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The method developed by Boguliubov for an imperfect Bose-Einstein gas is generalized in order to permit 
examination of a mixture of an arbitrary number of different species of bosons. The generalized method in
volves diagonalization of a matrix which has a Hermitian-like property by a unitary-like transformation 
in a space with an indefinite metric. When a neutral mixture of two types of charge bosons is examined, it is 
found that two types of elementary excitations exist; one having the energy-momentum dispersion relation 
associated with plasma oscillations at low momenta and another having the energy-momentum relationship 
characteristic of a free particle with a modified mass at very low and high momenta. Further investigation 
shows that the plasma-type excitation consists of an oscillation in charge density while the free-particle-like 
excitation consists of an oscillation in mass density. 

INTRODUCTION 

IN 1947, Boguliubov1 developed a method which, 
when applied to an imperfect Bose-Einstein gas, 

yielded the first semiquantitative explanation of the 
phenomenon of superfluidity. The essence of the method 
was the bilinearization of the Hamiltonian by a rea
sonable approximation and the introduction of quasi-
particles through a canonical transformation which 
diagonalized the Hamiltonian. These essential elements 
of the method have since been applied with some 
success to a wide range of problems.2-12 
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The Boguliubov method was developed in order to 
investigate the properties of a system of a single species 
of bosons interacting through a two-particle potential 
which is a function only of the interparticle distance. 
In order to permit the investigation of perhaps an even 
wider ranger of problems we consider here a generali
zation of the method to deal with systems consisting 
of several different species of bosons interacting through 
more general two-body potentials. 

In the Boguliubov method the system is considered 
in second quantization with the one-particle states 
labeled by a quantum number k (such as the individual 
particle momenta) which is additively conserved in a 
two-body interaction. Basic to the approximation is 
the assumption that there exists one such one-particle 
state, say k = 0, which is populated on the average by 
a large number of particles approximately equal to the 
total number of particles in the system. The average 
occupation number N° of this state is then treated as a 
c number, and the creation and destruction operators 
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for particles in this state are also treated as c numbers, 
equal to (N0)112. The second assumption made in the 
treatment is the neglect of all interaction terms which 
are not of at least second order in the creation and 
destruction operators for particles in the k = 0 state. 
The Hamiltonian is thereby reduced to a sum of ex
pressions each of which is a quadratic form in the 
creation and destruction operators only in the states k 
and —k for fixed k (with no interaction between dif
ferent k values). Boguliubov then shows that it is 
possible to diagonalize the reduced Hamiltonian by a 
simple canonical transformation. 

GENERALIZATION OF THE BOGULIUBOV METHOD 

Let us use the symbol k to represent collectively 
those quantum numbers characterizing one-particle 
states which are additively conserved in a collision and 
the symbol a to represent collectively the remaining 
quantum numbers required to characterize a one-
particle state. We require further that the spectrum 
of k be symmetric about k = 0, that k = 0 be in the 
spectrum, and that ^ = 0 be for given a, that one-
particle state which, in the absence of interaction, has 
the lowest energy. Thus, k may represent the linear 
momentum of a particle or the z component of angular 
momentum of a particle in an axially symmetric po
tential, while a may label a particle species or a com
ponent of spin momentum of a particle. Our subsequent 
nomenclature will be chosen to correspond to the case 
where k represents linear momentum and a represents 
particle species, but the extension to more general 
situations is usually obvious. 

We shall be using a second quantized representation. 
We let aa(k)y aa

+(k) represent, respectively, the de
struction and creation operators for a particle in the 
state (k,a), and ta(k) the energy of a single particle in 
this state. The fact that our particles are bosons is then 
expressed in the commutation relations 

[a«(*),^(*,)]=C««+(*),V(*/)]=o, 
[aa(k),afi+(k'y] = bafikk'. (1) 

The interaction between two particles leads to 
collisions in which a pair of particles with quantum 
numbers (k,a; k',fi) undergoes a transition to a state 
with quantum numbers (k+K, y;kf—K, 5). We repre
sent the matrix element of the interaction between such 
pairs of states by V~l gap

y5(k,k',K). Here V represents 
the volume in the case of a gas of interacting particles 
so that g is independent of V (provided surface effects 
are ignored). We adopt the convention that the sub
scripts label incoming particles, the superscripts the 
outgoing particles, the first argument corresponds to 
the momentum of the particle labeled by the first 
subscript, the second argument the momentum of the 
particle labeled by the second subscript, and the last 
argument corresponds to the momentum transfer, e.g., 
gapy8(k,k',K) is the matrix element for the interaction 

shown in Fig. 1. Symmetry considerations lead to the 
following relations between the matrix elements: 

gtt^{k,k',K)=g^y(k',k,-K) 
=gafs*y(k,k',k'-k-K) 

