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Using the projection techniques recently developed in the formal theory of reactions, it is shown that 
a bound on the exact reactance matrix K is provided by the close-coupling reactance-matrix approximation 
Kp; that is, K-Kp is, in a sense that can be made precise, a positive definite operator. This is of more than 
formal interest since the numerical solution of the finite number of coupled equations which arise when we 
allow the target system to be excited to only a restricted number of virtual states, and the determination of 
Kp is feasible for a variety of three-body problems which includes, of course, three-body model problems. 
Furthermore, Kp improves monotonically as one includes more and more virtual states. The recognition 
of this monotonicity property is useful in self-consistency analyses during the course of numerical calcula
tions, and provides a more precise meaning for the numerical results obtained. Choosing a particular repre
sentation, the bound on K generates bounds on the appropriately defined eigenphase shifts. The question 
of the absolute definition of phase shifts and of eigenphase shifts is discussed in some detail and it is shown 
that the presently used definition has serious deficiencies. 

1. INTRODUCTION 

IN the minimum-principle formulation of scattering 
theory,1-4 an expression containing an arbitrary 

number of variational parameters is shown to represent 
an upper bound on the scattering parameter under 
consideration. The situation is then analogous to that 
which obtains in the Rayleigh-Ritz evaluation of the 
ground-state energy of a system. The introduction of 
more and more parameters enables one systematically 
to approach the true result monotonically and, at least 
in principle, to come arbitrarily close to it. 

An altered minimum-principle formulation was re
cently given4 which, for single-channel scattering at 
nonzero energies, represents a significant improvement 
upon the earlier version. The improvement is a con
sequence of the utilization of recent developments in the 
formal theory of scattering due largely to Feshbach,5'6 

which, as opposed to the Wigner-Eisenbud formalism, 
does not require any of the potentials to be truncated. 
The newer version of the minimum-principle formula
tion has been extended to the multichannel scattering 
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and will be reported on shortly. I t has also been shown, 
for single-channel scattering, that various close-coupling 
approximations in common use provide a bound on the 
true phase shift.7,8 (This bound is a number; it contains 
no variational parameters. In our earlier papers, when 
we were primarily concerned with the minimum prin
ciple, we unfortunately did not distinguish between the 
words minimum principle and bound.) The present 
paper will be largely concerned with the extension of 
the phase-shifts bound of Ref. 7 to multichannel scatter
ings, that is, to the determination of a bound on the 
reactance matrix K which characterizes multichannel 
scattering. The multichannel scattering process is, of 
course, determined by the specification of the eigen
phase shifts and of the mixing parameters. 

Physical effects are, of course, never affected by 
changes of multiples of 2w in phase shifts or in eigen
phase shifts, and they are often not affected by changes 
of odd multiples of T. I t should therefore be clear that 
one cannot argue on physical grounds that the phase 
shifts or eigenphase shifts must be continuous in any 
parameter, but rather one must allow for jumps of 2ir 
or perhaps w, and we will find instances in which a 
perfectly sensible definition of the shifts leads to shifts 
which are discontinuous by 2-K or n in, for example, 
the energy. I t is nevertheless often useful to impose 
some restrictions on the multiples of ir; we will cite 
some examples shortly. One possibility is to fix the 
multiples of w absolutely, in which case one has an 
absolute definition of the phase shifts and eigenphase 
shifts. Another possibility is to impose the condition 
that the shifts be continuous in some parameter, such 
as the energy, in which case the difference in the shifts 
for two different values of the parameter is fixed. 

We will cite just three examples where useful results 
can be obtained by imposing certain requirements on 
the phase shifts, that is, where something more than 
just the phase shifts modulo 2T is of physical interest 

7 Y. Hahn, T. O'Malley, and L. Spruch, Phys. Rev. 128, 932 
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even though no measurable quantity is affected. The 
three examples are all concerned with the simple case 
of scattering by a static central local potential. We are 
then of course dealing only with phase shifts, and not 
with eigenphase shifts. 

(i) We demand that rj(E), the phase shift for angular 
momentum L at the energy E, be continuous in E. 
That is, we reject the physically allowable possibility 
of arbitrarily adding different multiples of w to rj at 
different energies. (We have not, however, given an 
absolute definition of rj.) We then have Levinson's 
theorem, that 

7](E=0)-7](E= *>) = NT , 

where N is the number of bound states of angular mo
mentum L. Note that N also represents the number of 
nodes other than that at the origin of the zero-energy 
scattering wave for angular momentum L. 

(ii) The question of the convergence of the Born ex
pansion is connected with the absolute value of rj. (In 
this and the following example, it is possible to replace 
the requirement of an absolute definition of r\ by a 
continuity requirement.) 

