of this residual interac­
tion the number of quasiparticles is not conserved and 
the quasiparticle vacuum state, which is regarded as 
the ground state, is prevented from being a good eigen­
state of the BCS Hamiltonian.6 An advantage of our 
model Hamiltonian is that the part of the residual 
interaction between quasiparticles which does not 
conserve the number of quasiparticles is strongly 
suppressed compared with that in the BCS Hamiltonian. 
Another important feature is that our equation which 
determines the wave function deviates only slightly 
from the corresponding equation of the BCS theory. 
Our wave function will therefore agree closely with 
that of BCS. On the basis of these facts, a new light is 
thrown on the problem of the projected and renormal-
ized BCS states4-7 (Sec. 4). 

2. DEGENERATE MODEL 

We consider the case where n nucleons are in the 
configuration (j)n. There is no essential difference 
between this and a more general case where there are 
several degenerate levels with different fs. The pairing 
Hamiltonian is 

H=-G £ ( - ) ' — (-y-™faja-ja-m,am>, (2.1) 
m,mr>0 

where G is the (positive) coupling constant and aj(am) 
is the creation (annihilation) operator for a nucleon 
specified by the magnetic quantum number m. 

The model Hamiltonian is 

5C=H-\1N-X2N
2
J (2.2) 

where iV=2Z aw
fam (the sum is over w^O) is the 

nucleon number operator, and Xi and X2 are unknown as 

5 A brief discussion of this case was given by Y. Nogami, Progr. 
Theoret. Phys. (Kyoto) 29, 938 (1963). 

6 We mean by the BCS Hamiltonian the one of the form 
H-XN. 
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yet. Let us rewrite 3C in terms of the quasiparticle 
operators which are defined by the Bogoliubov-Valatin 
transformation (with positive m), 

a-.m=ua-.m+(—)j~mvaJ, (2.3) 

whre u and v are real and satisfy u2+v2=l. Then 3C 
takes the form 

3C = 3Coo+5Cn+5C2o+5C22+5C3i+5C4o, (2.4) 

where the subscripts refer to the number of creation 
and annilihation operators, respectively. Explicit ex­
pressions of 30nm can be obtained as a special case of 
Eqs. (3.8)-(3.12). The terms 3C22, 3C3i, and 3C4o are the 
residual interactions between quasiparticles. The term 
3C2o is the so-called dangerous term, but 3C40 is also 
dangerous. 

We want to determine \i(n) and X2(w) by a succes­
sive approximation. The ith approximation to \i(n) 
and \2(n) will be denoted by \i(i)(n) and X2

(i)(w), 
respectively. 

The first step: Putting X2
(1)(w) = 0 and ignoring 

3C40, we calculate the ground-state energy by the usual 
BCS method. The term 3C2o can be eliminated by taking 
\ia)(n) = — |G(12— n+n&r1), where ft=i+|, and n is 
the nucleon number which is set equal to (N)YSiC, the 
expectation value of N in the ground state, i.e., the 
quasiparticle vacuum state. The first approximation 
to the ground-state energy Eo(1)(n) is given as Eoa)(n) 
= -lGn(2tt-n+nQr1). 

The second step: We put \2^{n) = W2/dn2)E^{n) 
= \G(\-Qrl). The condition 3C20=0 then gives Xi(2)(n) 
= - ^ G ^ + l - Q - ^ n + l - n Q r 1 ) } . Again 3C4o is ignored. 
The ground state energy is E^2) {n) = —\Gn{2Ql—n+2 
-12- 1 (2-^~ 1 )} . 

Repeating this procedure, we get at the ith step, 

X2
(i)(») = iG( l -0"* f l ) , (2.5) 

£0(O(w) = -lGn{2Q-n+2-Qri+l(2-ntt-1)}. (2.6) 

In the limit i —> 00, we obtain 

Xi(*) = -*G(0+1) , X2(n) = iG, (2.7) 

which are independent of n, and 

E0(n)=-lGn(2tt-n+2) (2.8) 

which is the exact ground-state energy.8 As is seen from 
Eq. (2.6) the error in the energy is reduced by the factor 
0 as the approximation is pushed one step further. 