=g^\k',k,k+K-k'). (2) 

Furthermore, Hermiticity requires 

ga^{k,k',K) = g^*{k+K, k'-K, -K). (3) 

The Hamiltonian in second quantization takes the 
form 

B=T,T.ta(k)0a+(k)0a(.k) 
a k 

1 
+ — E E ga^

s(k,k',K)as+(k'-K) 
2Y cc,p,y,8 k,k',K 

Xay+(k+K)ap(kf)aa(k). (4) 

The generalization of the Boguliubov approximation 
required for a particular problem depends in part on 
the constraints imposed on the system (either internally 
through selection rules, or externally) with respect to 
the total number of particles present belonging to each 
species a. We shall assume here that such constraints 
take the form of fixing the total number of particles of 
each species: 

Za«+(k)aa(k) = Na = naV, (5) 
k 

where Na is large. In this case the Boguliubov approxi
mation consists first in assuming that the state k = 0 
for each a is macroscopically occupied so that aa(Q), 
aa

+(0) can be approximated by the numbers (Na
0)112. 

Na° is the average number of a particles in the k = 0 
state. Secondly we drop those terms in the interaction 
part of the Hamiltonian which do not contain at least 
two creation or destruction operators for the state k = 0. 
We are left with a single sum and for convenience we 
write 

fc=L ta{k)aa
+(k)aa(k) 

a 

+ | E L(nan^{2g^(k)a?+(k)aa(k) 

+Mk)ai,+(.-k)aa+(k) 

X[gQ , (0)+/^(0)] . (6) 
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FIG. 1. A pictorial represen
tation of the matrix element nritv \,< *\ 
ga^(k,k',K). y*<M.io 

In the above 
/nyns\112 

«:«fl(ft)=E( — ) *V'(o,M), 
7.5 \nanp/ 

1/2 /nynt>y 

7.5 \nanp/ 

(7) 

(8) 

where use has been made of the symmetry and Hermi-
ticity relations (2) and (3). 

The next task to be undertaken is the diagonalization 
by a canonical transformation of the operators Hk. To 
achieve this end it is convenient to introduce a new 
notation by introducing operators Xi(k), Xi+(k), where 
the index i runs through twice as many values as does 
the index a. Thus, let the values taken by a be designated 
1, 2, 3, • • • v. We now define 

Xi(k) = ai(k), Z<+(ft) = fli+(A) 
for i = l , 2, 3- • -V 

and (9) 

Xi(k) = ai-+(-k), Xi+{k) = ai-v(-k) 

for i=v+l, H-2 , ---2v, 

where the index i is defined modulo 2v. Note that ac
cording to these definitions 

Xi+v(-k)^X+{k). (10) 

The commutation relations (1) then assume the form 

[^(*) ,X i(*)]=[Z i+(A)>Zy+(*)] = 0 , 

[ X ^ ) , X y + ( £ ) ] = fe. (11) 

Here fin is a 2*>X2J> diagonal matrix whose elements are 

Pij=0 for i ^ y 
= 1 for i=j—l, 2, 3, - --V 
= - 1 for f = y = y + l , H-2 , • • •2^ . (12) 

We now need not indicate the argument k of the Xiy 

Xi+ operators for what immediately follows. The 
partial Hamiltonian Hk takes the following form in 
terms of the new operators. 

operators. The rjji are defined by 

W=iDy(*)^+(»i»01/2&-i(*)] h l=i> 2,~'v 
= -Ktj(-k)8n+ (»i»01/sft*(-*)] 

j , l=v+l, v+2, ---2v 
=h(n,myi*Mk) j=i,2,-..v (15) 

/ = H - 1 , J>+2, • • '2v 

= -Un0i)ll2fji*(k) j=v+l, v+2, • • -2v 

J = l , 2 , - . . , , 

with £«+„ ga+J,, £+„, wa+v, etc., given by ta, g«fi, nay etc. 
I t is important to note that if j and I are considered 
matrix indices, then the matrix rj and the matrix jS 
satisfy the relation 

(Pr,)+ = r,+P=fo, (16) 

77+=/fyjfr-1 = fop (since 0-1 = /3). 
or 

If Xi, • • -X<LV are considered as elements of a column 
matrix X and Xf1-, • • •X2,/

+ as elements of a row matrix 
X + , then #& becomes in matrix notation 

Hh = X+PnX+Eh\ (17) 

The required generalization of the Boguliubov 
canonical transformation consists now in introducing 
new operators F»- related to the X* by a linear 
transformation. 

