
P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 2B 27 A P R I L 1 9 6 4 

Compound Nuclear Shell Effects in 14-MeV (n,«) Reactions* 
APARESH CHATTERJEE 

Saha Institute of Nuclear Physics, Calcutta, India 
(Received 9 December 1963) 

Smoothed curves drawn with suitable selection of 14-MeV reaction cross-section data reveal distinct 
shell effects. The cross section dips down at the proton shell and subshell closure positions throughout the 
mass region. Within a shell, the odd-even nucleon effects tend to disappear and the cross section is seen to 
be a very slowly decreasing function of the mass number. Across the shells, in addition to abrupt discon
tinuities, there is a gradual decrease of the cross sections from smaller to larger shells. These effects can be 
compared with various recent statements of the statistical level density. In the present work, the simple 
Bloch-Rosenzweig model of the shell-dependent form of the level density has been used and developed to 
study the effects. Results of computation reproduce the observed shapes faithfully up to Z<50 ; with 
plausible estimates about the combinatorial degeneracy in a major shell, good agreement with the assump
tion of the validity of the compound nuclear reaction at high excitation is obtained. 

I. INTRODUCTION 

MEASUREMENTS of the total (n,a) reaction 
cross sections with 14.8-MeV neutrons in four 

tellurium isotopes showed1 that in this region (residual 
nuclear charge ZR — 50) there is a sharp drop in the 
cross section <jn,a. At lower ZR values, the cross section 
is higher; as ZR is increased beyond 50, an>a gradually 
rises and reaches a maximum at ZRC^.65 and then 
slowly decreases to reach another minimum at ZRC^LSI. 
The residual nuclei near the proton magic numbers 50 
and 82 seemed to have very low cross sections compared 
to those of elements sufficiently far away from magic 
numbers. 

In view of this interesting result, it was thought 
worthwhile to make a thorough and systematic search 
and compilation of the available results of the (n,a)-
cross sections at Enc^ 14-MeV neutron energy. Such a 
compilation up to June 1963, reveals2 that the whole 
mass region (6<^4<238) is reasonably well covered 
with only a few regions where no measurements exist 
and that many isotopic and a few isomeric cross-section 
data are available. It is also found that while most of 
the data lack in precision, they are reliable because the 
cross section seems to be insensitive to small neutron 
energy variations around 14.5 MeV. By selecting the 
data of the most abundant target elements, it is possible 
to prove the existence of a few clearly discernible 
trends. 

It was noticed, for example, that there are no 
appreciable odd-even fluctuations in the cross section 
for nuclei away from magic numbers. But more interest
ing was the evidence of distinct proton shell and sub-
shell effects throughout the mass region. In this work, 
we shall try to understand these effects from the view
point of the statistical theory of nuclear reactions. 

* Paper contributed to the American Physical Society topical 
conference on Compound Nuclear States held in Gatlinberg, 
Tennessee, Oct. 10-12, 1963; the present text has been slightly 
modified. 

*N. K. Majumdar and A. Chatterjee, Nucl. Phys. 41, 192 
(1963); A. Chatterjee, in Proceedings of a Symposium on Nuclear 
Physics, Bombay, 1963, p. 166 (unpublished). 

2 A. Chatterjee, Nucleonics (to be published). 

II. OBSERVED SHELL EFFECTS 

If we select the most abundant isotopes of the target 
elements, and plot <rn,a against the corresponding 
ZR values, we find3 that the resulting smoothed average 
curve shows pronounced minima at all the magic proton 
numbers of the residual nuclei. In between the regions 
of a major proton-shell closure, the cross section reveals 
a flat peak somewhere in the middle. 

Within a major shell, it is noted that subminima due 
to proton subshell closure are also sometimes clearly 
visible. In Fig. 1, we have plotted the data of the most 
abundant target elements up to medium weight nuclei 
(ZR<50). We notice that the closure of U1/2 (He6), 
1̂ 5/2 (Si29), 2̂ 3/2,1/2 (Ga-Ge-As region) and l/5/2 (Rb87) 
proton subshells are distinctly marked by local drops 
in the cross-section values in addition to the main 
minima due to the closure of lpi/2, 1̂ 3/2, I/7/2, and lg9/2 
shells at ZR=8, 20, 28, and 50 (marked as curves a, b, 
c, and d). 

FIG. 1. Cross sections in mb for (n,a) reactions with 14-MeV 
neutrons against residual nuclear charge ZR between 0 and 50. 
Reactions with most abundant target nuclei only are shown 
(except those marked as Ca47,Ni65,Rh106, and Sn125residual nuclei). 
For several existing measurements of one element, the average 
value has been used with appropriate estimated errors. The major 
proton shell regions are marked as a, b, c, and d. 