The above calculation is simple because the wave 
function, or u and v, remain unchanged throughout the 

7 A. F. de Miranda and M. A. Preston, Nucl. Phys. 44, 529 
(1963). 

8 G. Racah, Phys. Rev. 76,1352 (1949); B. R. Mottleson, in The 
Many Body Problem, edited by C. DeWitt and P. Nozieres 
(Dunod Cie., Paris, 1959), p. 283, 

successive procedure. They are given correctly from the 
outset. One may wonder that this situation is peculiar 
to the degenerate model and the above procedure may 
not be useful in nondegenerate models. It will be shown, 
however, in the next section that the same situation 
arises in nondegenerate cases in a good approximation. 
With Xi and X2 given by Eq. (2.7), we have 

XQQ=Eo(n)-\1n-\2n
2 = 0, 

3C20=3C3i=3C4o=0, (2.9) 

and 

5C — 5Cii-{~0C22 

= - G I (-y-m(-y-m'aja-ja-.m'am> 
m, w '>0 

— Xi]Cam
+aw—X2(X)o:m

tQ:m)2. (2.10) 

Here the important point is that not only the dangerous 
term 3C2o but also all the quasiparticle nonconserving 
terms, 3C3i and 3C4o, have disappeared, so that the 
number of quasiparticles becomes a good quantum 
number of 5C. The BCS vacuum state is an exact 
eigenstate of 3C, whereas it is only an approximate 
eigenstate of the BCS Hamiltonian (with X2 = 0). 

It is interesting to note that the right-hand side of 
Eq. (2.10) is obtained from Eq. (2.2) by replacing a 
in it with a. This means that 3C is invariant with respect 
to the Bogoliubov-Valatin transformation. This can 
be checked as follows. The Bogoliubov-Valatin trans­
formation can be written as9 

a±m—Qxp(iS)a±m exp(-iS), (2.11) 
where 

m>0 

= -idL (-y-"'(ajcu-j-a-mam) (2.12) 

with cos0=^ and sin0=fl. S satisfies 

tr1[oc,5]= - (GG+2XI+4X 2 ) E (-y~m 

ra>0 

X (aja-j+a-mam)+ (G-4X2) 

X E (-y-m(aJa„jN+Na-.mam), (2.13) 

which vanishes because of Eq. (2.7). Therefore 30, (a) 
= exp(iS)30(a) exp(—iS) = 3C(a). What is true for 3C(a) 
is also true for 3C(a) with the interchange of the words 
nucleon and quasiparticle. The eigenvalues of 3C are 
degenerate with respect to the quasiparticle number as 
well as to the nucleon number. This simple symmetry 
between nucleon and quasiparticle does not hold in 
general cases with nondegenerate levels. 

Our next task is to obtain energies of excited states. 
9 K, Yoshida, Phys. Rev. I l l , 1255 (1958). 
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Denote by $s(n) the eigenstate of H with seniority 
s( = 2,4,- • -,n), and by ^s(n) the model state which 
contains s unpaired quasiparticles. Then we have 

3C$.(M) = {ES W - X I ^ - X 2 W 2 } $ S ( W ) , (2.14) 

3C¥.(») = ( -X i J -Aa* 2 )* . ^ ) . (2.15) 

The eigenvalue in Eq. (2.15) does not depend on the 
number of paired quasiparticles in the state ^rs(n). 
Since $s(n) and t s (w) are supposed to be degenerate 
eigenstates of 3C, we get 

Es(n) = \i(n-s)+X2(n
2-s2) 

= -lG(n-s)(2tt-n-s+2). (2.16) 

This gives the complete spectrum of the degenerate 
model.8 

3. NONDEGENERATE MODEL 

A. Basic Equations 

We consider the Hamiltonian 

^ = E I W ^ - G E E (-)?•—(-)>'—' 
3 m^O i>i' m,m'>0 

/\djm dj—m Q'j'—m'U'j'm' W*-*-/ 

where Ej are the single y-shell particle levels, G is the 
coupling constant, and ajm

f(ajm) is the creation (anni­
hilation) operator for a nucleon specified by j and m. 
Our model Hamiltonian is given by Eq. (2.2) where 
iV=EyEm5o^ymt^ym. Operators of quasiparticles are 
introduced by means of the Bogoliubov-Valatin trans­
formation (with positive m) 

where Uj and vj are real and satisfy Uj2+Vj2 = 1. 
Introduce the notations 

A = G E tijUjVj, (3.3) 

ey=Ey+(4X2-G>y2 , (3.4) 

X = \ i + 2 A 2 ( w + l ) , (3.5) 

9fy= Eayw^ym, aj=tormE (-)?-may-maym (3.6) 

where fiy=./+§, and w is the nucleon number which is 
set equal to the expectation value of N in the quasi-
vacuum state. 