(iii) Take any of the usual absolute definitions of rj. 
(These will be quoted shortly.) Then if V(r)<0 for all 
r, and if rj is less than |7r, the Lippmann-Schwinger 
Green's function variational principle for kcotrj pro
vides an upper bound on the exact value of kcotrj for 
an arbitrary trial function.9 A corresponding statement 
can be made if V(r)>0 for all r. As one small corollary 
of this result, it follows10 if V(r)<0 for all r, if ??+<^7r, 
and if rjJ> — Jx, where rj+ and ^_ are the phase shifts 
associated with V(r) and — F(r) , respectively, that 

cot??+— cob7_< 2 cot?? B+ , 

where T}B+ is the Born-approximation phase shift associ
ated with V(r). 

Let us now briefly consider the scattering of a particle 
by a compound system. Even for single-channel (elastic) 
scattering, it is not at all clear how best to define an 
absolute phase shift. We will in fact show that the 
definition that appears in the literature,2,11 while allow
able, is inconsistent with and for most purposes less 
useful than a number of other possible definitions. I t 
will therefore be necessary to reexamine the results 
obtained in the paper on the bounds on single-channel 
phase shifts.7 We will at the same time, and this will in 
fact be our main purpose, extend the energy domain of 
applicability of the results of that paper to include 
energies above resonance but below the threshold for 
excitation, and generalize the results to include multi
channel scattering. The emphasis throughout will be on 
numerical results related to close-coupling approxima
tion calculations, that is, to calculations in which one 
solves exactly the approximate problem in which all 

9 T . Kato, Phys. Rev. 80, 475 (1950). 
10 L. Spruch, Phys. Rev. 109, 2149 (1958). 
11 A. Temkin, J. Math. Phys. 2, 336 (1961). 

open channels and a prescribed set of (virtually excited) 
closed channels are taken into account.12 The results to 
be obtained will be useful during the course of numerical 
calculations by providing self-consistent checks on the 
numerical results. Our results will also allow for a more 
precise interpretation of the meaning of the numerical 
results obtained in such approximate calculations. 

We will have a few comments to make on the absolute 
definition of phase shifts and of eigenphase shifts, but 
primarily we will be concerned with variations in the 
shifts with respect to some parameters. The formalism 
as presented is not applicable to systems in which there 
are open channels with three or more particles or sys
tems at arbitrarily large separation, and there is then 
an upper limit to the energy that we can consider. We 
will not therefore be concerned with extensions of 
Levinson's theorem to scattering by a compound 
system. 

2. DEFINITION OF PHASE SHIFT FOR 
SINGLE-CHANNEL SCATTERING 

We will consider, in order, scattering by a central 
static local potential, and scattering by a central static 
nonlocal potential. [The latter is a particular but simple 
example of elastic (single-channel) scattering by a 
compound system.] The discussion will be somewhat 
detailed since there has been a good deal of confusion 
in the literature. 

The phase shift for scattering by a central static local 
potential is a function of the energy of the incident 
particle, which for simplicity we take to be spinless and 
uncharged, and of the strength of the potential. Two 
absolute definitions of the phase shift are thereby 
suggested. 

(1) Define rj to be zero for infinite incident energy 
and to be a continuous function of the energy. 

(2) Replace the true potential V(r) by XV (r), in
troduce the associated phase shift 77(A) with 77 = 77(1), 
set rj (0) = 0, and take 77 (X) to be continuous in X. 

I t will almost always also be possible to define 77 by 
considering variations in the effective range of the 
potential and, having gone over to the radial equation, 
by considering variations in the angular momentum, 
but we will not consider these two possibilities. 

There are two other absolute definitions of 77 which 
are in some ways more appealing than those just 
recorded. In an actual numerical calculation one after 
all keeps the energy, the angular momentum, and the 
potential fixed, and determines the scattering wave 
function, and it would therefore be nice to have an 
absolute definition of 77 which required only a knowledge 
of the scattering wave function for the energy, angular 
momentum, and potential of interest. This suggests the 
following two definitions: 

(3) Replace V(r) by V(r)2(r-R), where 2 ( e ) - 1 for 
12 A review of the theory and of some of the applications of the 

close-coupling approximation is contained in P. G. Burke and 
K. Smith, Rev. Mod. Phys. 34, 458 (1962). 
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e > 0 and S(e) = 0 for e<0 , introduce the associated 
phase shift rj(R) with 7? = 7?(0), set 77 (<*>) = 0, and take 
rj (R) to be continuous in R. I t should be remarked that 
on integrating out numerically from the origin, the 
logarithmic derivative of the wave function at r=R is 
unaffected by the potential still to be felt, so that rj (R) 
has a perfectly well-defined meaning. One integrates 
out numerically from the origin once and only once, 
and the scattering wave function thereby obtained de
termines rj (R) for all R.lz 

(4) Let r (m) and p ( m ) be the positions of the mth. node 
of the true scattering wave function and of the free-
wave scattering function, krjL(kr), respectively, and 
define ?? by 

77=lim7r(p ( m )-r ( m )) . 