3 A. Chatterjee, Nucl. Phys. 47, 511 (1963); Nucl. Phys. 49, 
686 (1963). 
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The information on heavy nuclei (ZR>50) is sum
marized in Fig. 2. The minima due to lgg/2 and l/zn/2 
proton shell closure are clearly seen. Subminima due to 
the closure of 2d3/2 and lg7/2 proton shells (marking, 
respectively, approximately the beginning and the end 
of the occurrence of rare-earth residual nuclei) are 
rather indistinctly seen as two valleys marked B and C. 

Integration over Ei by assuming T and R to be constant 
for all decay channels and for all neighbors, respectively, 
gives the cross section of the (a,v) reaction as 

&a,v— 0"c(#) 
gvHvpv(Uv—kvBv) 

iLi giHiPi(Ui—kiBi) 
(2) 

III. COMPOUND NUCLEAR REACTION CROSS 
SECTION AND LEVEL DENSITY 

We assume that the (a,v) reaction initiated by the 
particle a with channel energy Ea proceeds only through 
the formation of a compound nucleus. Since we are 
interested in its properties averaged over an energy 
interval much larger than level widths or spacings, the 
statistical-model description will be adequate. Applica
tion of the principle of detailed balance will lead to the 
Weisskopf-Ewing formula relating the cross section 
<ra,EV to the level density pv of the residual nucleus (after 
Ericson4 and Gove and Nakasima5) as 

O'a .B^^cW; 
gvVvVv\Ev)pv{E*) 

Hi gm ffEv? (E^iEOdEt 
(1) 

where <rc(a) is the cross section of formation of the 
compound nucleus c; gi and \n are the intrinsic spin 
states (=2^+1) and reduced mass for the open 
channels i including v (photon emission neglected) for 
the residual nucleus; <st{Ei) is the "inverse" cross 
section at excitation Ei and pi(E*) is the level density 
at excitation Ui—Ei for the exit channel i. We assume 
that the inverse cross section of a highly excited 
residual nucleus is the same as that in its ground state. 

The evaporation approximation of the compound 
nucleus c ensures purely classical trajectories of the 
particles i in absence of the Coulomb barrier Bi and for 
a constant nuclear temperature T for the system. 
Therefore 

and 
*?(Ei)c~ffi(Ei) = icK*(l--kiBi/Ei), (la) 

Here R is the nuclear radius, kiBi is the "effective" 
Coulomb barrier for a height Bi and Ui is the highest 
energy available to the residual nucleus after emission 
of i as determined by the reaction energy (Q value) of 
the (a,i) reaction 

Ui = Ea+Qa,i (1C) 

by ignoring pairing and other corrections to Ui. 
From (1) and (lb), the energy spectrum of the 

emitted particles is such that <ra,Ei is proportional to 

(Ei-Bi)exp(-Ei/T) for Ei>Bi. 

We further assume that the effect of the barrier of 
height Bi is negligible for particle emission in the com
pound nucleus with Ui>Bit This is permissible because 
the level density appears in the form of a ratio in (2) 
and the integration from 0 to <*> over Ei is essentially 
an integration involving an energy range a few times T 
near Bv (say Bv—T to By+2T). We therefore denote 
pi{Ui—Bi) as Pi(UiJi). The phase-space description 
in (1) now does not contain the implicit assumption of 
randomization over angular momenta. We shall make 
use of the removal of this restriction over the channel 
angular momentum ji. 

In case of (n,a) reactions leading to high excitation 
of the residual nucleus, the reaction cross section can 
be written as 

gaHaPa(U,j) 
Vn^o-cW , (2a) 

ILigiHiPi(U,j) 

where ac(n) is the neutron absorption cross section; the 
denominator contains contribution due to the competing 
processes like (n,2n), (n,p), etc. In what follows, we 
shall omit the subscript on the level density. Our 
information of the compound nuclear reaction will 
depend very much on our knowledge of p(UJ). 

The level density p(U,j) is usually expressed in the 

Pi(E*) = Pi(Ui-Ei) = pi(Ui)exp(-Ei/T). (lb) | I 
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4 T. Ericson, Advan. Phys. 9, 425 (1960). 
5 N. B. Gove and R. Nakasima, Nuovo Cimento 22, 158 (1961). 