c number, 

3Coo= 2 E Sl/ufEj-G-W-G E * W 

- X i w - X 2 ^ 2 - 4 X 2 E % ( ^ i ) 2 . (3.8) 
y 

Here the last term is equal to — X2((iV
2)vac—(N)vao

2), 
which is the correction for energy due to the nucleon-
number fluctuation. The other terms in 3C are 

5 C n = E { ( ^ 2 - ^ 2 ) ( 6 i - X ) + X 2 + 2 A ^ y } ^ , (3.9) 
i 

5C20 = E ^ 1 / 2 { 2 ^ y ( e y - X ) - A ( % 2 - ^ 2 ) } 
3 

xW+ad, (3.io) 
5C22 = — E { GUJVJUJ' Vj> + X 2 (UJ2—Vj2) (UJ> 2—Vj>2)} 

X^(9li,9lyO-E(fiA-)1/2{G(«/%'2+^V2) 

+8X2%^-%'^} Ct/cty, (3.11) 

^ 3 i = E { ^ i ^ ( % ' 2 - ^ 2 ) - 4 X 2 ( % 2 - ^ 2 ) ^ ^ } 

x ( a / 9 i i + 9 i i a i 0 , (3.12) 

^ 4 0 = E ( ^ A - ' ) 1 / 2 { 2 ^ ( % V 2 + ^ 2 % ' 2 ) — 4:\2UjVjUj>Vj,} 

x(a/a/+ayayO. (3.13) 
In Eq. (3.11), iV( ) stands for a normal product. The 
number of quasiparticles is conserved by 5Cn and 3C22, 
but not by X20, 3C3i and 3C4o. 

The coefficients % and Vj are chosen in such a way 
that the dangerous term 3C20 vanishes. We assume that 
the ground state is given by the quasiparticle vacuum 
state >I>vac and its energy by 3Coo+Xi?z+X2^

2. The con­
dition 3C2o=0 is equivalent to minimizing 3Coo. This 
procedure goes in parallel with the usual BCS theory.10 

The result is the equation 

2 (e—\)UJVJ~ A (UJ2- Vj2) = 0 (3.14) 

which is equivalent to the gap equation 

\G Ey Qy{ (ey-X)2+A2}-1/2= 1 (3.15) 

combined with Eq. (3.3). The Uj and Vj are given as 

«/ = | [ l + fe-A){ (e -X)2+A2}-"2], 
*/ = §D-fe-A){fe-A)2+A2}-1/2]. 

(3.16) 

« = W r a c = 2 i : ^ / - (3.7) 

In terms of the quasiparticle operators, 5C can be 
written in the form of Eq. (2.4). The first term is a 

These equations have exactly the same form as the 
corresponding ones in the usual BCS theory. The only 
difference is the appearance of the term 4X2ẑ

2 in ey 
(3.4). The role of the chemical potential is played by 
X (3.5) which is determined so that the condition (3.7) 

10 There is a subtle difference. In the BCS theory one minimizes 
3C0o taking its variation with respect to v3\ Later one chooses X so 
that Eq. (3.7) is satisfied. These two things cannot be done 
simultaneously because the Lagrangian multiplier X is supposed 
to be independent of the variational parameter v3; whereas X 
depends on Vj through Eq. (3.7). In our approximation, however, 
these two procedures can be done simultaneously because Xi and 
X2 can be regarded as constants. Bayman's method [Nucl. Phys. 
15, 33 (I960) J can be reformulated to give our procedure, 
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is satisfied. Using Eq. (3.14), 3Cn can be rewritten as 

3Ci1=EC{fe-X)2+A2}1 '2+X2]3ly. (3.17) 
i 

If the function f(N) were known here which would 
completely eliminate the effect of the nucleon-number 
fluctuation, it would be unnecessary to invoke the 
condition (3.7). The values of Ai(V), X2(w), • • • should 
then be independent of n. We saw an example in the 
preceeding section. There, exact \i(n) and X2(n) given 
by Eq. (2.7) are independent of n. The average number 
of nucleons in ^ v a c is irrelevant, although the condition 
(3.7) has been used in the successive steps which has 
led to the exact answer. Eq. (2.5) shows that the 
dependence of \i(n) and X2(w) on n decreases as the 
approximation is improved. 