This definition will be referred to as the nodal defini
tion of rj. 

Now we will not prove it, but the four different abso
lute definitions of t] that have been given are entirely 
equivalent. Thus, for E= <*>, for X= 0, or for R= oo, the 
exact scattering wave function is the free scattering 
wave function, for which the nodal definition gives TJ = 0. 
[Some care must be exercised in studying the limit 
E—» oo if V(r) has a 1/r singularity at the origin.] The 
various definitions therefore all agree with the nodal 
definition for the given value of the parameter, that is, 
for E= co, \ = 0, or R= <*>. We now state without proof, 
though it is the crucial point in the argument, that the 
nodal definition gives rise to an rj which, for the static 
local central potential under consideration, is continuous 
in E, in X, and in R. I t follows that the various defini
tions agree with the nodal definition for the parameter of 
interest, namely the given energy, X= 1, or i£=0. Since 
the various definitions all agree with a given definition, 
the nodal definition, they are clearly entirely equivalent 
for the local static central potential under consideration. 

We now consider scattering by a nonlocal potential, 
and show that as contrasted with the local potential 
case the four definitions of rj given above are not neces
sarily all equivalent. This distinction between local and 
nonlocal interactions has its origin in the fact that the 
wave function and its derivative can vanish at the same 
point for a nonlocal, but not for a local interaction. 

The lack of the equivalence of the four definitions of 
rj for nonlocal potentials can arise in a wide variety of 
cases, and is in no sense restricted to pathologic cases 
such as that for which there is a bound state embedded 
in the continuum. Consider, for example, the case of a 
nonlocal interaction which is separable, the kernel being 
X/(r)/(r ' ) . For simplicity we take L=0. This is a solv
able problem with the wave function to be called v(\9r) 
given by 

/»00 

vQi,r) = sinkr-XC I dr'G(r/)f(r'), 
Jo 

13 F. Calogero, Nuovo Cimento 27, 261 (1963). 

where 

C= [ dr'f(r') sink// 

[l+\J drj dr'G(r/)f(r)f(r')~], 

and where 

G(r/)= (1/k) sin&r< cos&r> 

is the free-particle Green's function. By construction we 
have ZJ(X,0) = 0, and we also have 

/.OO 

vf (X,0) = k-\C / olr'j(r') coskr'. 
Jo 

I t is then clear that for any energy E there will be one 
value of X, to be called \(E), for which v(\,r) and its 
derivative vanish at the origin. The number of nodes 
of v(\yr) is not then a continuous function of X, but 
jumps by 1 as one passes through \=\(E). I t follows 
that one can define rj by (2) or by (4), but that the two 
definitions need not be consistent. 

One can also find nonlocal potentials for which v(\,r) 
and its derivative both vanish at some point other than 
the origin; the number of nodes of v(\,r) as a function 
of X will then jump by 2 at the appropriate value of X. 
More significantly, by considering energy-dependent 
separable nonlocal potentials with kernels 

[ \ / ( £ - £ „ ) ] / « / ( / ) , 

it is simple to show that continuity of rj in X can be in
compatible with continuity of T\ in E, that is, definitions 
(1) and (2) can be incompatible.14 

We are now in a position to analyze the definition of 
7] that has been given2'11 for the scattering of a particle 
by a compound system under circumstances such that 
elastic scattering is the only allowable process. To 
begin with, we must recall that none of the four defini
tions of 7] given above can be extended in any obvious 
way, if indeed in any way at all, to the general elastic 
scattering process. Thus, if we attempt to use definition 
(1) we cannot go to E~ <*> without passing out of the 
domain of single-channel scattering. If we are dealing 
with identical particles, we cannot always use definition 
(2). For the scattering of electrons by hydrogen atoms, 
for example, any change of the strength of the incident 
electron-proton interaction requires that we change the 
bound electron-proton interaction and hence the ground 
state of the target; if we change only the strength of the 
electron-electron interaction, the incident electron will 
start to see a net charge on the target, with ensuing 
complications. Definition (3) suffers from the same 
defect for if we cut off the interaction of the incident 
particle with the target we may have to cut off the in
teractions of the particles within the target. This defini-

14 R. G. Newton, Ann. Phys. (N. Y.) 4, 29 (1958), 
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FIG. 1. The projected wave function Uo(q) 
for the energies Eh E2, and Ez. 