FIG. 2. Cross sections in nib for 14-MeV (n,a) reactions against 
ZR between 50 and 100. Except for Te127 and Dy166, reactions with 
most abundant target nuclei only are shown. The average of 
several measurements for an element, when existing, are shown; 
errors shown are estimates (usually the largest quoted). The 
regions B and C mark approximately the beginning and end of the 
occurrence of the rare-earth nuclei. The major shell is marked A. 
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free-gas model of two Fermions in the form4 

h2j(j+1)1 h* 
P ( [ / , j )=-(2j+l)exp | 

L 2W 1 

/AX1'2 1 / - ^ V 
(3) 

Here A is the mass number, U is the excitation energy, 
e is the Fermi energy, and the single-particle level 
density g0 is denned in terms of equidistant individual 
Fermion-level spacings dn and dp as 

1 1 2 3A 

dn dp d 2e 
(4) 

The spin-dependent part in (3) is 

Pj(U,A)^Pj-Pj+1= (2j+l) exp[-A«i(i+l)/2r/] . (5) 

The rigid-body moment of inertia r in (3) and (5) is 
easily shown to be 

3\2/39 A512 ©2/39 

10 
-h2. (6) 

The thermodynamic temperature t and the nuclear 
temperature T are related to go and U by 

1 

T 
-^(i*gQ/6U)- 1/2 

u 
(7) 

For high excitations, t can be replaced by T. 
The ^/-dependent part of (1) can be expressed as 

p(U,A) = U~2 expTr^tZ/e)1/2 (8) 

neglecting the small U dependence of pj(U,A) in (5). 
It is easy to show that making use of (4) to (7), the 

total level density in (3) can be written in the form 

where 

and 

p(U,j) = Kl(2j+l)/A^PAU,A), 

K= (7r253/y3626'2), 

Pj(U,A) = P(U,A) 
Xexp[iwj(j+ l)A-^{A CZ/e)1'2]. 

(9) 

(10) 

(11) 

We now consider approximately the effect on p(U,j) 
of a shift in excitation energy from U to Uf. If the 
shifted excitation energy Uf is known to be related to U 
by a functional relationship of the form 

U'=U+f (f<U), (12) 

where / contains all the information causing such a 
shift, we have, to the first order, 

(U'y=Un(l+nf/U). (13) 

Therefore Pj(U',A) in (11) is obtained in the free-gas 
model as 

explX^/eC/)1 '2 /] 
p , ( C M ) = W , ^ ) — — - (14) 

1+2//U 

by restricting6 the U variation only to (8). 
IV. SHELL-DEPENDENT FORM OF THE 

LEVEL DENSITY 

We now assume that the shell effects in the level 
density p(U,j) are describable in terms of a suitable 
shift function in (12). For simplicity, we choose the 
Bloch-Rosenzweig model7. We ignore pairing and other 
correlation corrections and assume that the excitation 
energy U is not seriously altered by these corrections. 

In our notation, Rosenzweig's description of the shell 
effects is expressed in terms of the shift function / as 

f=^N2dn+^P2dp-idn(n^N)2-idp(p-iP)2. (15) 

We recall that dn and dp appear in (4). The nucleons 
have variable occupation numbers n and p in a neutron 
and a proton subshell with highest allowable occupa
tion numbers N and P, respectively. 

O^n^N, O^p^P. (16) 

The highest occupation numbers N and P are really 
the total nucleon spin degeneracies of the different 
shell-model j states. 

# = ( 2 ^ + 1 ) , P=(2jP+l). (17) 

In (15), n (or p) particles occupying a subshell N 
(or P) have identical rearrangement probabilities as 
those of N—n (or P—p) holes in that particular sub-
shell. The relationship (15) is an approximation, breaks 
down for N (or P) >12 (>lAu/2 subshells), and is 
suitable to use for high excitations (U>f). 

Using (9), (11), (14), and (15), we can now write 
down the shell-dependent form of the total level density 
p(USJj)=p(UfJ). After some algebra, on rearranging 
the terms, this is found to be 

p(Us,j)=p0-

where 

exp[ - (TT/36) (e/AU)ll2(N2+P2) (1+*)] 

l-[e(N2+P2)/9AU2(l+x) 

po=K(l/A2)2(jN+jP+l). Pj(U,A) 

a=12-
y+p2-nN-pp 

N2+P2 

(18) 

(19) 

(20) 

6 The exact P^U^A) =\explbrj(j+l)A-*i*(Ae/U)y*f], where 
X is the right-hand side of (14); this exponential coming through 
Pj(U,A) in (5) has been neglected in (14). 

7 C. Bloch, Phys. Rev. 93, 1094 (1954); N. Rosenzweig, Phys. 
Rev. 105, 950 (1957); 108, 817 (1957); N. Rosenzweig, L. M. 
Bollinger, L. L. Lee, and J. P. Schiffer, Proceedings of the Second 
International Conference on the Peaceful Uses of Atomic Energy, 
Geneva, 1958 (United Nations, Geneva, 1958), paper 693, p. 11. 
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FIG. 3. The computed curves (full lines) against ZR(9^ZR^.55) 
obtained from the analysis of the present work. The regions of the 
three major proton shells a, b, c use different normalizing factors 
Po (see text). The ordinate is P(USJ)/PO; for features a2' and a2", 
see text. The dotted curves b, c, and d are the same as in Fig. 1; 
it has been superimposed here for comparison. 