KS have shown that their X, which corresponds to 
our X (3.5), increases almost linearly with increasing n. 
As we shall see in Sec. 3.B our \2(n) is not sensitive to 
the change of n, implying the approximate linear 
dependence of X on n. A merit of the second quantization 
formalism is that the same Hamiltonian can describe 
systems of arbitrary number of particles. The param­
eters in the Hamiltonian are usually supposed to be 
independent of the number of particles in the system. 
In this sense the BCS theory which involves the 
number-dependent parameter X is not quite satisfactory. 

In solving their gap equation KS put €j=Ej, ignoring 
the self-energy correction — Gvj2. According to KLM, 
however, although this self-energy correction has an 
appreciable effect on X and A, its influence on energies 
and wave functions is negligible. This is an important 
character of the gap equation. Our ey has another 
additional term 4X2

2^/. As will be seen in Sec. 3.B, X2 

seems to be larger but only a little larger than \G, thus 
(4X2—G)VJ2 is smaller than GVJ2. Presumably it will be 
permissible to put ej=Ej as it is so in KS's case.10a 

Once we put ej=Ej, then Xi and X2 appear in the 
combination X (3.5) in the gap equation and con­
sequently our Uj, Vj and X agree with those of KS. This 
will furnish us with an enormous simplicity in our 
successive approximation. 

B. Successive Approximation 

Before describing the successive procedure, it will be 
appropriate to discuss a special choice of X2(w). If 
4X2 = G, the {j—>j) elements of 3C31 and JC40 vanish. 
This is already a considerable improvement over the 
BCS approximation. Moreover, €j=Ej holds exactly. 
What KS solved is in fact the gap equation of this case. 

In the nondegenerate model, it is obviously impossible 
to completely eliminate 3C31+3C40 with any value of 
X2(n). A (j —» fz^j) element of 3C3i or 3C40 niay vanish 
for some X2(w)>i<j:, but then their (j—* j) elements 
will survive. For some X2(#)>JG, however, the effect 

10a Note added in proof. This has been confirmed by solving the 
gap equation without ignoring the self-energy correction. This will 
be reported in Nuclear Physics by Y, Nogami and I. J. Zucker. 

of 3C31+3C40 may be strongly suppressed in the average 
as compared with that in the BCS approximation which 
assumes X2(^) = 0. 

Now we want to determine \i(n) and X2(^) by a 
successive procedure as was illustrated in Sec. 2. Instead 
of starting with X2

(1) (n) = 0, we may assume first that 

X2a)(«) = i G , (3.18) 

and calculate 3Coo+Xi(1)w+X2
(1)w2, the ground-state 

energy, which we denote by E${l)(n). From Eq. (3.8) 
we see that 

Eo(1) (n) = E***(n)-G £ % ( ^ ) 2 

3 

= 2 £ UjvfEj-G-W-iGn. (3.19) 
2 

Here E 0
K S stands for the ground-state energy obtained 

by KS using the BCS approximation. Now one can 
easily show that 

dE^(n)/dn=\-\G. (3.20) 

Combining this with Eq. (3.5) one gets 

dE0^(0)/dn=\i^, id2E0V(fy/dn2=\2a) = lG. (3.21) 

With the exception of the degenerate model, Xm does 
not vanish for m> 2 in general, and hence X2(w) deviates 
from \G for n>0. I t is, therefore, a better approximation 
to expand f(n) around the nucleon number of the 
nucleus under consideration than to expand i t around 
» = 0 . The X2 in the formulas (3.8-43) and (3.17) 
should then be understood as X2(^). 

Next step is to assume 

X2(2) (n) = 1 (d*/dn2)Eoa) (») - {£o(1) (*+2) 

+£o ( 1 ) ( n - 2) - 2£0
(1) (») }/8. (3.22) 

Or we may use the more convenient formula 

\2W{n) = \d\/dn 

=i(E^r3){A2(EoyEr3)2 

3 3 

+ (LQi(Ei-\)Ert)*}-1, (3.23) 

which can be derived by using Eqs. (3.7) and (3.15). 
An advantage of this formula over Eq. (3.22) is that it 
is free from the error which may be caused by the error 
in the neighboring nuclei.11 We used Eq. (3.22) because 

11 KS gave only two or three figures to X and A, which may 
introduce an error of the order of 20 keV in the energy. Because 
the error in Eo(1)(n) may be amplified through Eq. (3.22), KS's 
values of X and A are not sufficiently accurate for the present 
purpose. We did not attempt to refine KS's result but adopted 
slightly different values of X, namely X = 0.60 and 1.08 for n = 6 
and 8, respectively, instead of X = 0.59 and 1.09. The value of A 
is insensitive to these changes. If we took X = 0.59 for n — 6, then 
(A0vac = 5.98<6, while for all other n, (N)vac deviates the other 
way. This fluctuation in the error causes an appreciable error in 
X2<