tion also loses the advantage that it had over definitions 
(1) and (2) for scattering by a local potential, for now 
one would have to redo the calculation for each value 
of R since the wave function for r<R is now affected in 
more than its normalization by the potential that 
exists beyond r=R. Definition (4) may now be am
biguous, for we would have to fix the target coordinates 
if we are to reduce the scattering wave function to a 
function of one coordinate, and the number of nodes 
of the one-coordinate function could depend upon pre
cisely how the target coordinates are fixed. The defini
tion that was given2,11 involved the introduction of an 
equivalent one-body problem. Letting q represent the 
distance between the incident particle and the center 
of mass of the target, the function uo(q) defined as the 
radial part of the projection of the full scattering func
tion onto the ground-state wave function of the target 
was introduced. Since the one-body function uo(q) 
could easily be seen to satisfy the usual boundary 
conditions of a scattering function, Uo(q) was then a 
function that would arise in some potential scattering 
problem. An application of the nodal definition to Uo(q) 
might then seem to lead to a natural definition of the 
phase shift. It is important to observe, however, that 
the equivalent one-body problem of which uo(q) is the 
solution is that for which the potential is the optical-
model potential, which is an energy-dependent nonlocal 
interaction. [See Eqs. (22) and (23).] While the above 
definition is permissible, the four definitions of rj are 
not then necessarily equivalent, and the assumption 
that they are can lead, if used in the interpolation of nu
merical calculations, to physically incorrect predictions. 

Assume, for example, that we are studying elastic 
scattering in an energy region in which the phase shift 
is a rapidly varying function of the energy. The nu
merical calculations may well then be particularly 
difficult to perform especially if one is using an iterative 
procedure, and it would be very convenient to be able 
to minimize the number of values of the energy at 
which the calculation is to be performed, and to deter
mine 7] at intermediate energies by continuity argu
ments. Now let us assume that the (presumably 
accurate) projected wave function, Uo(q), determined 
at the energies Eh E2, and Ez, where E\<E2<Ez, has 
the form given in Fig. 1, the number of nodes of u0(q) 

having decreased by one at some energy between E2 

and Ez. If rj is taken to be continuous in E, the appro
priate curve in Fig. 2 is abcdef. If, on the contrary, one 
defines the phase shift in terms of the number of nodes 
of Uo(q), the appropriate curve is the discontinuous 
curve abcdd'eT. The two curves lead to identical 
physical predictions. If, however, one were to apply the 
nodal definition to uQ(q) to fix rj at b, c, and e' at the 
energies Eh E2, and Ez, respectively, and to assume that 
rj is continuous in the energy, one would arrive at a 
curve of the form abce'f, following something like the 
dashed curve between c and e', and the predicted cross 
section would be physically incorrect.15 

The realization that the various definitions of rj are 
not necessarily compatible also requires some reinter-
pretation of the conclusions reached in the paper on 
bounds on the phase shift for single-channel scattering.7 

We will discuss this point below in the broader context 
of multichannel scattering processes. 

3. CLOSE-COUPLING APPROXIMATIONS AND 
BOUNDS ON THE K MATRIX 

A standard approximation in the study of the scatter
ing of a particle by a compound system when there are 
N open channels is the close-coupling approximation. 
One does a partial-wave decomposition and then ap
proximates the true solution ^ by a function of the form 

¥p=2tyrm(r)«m
p(q), (1) 

appropriately antisymmetrized, where ^fm(r) repre
sents the wave function for the mth state of the target 
system, with associated energy ETm, and where the 
M(>N) terms in the (restricted) sum include all 
possible final states of the target, that is, all N open 

i?(E) 

E, E9 E . - * E 

FIG. 2. The phase shift as a function of the energy. The assump
tion that t] is determined by the number of nodes in uo(q) and 
that rj is continuous in the energy leads to the incorrect curve 
abce'f, with something approximating the dashed curve between 
c and e'. 

15 The situation just described is precisely that which occurred 
in a recent approximate numerical analysis of the scattering of 
electrons of zero angular momentum at energies in the neighbor
hood of a resonance, just below the threshold for excitation. At 
our suggestion an additional calculation was performed at an 
energy between E2 and Ez and the numerical value found was 
indeed different from that which had originally been predicted. 
See A. Temkin and R. Pohle, Phys. Rev. Letters 10, 22 (1963); 
and 10, 268 (1963). 
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channels, and M—N closed channels. If we demand that 

LTm(t)(H-E)*p(r,q)dx=0 (2) 

for each of the values of m included in the sum, we are 
led to the set of M coupled equations 

P(H-E)P*p=0, (3) 

where P is the projection operator onto the set of M 
states. The (numerical) solution of these equations, 
that is, the determination of the um

p(q), leads to an 
approximation Kp for the N by N reactance matrix K. 
I t will be the purpose of this section to prove that Kp 

provides a bound on K. 
The proof will be a generalization to multichannel 

scattering of that given in our earlier paper on single-
channel scattering.7 The proof will, however, represent 
an improvement as well as a generalization for we will 
remove the restriction there imposed to energies up to 
the first resonance; the present proof will be valid up to 
the threshold energy for the opening up of a new 
channel. On the other hand, in connection with our dis
cussion of the previous section on the absolute definition 
of the phase shift, the results there obtained will be 
seen to be not quite as strong as we had believed 
them to be, 

Though the results can be obtained under quite 
general conditions, we will for simplicity assume that 
the various spins are zero and that there are no net 
Coulombic fields. We will also assume that all of the 
open channels are two-system channels; this latter as
sumption is required for the present approach and is 
not just a matter of simplicity. We introduce the pro
jection operator Q which projects onto all of the states 
not included in the primed sum. We then have Q— 1—P 
and P<2=0. We are interested in numerical results, and 
if the formalism to be developed is to have any content 
it must be possible to give an explicit and usable form 
for P. This can be done for a variety of interesting cases. 