= 0 for a completely full or empty shell (N,P) (21) 

= - 3 for a half-filled shell (N/2, P/2). (22) 

Equation (18) is in a suitable form for numerical 
computation. For the actual residual nuclei of Figs. 1 
and 2, we can now compute the values of p(U8,j) by 
noting the appropriate values of n, N, p and P . For 
observing the gross trends, it is adequate to treat p0 as 
a normalizing factor whose value remains constant 
within a shell ("fixed A" assumption) but varies from 
shell to shell. 

A more general and appropriate description for p0 

would be to replace (19) by 

P o = i r ( l / 4 a ) P y ( E M ) ( E N+Z P) (19a) 

when the subshell states are mixed in a major shell, 
implying a higher combinatorial degeneracy than 
expressed in (5). 

We note that for 14-MeV neutrons, the Q value is 
Q W | 0 ~ + 5 MeV for medium weight and heavy nuclei. 
The excitation energy U is therefore £^20 MeV, and it 
is permissible to set £/ / e—1- This assumption, some
what unjustified for the light nuclei, has been used 
throughout this work. 

V. FIT WITH THE OBSERVED DATA 

The results of numerical computation of (18) have 
been shown in Fig. 3 as p(Us,j)/po against ZR between 
9 and 50 (\6<A <130). The observed cross sections of 
Fig. 1 are also shown for comparison. Values of po from 
shell to shell determines the real values of p(U8}j). For 
convenience the computed curves in different regions 
have been marked as a', b ' , c', etc. The lightest nuclei 
below N16 have not been considered. 

In the I/7/2 proton shell (curve b'), a very good fit is 
observed with the experimental curve c with the peak 

fitted with a normalizing factor of 12. The shape, the 
sharp rise and fall in the regions of shell closure, and 
the flat peak in the midshell region are faithfully 
reproduced in curve b ' . Only a negligible mixing with 
the various neutron subshell states occur here. There
fore the total j degeneracy (~16) times 1/A2 brings 
this close to the actually used normalizing factor. 

In the preceding major shell (curve a'), the fit in the 
region of ld^/2 proton shell is again very good with a 
normalizing factor of 40. The ^5/2 shell closure at Si29 is 
clearly seen. In the heavier region, the Si/2> ^3/2 subshells 
are not well separated. Therefore, two curves a2' and a2" 
have been shown corresponding to the separated and 
unseparated degeneracies, respectively. Both these 
curves predict a second subpeak near K42 residual 
nucleus, which is actually observed; the smoothed 
experimental curve b2 passes in between a2' and a2". 
The total major shell degeneracy times l/^42=40 (we 
have arbitrarily set 1/A2 around ^4=15 as unity 
throughout). 

In the third region marked c', subshell closure occurs 
near the Ga-Ge-As nuclei and at Sr87. A normalizing 
factor of 16 has been used for this region. Disregarding 
the only existing data8 on Cu66, the fit is not bad, giving 
the subdip at Ga72 and the peak at Br82. The very large 
drop coinciding with the closure of the lgg/2 proton 
shell is also clearly seen. 

VI. DISCUSSION 

The depths of the main double shell-closure dips are 
accurately described by Eq. (18) with x=0, pro
vided the occupation number n for neutrons is also 
zero. This will provide the "background" on which the 
contribution due to shell, pairing, and other effects will 
be superimposed. However, such "ideal" nuclei do not 
exist in nature. In the present work, computations were 
made on the actual residual nuclei. 

The parity mixing effects have been ignored. I t has 
been shown4 that a 20% mixing of parity of one kind 
with 80% of the other changes the equal probability of 
both parities by only ± 4 % . 

I t is generally assumed4 that the shell effect predicted 
by the Rosenzweig form is small and is insufficient to 
use except near the closure of the lgg/2 shells. The 
present analysis, involving about 200 experimental 
data, uses this simple form and shows that it is adequate 
to describe compound nuclear-shell effects even at high 
excitations (U/ec^l). 

The above analysis of the shell effects can be extended 
to and combined with the Lang and LeCouteur form9 

of the level density. This pairing model was not con
sidered for 14-MeV (n,a) reactions since the average 
pairing corrections would be ^ 5 % in U. For lower 
excitations, the shell-dependent pairing model should 
be used, e.g., for isotopic-reaction cross sections. 

8 E. B. Paul and R. L. Clarke, Can J. Phys. 31, 267 (1963). 
» J. M. Lang and K. J. Le Couteur, Nucl. Phys. 14, 21 (1959). 