2> through Eq. (3.22). For « = 8, X = 1.09 gave (N)vao = S.0S 
which is less accurate than the one adopted here. In determining 
X2 by Eq. (3.22), we put (N)VSiC = n. To obtain EKLM12 we used the 
original values of X and A of KS, 
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TABLE I. The ground-state energy (MeV) of the even-even 
nickel isotopes Ni68-Ni66. -EKLM is the exact energy.8, EK$ is KS's 
result.b Eo(1) and JE0

(2) are of our first and second approximations, 
respectively. The coupling constant G was taken to be 0.331 MeV 
and the positions of the single-particle levels were chosen as 
E(p3/2)=0, E(fb/2) =0.78 MeV, E(pm) = 1.56 MeV, and E(gm) 
= 4.52 MeV. The fourth figure of the energy has little significance. 

A 

58 
60 
62 
64 
66 

n 

2 
4 
6 
8 

10 

£ K S 

-1.127 
-1.510 
-1.087 

0.223 
2.476 

E,W 

-1.382 
-1.904 
-1.540 
-0.207 

2.165 

£0
(2) 

-1.458 
-2.037 
-1.750 
-0.440 

-EKLM 

-1.494 
-2.111 
-1.751 
-0.508 

1.698 

* See Ref. 12. 
bSee Ref. 11. 

we did not notice Eq. (3.23) before the calculation. 
Since both formulas give almost the same values for 
X2

(2), we did not repeat the calculation using Eq. (3.23). 
We neglect the self-energy correction for E3- (3.4) 

and put €j=Ej, then as was noted before the gap 
equation and consequently % and Vj of the second step 
remain the same as those of the first step. This is an 
essential simplifying factor of our successive procedure. 
We ought to solve the gap equation once and only once. 
To proceed further is almost trivial. The ith approxima­
tion to the ground-state energy takes the form 

£o(0 W = £0
KSW-X2

(i) Z Oy(«w)2. (3.24) 
3 

This method has been applied to the even-even 
nickel isotopes, Ni58-Ni66, which have been treated 
approximately by KS and exactly by KLM. The same 
coupling constant G and single-particle energies Ej 
as those of KS and KLM have been used, namely 
G = 0.331 MeV, E(pm) = 0, E(/6/2) = 0.78 MeV, E(p1/2) 
= 1.56 MeV, and E(g9/2) = 4.52 MeV. In Table I the 
ground-state energies of KS and of our first and second 
approximations are listed and compared with KLM's 
exact answer EKLM.12 It is seen that an excellent 
accuracy is attained at the second step. There is an 

TABLE II. Quantities relevant to the calculation. The unit for 
X, A and \2(2) is MeV. X and A were taken from KS but X for 
n = 6 and 8 were slightly modified.* (Aw)2 = (i^2>vac-Wvac2. The 
coupling constant G and the single-particle energies are the same 
as those in Table I. 

n 

2 
4 
6 
8 

10 

X 

-0 .31 
0.14 
0.60 
1.08 
1.64 

A 

0.80 
1.04 
1.15 
1.14 
0.99 

Wvac 

2.01 
4.02 
6.02 
8.01 

10.03 

i(Any 

0.77 
1.19 
1.37 
1.30 
0.94 

4X2(
2) 

0.430 
0.443 
0.484 
0.520 

a See Ref. 11. 

12 KLM listed the difference between their exact energy and 
KS's approximate one, but not the exact energy itself. Hence, we 
first obtained KS's energy using X and A given by KS and then 
added the difference to it to get KLM's exact energy, which is 
listed in Table I. The fourth figures will be of little significance. 

irregularity in the error, namely Eo(2) is very close to 
EKLM &tn=6 whereas it is less so for n?!£6. We believe 
this comes from the insufficient accuracy of the X and 
A used. To proceed further requires little effort, but it 
will not make much sense unless a more accurate 
solution of the gap equation is available. The value of 
\2

(2)(n) and other relevant quantities are listed in 
Table II.11 

It has been assumed throughout that the ground 
state is given by the quasiparticle vacuum state ^v&c, 
which is not an exact eigenstate of 3C because JC^T^O. 
However, the fact that £0

(2) is very close to the exact 
energy EKLM implies that the term 3C4o has been 
strongly suppressed so that SI>vac is a good approximation 
to the ground state of 3C. As its form suggests, 3C3i 
will also be well suppressed at the same time. It should 
be noted that this ^rvac, which is the same as KS's is 
a rather poor approximation to the ground state of the 
BCS or KS Hamil Ionian which does not contain the 
term \2N

2. 