The approach is the same as that for single-channel 
scattering.7 With the indices i and j referring to open 
channels only, we write 

( # - £ ) * = 0 (4) 
as 

P(H-E)PV= -PHQV, (5) 

Q(H-E)Q*=-QHP*. (6) 

P^f is now an M-component wave function which 
must be regular at the origin and which must have the 
asymptotic form in the ith (open) channel: 

P ^ -> D^Ti (r) (aiS#+ biecie)/qi, (7) 

where 

sie= sm(kiqi— \Liir-\-6), (8) 

Cie=cos(kiqi—^LiT+6), (9) 

(k?tiy2^)+ETi= (&h*/2vo)+ETo. (10) 

in is the reduced mass and Li is the relative orbital 
angular momentum quantum number for channel i. 
Di contains the factor (m/ki)112, spherical harmonics in 
qi/qi, and the Clebsch-Gordon coefficients necessary 
to give the prescribed value of the total angular mo
mentum. 6 is a parameter to be chosen for convenience,16 

subject to the requirement that O<0<27r. The a* are 
arbitrary constants and the b& are to be determined. 
The vectors constructed from the numbers di and bi$ 
will be denoted by a and b#, respectively. The di and the 
bie are connected by the relationship 

^0 = Xy Keijdj, (11) 
3 

where as indicated by the index the sum is over open 
channels. The connection between the matrix K# and the 
usual reactance matrix K is given by 

-s in0l+cos0K 

where 1 is the unit matrix. Q$? is regular at the origin 
and since it contains only closed channels it decays 
more rapidly than the inverse of the relative coordinate 
for each of its (closed) channels. The formal solution of 
Eq. (5) is 

p * = pyr+GpPHQV, (13) 
where 

GP^[_P{E-B)P']~1 (14) 

is the MXM matrix which connects the M channels 
under consideration. P^p is that solution of Eq. (3) 
which is regular at the origin and which behaves in the 
ith channel as 

P^p - > D^Ti(aiSi6+bie
pCie)/qi, g» - > <*>. (15) 

The M coupled equations which, with the prescribed 
boundary conditions, determine P^fp must be solved 
exactly. Gp is clearly not uniquely determined by Eq. 
(14). To make it unique we note that it follows from 
Eqs. (7) and (13) that in the ith (open) channel 

GpPHQ^-^DiypTi{bie-biep)cie/qiy ft-> «> . (16) 

Gp is then made unique by demanding that GpPHQ%r 
not contain any Si$ components. 

The formal solution of Eq. (6) is given by 

Q*=GQQHP*, (17) 
where 

G^ZQ(E-H)QJ-K (18) 

If there are any solutions of the homogeneous equations 
associated with Eq. (6), with energies Sn

Q, the effective 
one-body potential for the incident particle is infinite 
at E= 8n

Q, since GQ is infinite at that energy. [See 
Eq. (19).] We will see that no difficulties are occasioned 

16 It is possible to choose a different value of 0 for each channel, 
as was done in the second paper in Ref. 2, but we will not do so. 
It then seemed to be a useful device since it allowed one to choose 
different truncation radii for the different channels, but we are 
no longer truncating the potentials. 

file:///Liir-/-6
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by this occurrence, a fact which is perhaps made more 
reasonable by the remark that it is a nonlocal potential 
which is passing through infinity. I t should also be 
noted that the Sn

Q are not the resonance energies, but 
differ from them by the usual energy shift. We also 
remark that as opposed to Gp, the expression for GQ, 
Eq. (18), is a purely formal one; Q projects onto an 
infinite-dimensional space, and one cannot obtain an 
expression for GQ with which one can actually perform 
numerical calculations. Substitution of Eq. (17) into 
the right-hand side of Eq. (5) leads to a homogeneous 
equation for P^r, 

P[H+HQGQQH-E]P*= 0 , (19) 

while substitution of Eq. (13) into the right-hand side 
of Eq. (6) leads to an inhomogeneous equation for Qty, 

QtH+HPGpPH-E2Q*= -QHP*P. (20) 

Each of these equations is formally equivalent to the 
original Schrodinger equation, since a knowledge of 
P^r determines Q%? and vice versa by Eqs. (17) and 
(13), respectively. As for single-channel scattering, Eq. 
(19) will be used for the determination of a bound on Ke 
while Eq. (20) will be used as the starting point for the 
development of a minimum principle for Ke in a paper 
to be submitted shortly. 