C. Excited States 

Having determined X and \2(n) by the preceeding 
procedure, we may ignore 3C3i and 3C40. The Hamiltonian 
to be considered now is 

3e' = 3Cii+3C22 (3J5) 

which conserves the number of quasiparticles. The 
vacuum state SÊ ac is the exact ground state of Xf, and 
excited states are constructed by operating a+'s on ̂ vac-

Let us introduce an operator 

&(jij2JM)=- L (jiJ2M1m2\JM)ahm^ahm^[ (3.26) 
mi,m2 

of which a special case is O^(jj00)= Cfc/. An excited 
state of seniority 2 is given by 

*2{jij*JM)=(tf{jijiJM)*n> (3.27) 

where 7 ^ 0 and the suffix 2 refers to the seniority. 
^2(jiJ2JM) with J5*0 is an eigenstate of X' because 
Q>&*{jij%JM) = 0 for 7^0 . Denote by AE2(j\j2) the 
excitation energy of ^f2(jij2JM) with J ^ 0 which are 
degenerate with respect to / and M. Then we get 

AE2(jj) = 2{ (ey-X)2+A2}!/2+2 (4X2-G) (u&)*, (3.28) 

and 

AE2OV2) = { (^ -X) 2 +AT / 2 + { (eh-\)
2+A2}112 

+2{2\2{u^v^-\-u^v^)-Guhvhuhvh}, (3.29) 

forj!^y2 . 
Excitation energies of low-lying excited states of 

Ni58-Ni64 have been estimated by Eqs. (3.28) and 
(3.29). The X2

(2)(^) listed in Table II has been used for 
X2. The result is shown in Fig. 1 together with those of 
KS and KLM. Our excitation energies are nearly the 
same as KS's, This means that the residual pairing 
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FIG. 1. Low-lying excited states in 
the even-even nickel isotopes. The 
notation (f,f), etc., denotes the single-
particle levels occupied by the un­
paired particles, while 0* labels the 
first seniority = zero state. The entries 
above KLM are exact positions 
obtained by Kerman et al.f while 
those above KS were given by Kiss-
linger and Sorenson.2 Our result is 
shown by arrows. The same coupling 
constant and single-particle energies 
as in obtaining Table I and X2

(2) given 
in Table II have been used. 
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interaction between quasiparticles which is neglected in 
the BCS theory is in fact not important for the excited 
states with nonzero seniority. It seems that the error 
is mainly due to the nucleon number fluctuation. 

The excited state with seniority zero is constructed 
by adding paired quasiparticles to the vacuum. This is 
a sort of collective excitation caused by the last term in 
3C22 (3.11). In the degenerate model discussed in Sec. 2 
eigenvalues of 3C are independent of the number of 
paired quasiparticles. Here it is not true as it is, but is 
related to the appearance of spurious states. 

Let us look for an operator Q which gives an excited 
state with seniority zero by 

*o'=C*o (3.30) 

where ^ 0 is the model ground state which is the lowest 
eigenstate of 5C. The Schrodinger equation is 

[3C,e>o=AE<£¥0, (3.31) 

where AEQ is the excitation energy. Now it is important 
to note that there are a set of spurious states which are 
degenerate with ^o, i.e., which satisfy Eq. (3.31) with 
AEo=0. As was pointed out by Anderson and by 
Baranger13 this is due to the fact that the nucleon 
number operator 

i 

+2Qj
1'2ujvj(a*+ a,-)} (3.32) 

is commutable with 5C, and hence the states Nm^o 
13 P. W. Anderson, Phys. Rev. 112, 1900 (1958); M. Baranger, 

ibid. 120, 957 (1960). See also J. Hogaasen-Feldman, Nucl. 
Phys. 28, 258 (1961). 

(w=0,l,2,« • •) are degenerate eigenstates of 3C. These 
spurious states (m^O) appear because of the uncertainty 
of the nucleon number and may be discarded. 