Now H is given by 

H(r,q) = HT(r)+T(q)+V(r,q), (21) 

where HT is the target Hamiltonian with r all of the 
target coordinates, T(q) is the kinetic energy operator 
of the incident particle, and F(r,q) is the interaction of 
the incident particle with the target. (For simplicity, 
the arguments will be given for distinguishable par
ticles, but it can be extended to indistinguishable 
particles.) Eq. (19) can be written as 

C r ( q ) l + - U ( q ) - ( £ 1 - E r ) > ( q ) = 0 , (22) 

where 1 is the MXM unit matrix, Ey is the diagonal 
matrix with diagonal elements Erm and u(q) is the 
column vector with elements um(q). The (optical-model) 
MXM matrix potential D(q) is given by 

<U(q) = jdt^T{x) 

xlv+VQ QVkTHr), (23) 
Q(E-HT-T)-QVQ 

where ifcrOr) is a column vector with elements ^Tm, and 
where we have used the fact that Q commutes with 
HT{t) and with 3n(q). On introducing the MXM matrix 
*0(q,X) (see Appendix), 

•0(q,X)= / W ( r ) 

X\V+XVQ 
Q(E-HT-T)-\QVQ 

QV ']**•'('), (24) 

we have 

Since 
d 

V(q) = 

1 

= e0(q,l). 

1 
B-

1 

(25) 

(26) 
dXA-XB A-XB A-XB 

if the operators A and B are independent of X, 

d 
-V(A,\)=XQ&-ET-T)QX* 

d] 
where 

dX 

1 
2 C = -

Q(E-HT-T-XV)Q 
QVHJT. 

(27) 

(28) 

Since Q projects onto closed channels only, it follows 
that Q(E-HT-T)Q and therefore that dV(q,\)/dX are 
negative definite operators. 

Consider now the equation 

[ r ( q ) l + - 0 ( q , A ) - C E l - E r ) ] u ( q , X ) = 0 , (29) 

and the corresponding equation with X replaced by 
X+dX; multiply the equation for u(q,X) by ut(q, X+dX) 
and the equation for u(q, X+dX) by ut(q,X), subtract 
and integrate. With K#(X), the reactance matrix asso
ciated with V(q,X), one then arrives at 

—(a.K,(A)a)= - Mqut(q,X)r-eO(q,X)]u(q,X), 
dX J LdX J 

(30) 

and the inequality then follows from the negative 
definiteness of dV(q,X)/dX. Since a is normalized but 
otherwise arbitrary, dKe(X)/dX is a positive definite 
operator, that is, that 

dKe(X)/dX>0. (31) 

More precisely, the derivative is positive definite where 
it exists, for since the denominator in Eq. (28) for & can 
be equal to zero, x and therefore dV (q,X)/dX and hence 
dKe(X)/dX and finally K$(X) itself can be infinite. 

To understand the consequence of Eq. (31), let 
us first consider the special case of single-channel 
scattering. Since K^(X) for single-channel scattering is 
tan[7?(X)—0], Eq. (31) then reduces to 

d dv(X) 
- t a n [ 7 K X ) - 0 ) ] = sec*[>(X)-0)] > 0 . (32) 
dX dX 

Now Kfl(X) is a uniquely denned quantity, but as 
always there is an arbitrariness in the value of rj. We 
will for the moment only partially remove this arbi
trariness. With the multiples of ir in the definition of 
?7(X=0) unspecified, we impose the requirement that 
7j(X) be continuous in X as X varies from zero to one, 
even if K*(A) passes through infinity. The introduction 
of a phase shift is equivalent to keeping track of which 
branch of K#(X) we are on, that is, how many times 
Kfl(X) has passed through infinity. Our final conclusion 
is that 

i)(X=0) = r)p<ri. (33) 
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I t is simple to obtain a slight generalization of 
Eq. (31). P is defined as before, but Q will be redefined. 
Consider a projection operator P * which projects onto 
all of the states projected onto by P and onto some 
additional states, with a corresponding wave function 
SI>P* and matrix Kp*. We again have P and Q as pro
jection operators, but now P+Q is not defined as 
spanning the entire space but just P * space—P* can 
of course be the unit operator and span all of space—so 
that P2=P, Q2=Q, P + < 2 = P * , P*2=P*, and PQ=0. 
Our starting point is now 

P*(H-E)P**P*= 0 , (34) 

and all of the equations derived above in this section 
are valid under the replacements ^ — » ^ p * , ??-^??p*, 
Ke —> Kep*, and with Q no longer equal to 1 — P but 
reinterpreted as Q=P*—P. Eq. (31) is now to be 
understood as meaning that Kflp(X), where it exists, is a 
monotonically increasing function of X. Now as X varies 
between 0 and 1, we pass from P space to P-\-Q=P* 
space. For single-channel scattering, we then have 

VP<VP*. (35) 

Since Eq. (S3) becomes, on the replacement of P by P*, 
yp*<y, we have 

??p<??p*<7?. (36) 

Consider for example the (elastic) scattering of elec
trons by hydrogen atoms, with the Pauli principle taken 
into account, for energies up to | X 13.6 eV, the threshold 
for excitation. We then have 

fl(ls)<ii(ls+2s)<ri(ls+2s+2p)<---<ri, (37) 

where the argument indicates the target states included. 
These inequalities are also valid for the (elastic) scatter
ing of positrons by hydrogenic atoms for energies up 
to the pickup threshold, 6.8 eV. 

In spite of the existence of the inequalities given by 
(36), and contrary to the claim in our previous paper, 
one can never assert with complete certainty from a 
study of a sequence of numerical calculations in which 
more and more target states are added, that any 
numerical result is in error. [We incorrectly presumed in 
that paper that one could define -q in terms of the nodes 
in uo(q) and that one could demand that i\ be continuous 
in X.] The numerical calculations after all only give 
the phase shifts modulo x, and inequalities of the form 
(36) can always be satisfied by adjustment of the 
multiples of w. The realization that such inequalities 
exist can nevertheless be very helpful. If, for example, 
one believes that the space spanned by P is large 
enough to include all of the very significant hydrogenic 
states, one would be rather sure that the inclusion of an 
additional state would have little influence on the 
phase shift and in particular would not change the 
phase shift by anything comparable with T. Since, by 
assumption, the states projected onto by P * include all 

of the states projected onto by P , one would therefore 
predict firstly that one can then adjust i?p* by ad
justing the multiples of w so that 7)p* will be quite close 
to r]p, and secondly that r\p* so chosen will be slightly 
greater than rjp. In the analysis7 of the numerical calcu
lations for the elastic scattering of electrons by hydrogen 
atoms, there was a total of over 30 predictions of rela
tive magnitude of phase shifts calculated in different 
approximations; all but one of these was satisfied, and 
even in the light of our realization of incompatibility of 
the different definitions of 97, one would still believe 
that that one case is in error. In fact, the precise way in 
which the various authors had arrived at their choices 
of the moduli of w was never discussed in Ref. 7, nor in 
many practical cases need it really be. The calculation 
that was in "error" was one for which the estimate of 
the phase shift (modulo x) decreased as one included an 
additional state, the decrease being by one unit in the 
third significant figure. I t is of course possible that 
there was an increase of rj by just under ir, but if only 
on a priori grounds it seems very much more likely 
that the calculations in question were only reliable to a 
few units in three significant figures. I t is in fact clear 
from the above discussion that one should rather 
generally be able to estimate the number of significant 
figures of the numerical results from the knowledge that 
the estimate of 77 must increase as states are added. (It 
need scarcely be observed, incidentally, that the authors 
involved were not really concerned with the third 
significant figure.) 

In our previous formulation we were unable to predict 
inequalities among the phase shifts in various approxi
mations for e+H scattering for phase shifts containing 
contributions from other than s states. We noted above, 
however, that the inequalities (37), which relate phase 
shifts which contain such contributions, are valid for 
energies below the pickup threshold. The possibility of 
proving these additional inequalities is a consequence 
of the new method of introducing X. The previous 
approach required one to prove that Q(E—H)Q<0, 
for Q the projection operator onto all excited states; 
this we were able to do only for s states. With the 
present method of introducing X we need only prove 
that Q(E—HT—T)Q<0, and this is clearly the case. 
The additional inequalities that we are now able to 
prove therefore include r](ls+2s+2p)>r](ls-\r2s) and 
rj(ls+2s+2p)>r](ls) for e+H scattering at energies 
below the pickup threshold. The phase shifts necessary 
to check the above two inequalities are listed in Table 3 
of Burke and Smith,12 for six different energies, and 
6X2 inequality predictions are all verified; since the 
differences between the various phase shifts are rela
tively small, there is very little possibility that there 
have been any jumps of 7r, SO that the verification is 
meaningful. I t is perhaps interesting that at one of 
the energies above the pickup threshold, an energy 
domain for which the above discussion is not applicable, 
the phase-shift inequalities are not satisfied. (Above the 



B404 H A H N , O ' M A L L E Y , A N D S P R U C H 

pickup threshold there are of course eigenphase shifts, 
and not just one phase shift, but the calculation was 
performed as if one still had a single-channel scattering 
process.) 

We return now to the multichannel problem. One 
obtains a variety of bounds on combinations of elements 
of K# by making different choices for the ai in Eq. (30). 
We consider two types of choices, those which isolate a 
diagonal element and those which lead to an eigenmode. 