Our approximation is to ignore 3C3i and 3C4o and to 
replace ^o by SI>vac, and to look for an excited state 

which satisfies 

with e=EciCfc/, (3.33) 

[3C',Q]*vac=A£0e*v (3.34) 

It is interesting to see that, if we replace the coefficient 
of a/a,v in #2 2 (3.11) 

G (uj2Uf2-jrVj2Vjf2)+8\2UjVjUj'Vj> (3.35) 

by G, Eq. (3.34) can be reduced to the simple equation 

G E ^j{AE2(jj)-G^j-AEo}~1=l (3.36) 
3 

which may be solved graphically. This is not very 
misleading because the value of Eq. (3.35) is in fact 
fairly close to G. However, we solve Eq. (3.34) ac­
curately. This can be reduced to a standard problem 
for a computer, namely to solving the secular equation 

\hjj>-AEo8jj,\=0, (3.37) 

where 

X{G+2(4X2-G)(w^)2}, (3.38) 
and for J9^f 

%- = (a,'3C'«y't)vac= - ( O J % ) 1 / 2 { G ( M / % - 2 + ^ " 2 ) 
-{-SkiUjVjUj'Vj'}. (3.39) 
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TABLE III. The excitation energies (MeV) of states with 
seniority zero in the even-even nickel isotopes Ni58—Ni64. These 
are the roots of Eq. (3.37). The lowest state with AEsp is spurious. 

n 

2 
4 
6 
8 

AEsp 

0.041 
0.063 
0.113 
0.154 

AE' 

2.14 
2.16 
2.46 
2.45 

AE" 

3.88 
3.SS 
2.87 
2.94 

AE'" 

8.50 
7.67 
6.77 
5.77 

Eq. (3.34) combined with Eq. (3.33) has a spurious 
solution. Since Eq. (3.34) is an approximate equation, 
the excitation energy of the spurious state does not 
vanish exactly, but its deviation from zero may give a 
measure of the accuracy of our approximation. 

Four solutions of Eq. (3.37), of which the lowest one 
is spurious, are listed in Table I I I . The excitation 
energies are denoted by AEsp, AEo, AEQ" and AEQ". 
The spurious excitation energy AEsp is satisfactorily 
small. The excitation energies are compared with 
KLM's in Fig. 1. The agreement is rather good. The 
normalized coefficients cj of Eq. (3.33) are listed in 
Table IV. The normalized coefficients of the state 

X 0 / % ^ % ™ (3.40) 
3 

which will be closer to an exact spurious state ^ 0 / / 2 

XujVjd/tyo than our spurious solution is, are also shown 
in Table IV. 

Strictly, the smallness of the AEap obtained shows 
that the commutator [i\^,5C3i+^4o] has been suppres-

TABLE IV. The normalized amplitudes of the various compo­
nents in the spurious state and in the excited states with seniority 
zero in Ni58^Ni66. The column "Eq. (3.40)" shows the normalized 
amplitudes of the state (3.40). Other four are for four solutions 
of Eq. (3.34) with the excitation energies AEsp, AE', AE", and 
AE"', respectively. 

j Eq. (3.40) Sp. sol. 1st 2nd 3rd 

n = 2 
0.751 
0.584 
0.225 
0.212 

0.643 
0.677 
0.271 
0.236 

0.535 
0.731 
0.328 
0.269 

0.450 
0.734 
0.404 
0.309 

0.751 
0.595 
0.218 
0.187 

0.622 
0.709 
0.271 
0.194 

0.508 
0.776 
0.320 
0.193 

0.422 
0.782 
0.416 
0.194 

-0.650 
0.743 
0.139 
0.083 

-0.777 
0.612 
0.135 
0.066 

-0.852 
0.515 
0.081 
0.040 

-0.110 
-0.432 

0.892 
0.073 

-0.087 
-0.263 

0.958 
0.071 

-0.076 
-0.313 

0.944 
0.069 

-0.108 
-0.333 

0.933 
0.078 

-0.898 
0.428 
0.094 
0.025 

-0.082 
-0.158 
-0.123 

0.976 

-0.066 
-0.160 
-0.130 

0.976 

-0.057 
-0.148 
-0.141 

0.977 

-0.052 
-0.134 
-0.151 

0.978 

sed, but it does not necessarily imply that 3C31+3C40 
has been suppressed. However, the above comparison 
(Fig. 1) with KLM's exact answer will justify the neg­
lect of 5C3i and 3C40. 

D. Odd Nuclei 

The odd nucleus or the state of seniority one may be 
given by 

tfiO'Ha/*™.. (3.41) 

The interactions 3C3i and 3C40 being ignored, ^ i ( i ) is 
an eigenstate of 5C and the additional quasiparticle 
moves independently in the orbit (jm). The difference 
between the energy of the seniority-one state and that 
of the seniority-zero state is given by 

AE1(j) = {(e~\y+A*yi*+\2. (3.42) 

In our approximation the ground-state energies of 
the even and odd nuclei are given as 

EoW=5Coo+Xi^+X2^2, (even n) 

Ei(«) = 3C0o+XiH-X2»2+AJEi. (oddn) (3.43) 

Here 3Coo is very small and in particular its dependence 
on n is negligible. The even-odd mass difference is then 
given as 

Pn=M(n)-i{M(n+l)+M(n-l)} 

= E1(n)-UEQ(n+l)+EQ(n-l)} 

= {(ej-\y+A*Y12, (3.44) 

which agrees with KS's result. For excited states of odd 
nuclei, our result does not show any remarkable devia­
tion from KS. Recently Fano et al.u have attempted 
to account for the observed pairing energies or the 
empirical even-odd mass differences in several light 
spherical nuclei and deformed nuclei by using realistic 
interactions combined with the BCS plus Hartree-Fock 
model, but their resulting theoretical pairing energies 
are in general much smaller than the observed values. 
They then suggested that the most important reason 
for this discrepancy will be given by the effect of the 
residual interaction between the quasipartides. 

In our treatment the major part of the residual 
pairing interaction between quasiparticles has been 
taken into account, nevertheless we have got the same 
even-odd mass difference as KS. The discrepancy of 
Fano et at. may imply that the effect of the residual 
interaction between quasiparticles on the excitation 
energies is important if realistic interaction are taken 
instead of our simple pairing interaction. 

4. PROJECTED BCS STATES 

I t has been shown by KLM that projecting out and 
normalizing that part of the BCS state that corresponds 

14 G. Fano, J. Sawicki, and A. Tomasini, Nuovo Cimento 29, 
309 (1963). 
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to the correct number of nucleons yields a remarkably 
close approximation to the true eigenfunction.4-7 This 
may sound surprising in view of the fact that the BCS 
state does not give a very good approximation to the 
energy. Now we may understand this as follows. 

Suppose $o(w) defined by Eq. (1.2) are all degenerate 
ground eigenstates of 3C, and that the BCS vacuum 
state ^Vac agrees with >̂0 which is the lowest eigenstate 
of 5C. Then \I>vac is a superposition of $oWs, 

* v a c = £ < V $ o M - ( 4 . 1 ) 

The point is that no excited state enter here, and after 
projecting out obviously only $o(n) remains, which is 
the true ground state having desired nucleon number n. 
The preceeding analyses show that this is realized in 
a good approximation. Decisive factors in our argument 
are that (i) the gap equation and consequently the 
wave function are little influenced by the introduction 
of the term \JSl2, and that (ii) the other dangerous 
term 3C4o is strongly suppressed by suitably choosing 
X2. Because of (i), the BCS vacuum state is very close 
to our vacuum state. Actually in the course of the 
successive approximation to get X2, we have assumed 
that they are the same. Because of (ii) the vacuum state 
becomes a very good approximation to ^o. 

For the excited states with nonzero seniority our 
treatment does not give better results than KS, but it 
may be possible to readjust Xi and X2 so that accurate 
energies of excited states are obtained but at the 
sacrifice of the accuracy for the ground state. Then the 
above argument may be applied to the excited states. 
At the present, however, it still sounds intriguing that 

the projected and renormalized BCS excited states are 
very close to the true excited states. 

5. CONCLUSION 

We have investigated the pairing interaction in 
nuclei using the model Hamiltonian 3C = H—\iN—X^2, 
where the parameters Xi and X2 are chosen so that the 
effect of the nucleon number fluctuation on the ground-
state energy is eliminated. 

An excellent accuracy has been attained for the 
ground-state energy, and at the same time the quasi-
particle nonconserving interaction has been strongly 
suppressed. On the basis of this result an explanation 
has been given to the problem of the projected BCS 
states. For the excitation energies of the excited states 
with nonzero seniority our approximation has given 
more or less the same result as that of KS. The excited 
states with seniority zero have been obtained easily with 
fairly good accuracy. It is concluded that the introduc­
tion of the term X2iV

2 makes the theory more powerful 
and transparent without causing mathematical 
complication. 
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