Setting 0 = 0 for simplicity, the first choice is simply 
a3 = 8ij, in which case Eq. (30) becomes 

dKu(\)/dk>0. (38) 

Ku(\) may possibly go through infinity one or more 
times, that is, Ku(\) may have a number of branches 
similar, for example, to the tan function, and the 
monotonicity theorem will be directly useful to us only 
if we keep track of which branch we are on. One way of 
doing so, though by no means the only way, is simply 
to define p*(A) by 

tsjipi(\)=Kii(\) 9 (39) 

with multiples of w for p*(0) arbitrarily chosen, and with 
the understanding that p»(X) is continuous in X as 
Ku(X) goes through oo. We conclude finally that 

PiP<Pip*<Pi, (40) 

where, as always, P * contains P. 
The second choice is the choice a(X) = a0 )(X), where 

a0)(X) is the yth (normalized) eigenvector of K(X), 
with eigenvalue tam?(?)(X), where T?(?)(X) is the jth. 
eigenphase shift. Equation (30) then reduces to 

(d/dX)tani7«>(X)>0. (41) 

If we demand that the eigenphase shift rj(jl(\) be con
tinuous in X, it follows that17 

^DPK^P+^U) j l<j<N. (42) 

4. DISCUSSION 

We have seen that the assumption that rj is con
tinuous in X as we go continuously from P space to 
P-\-Q space leads to some interesting consequences, but 
it leaves much to be desired. As already noted, a calcu
lation of the wave function for the given energy and 
angular momentum and for the actual strength of the 
potential then determines only r] modulo x. Further
more, since we do not then have an absolute definition 
of 7), there is no place for a theorem such as that proved 

17 Equation (31) represents a monotonicity theorem in K (̂X) 
and is therefore a generalization of the eigenphase shift mono
tonicity theorem of R. Bartram and L. Spruch, J. Math. Phys. 3, 
287 (1962). They showed that if Va(q)-Vb(q) is a negative 
definite operator for all q, where Va and Vb are matrix potentials, 
with ordered eigenphase shifts rj^a and 7]^'\, respectively, then 
y^a^y^h. The significant feature of the present approach is of 
course that one can prove that dv(q,\)/d\ is negative definite. 

in Refs. 2 and 11; it was there shown, using the nodal 
definition, that as a direct consequence of the Pauli 
principle rj for the (spatially antisymmetric) triplet zero-
energy scattering of electrons by hydrogen atoms has 
to be at least w. One can of course introduce an absolute 
definition of rjp in terms of the nodes of uop, and then 
take rj (X) to be continuous in X as one expands the space 
to P+Q space. One would then retain the result that 
rj >7r, since the Pauli principle generates at least one 
node in u0

p so that rjp>7r, and we have T?>^ P . (On the 
other hand, it is disturbing that one cannot prove the 
comparable result for n-d scattering.3) Furthermore, 
such a definition might well be able to provide a proof 
of the surmise of various authors and of Swan18 in 
particular concerning the absolute phase shift for the 
scattering of electrons by atoms with closed shells. 
The definition is not a particularly natural one how
ever, and one strongly suspects that there must be 
some more useful and natural definition of phase shifts 
and, of course, of eigenphase shifts. 

APPENDIX 

In the present paper we proved that dKe(X)/d\, 
where it exists, is positive definite for all energies up to 
the threshold of excitation. (At this threshold the di
mensionality of K0 suddenly increases.) On the other 
hand, a direct generalization to multichannel scattering 
of the formulation of our previous paper,7 denoted here 
by the use of primes, only allows the statement that 
dK$'(\)d\, where it exists, is positive definite up to the 
energy SiQ. The difference in the two results originates 
in the difference in the way in which X is introduced. 
Our previous formulation corresponds to the choice of an 
optical-model potential Vf(q,\) which differs from 
V (q,X) in that there is no X in the denominator in Eq. 
(24). I t follows that 

= diM*)\ VQ- -QV V W . (Al) 
dJk J L Q(E-H)Q J 

As opposed to the right hand side of Eq. (24), the right-
hand side of Eq. (Al) is an operator with an obvious 
definiteness (it is negative definite) only for E<SiQ, 
since for E> 8iQ, QHQ has eigenvalues above and 
below &iQ. The reactance matrices Ke(\) and Ke(\) 
are in general different from one another, but they agree 
at the physically significant values of X, X=0 and X= 1, 
and the new (unprimed) formulation is clearly more 
useful since the energy domain of validity is greater. 

I t is worth noting that D(q,X) a s given by Eq. (24) 
can obviously be rewritten in a form in which X and Q 
appear only in the combination \Q. As X varies between 
0 and 1, we can then think of having turned on Q space 
continuously. 

18 P. Swan, Proc. Roy. Soc. (London) A228, 10 (1955). 