X=UY X+=F+Z7+. (18) 

This transformation is to bring Hk to the form 

ff*=F+j8XF+£*° (19) 

with X a diagonal matrix. However, in order for this 
transformation to be canonical, it must leave invariant 
the commutation relations (11). In particular, this 
requires 

Ur<,Yi+i=pii, (20) 
and 

[X,,X*+]=£ £UiiYi,Yi+Uil+l 

or, in matrix form, 

Alternatively, 
upu+=p. 

PU+=U~^. 

(21) 

(22) 

where 

Hk= E XrttfluJCt+E,?, (13) 

arises from the commutation of operators required to 
bring all X + operators standing to the left of X 

Taking the inverse of both sides, noting that 0 1==P, 
one obtains on a slight rearrangement 

P=U+[3U. (23) 

Thus, it immediately follows that 

X+0X= Y+U+PUY= Y+pY. 

This result can be given a geometric interpretation: 
We may regard X+/3X as the scalar product of the 
vector X with itself; orjrnore generally, define the scalar 
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product of X with X' by write the partial Hamiltonian (19) as 

(x,x')=x+$x'. 
The associated linear-vector space then does not possess 
a positive-definite metric but, instead, the metric 0. A 
linear transformation on the operators X{ which is 
canonical corresponds to a "pseudo-unitary" trans
formation U which, by (23), leaves the metric in
variant. A matrix tj satisfying (16) may be regarded as 
a "pseudo-Hermitian" matrix in this space in the sense 
that 

(X,r,X') = X+foX' = X+r,+pX' 

= (r,X)+pX'=(vX,X'). 

Thus, the problem of bringing Hk to the form (19) is 
reduced to finding a pseudo-unitary matrix U which 
diagonalizes the pseudo-Hermitian matrix r\. 

U+l3riU=t3\ (X diagonal). 

The symmetry properties of ij, i.e., 

r}ij(k) = —ni+vj+v(—k), 

(25) 

and 
n>i,j+v(k) = —n.i+J>,j(—k) i, j=i, •••*/, 

allow one to order the X's in such a way that the F's 
will be interrelated in the same way as the X's, i.e., 

Yi+v(-k)^Y+(k). 

The U matrix will then have the property 

(26) 

Uij—Ui+ -• 

u. ,3+v i+vj= Uitj+V
+ for iy j = 1 • • • v. 

This choice is consistent with Eq. (23). Equation (25) 
can be rewritten in the forms 

0U+faU=\, 
U~171U=\, (27) 

VU= UX. 

E VijUjk = 2 &ijUjkXk— Uihkk • (28) 

Thus, 

Thus, the columns of the matrix U (if it exists) are 
linearly independent and orthogonal eigenvectors of the 
matrix rh and the diagonal elements of X are the asso
ciated eigenvalues. Thus, a solution to the problem 
exists and can be found if there exist 2v linearly inde
pendent orthogonal eigenvectors of the matrix rj. At 
present we have not been able to determine the con
ditions for the existence of such a set of eigenvectors. 

If a solution exists one may then, using Eq. (26) or 
defining 

Aa(k)^Ya(k)^Ya++(-k), (29) 

H*=E {Ek°-\a+v+\aAa+(k)Aa(k)}. 

A NEUTRAL GAS OF TWO SPECIES 
OF CHARGED BOSONS 

The theory will now be applied to a neutral mixture 
of two types of charged bosons. I t will be shown that 
two types of elementary excitations exist; one having 
at low momenta the energy-momentum dispersion 
relation associated with plasma oscillations, the other 
a dispersion relation characteristic of a free particle 
with a modified mass at low and high momenta. The 
special case where the particles of the two species have 
equal masses and equal, but opposite, charges will be 
examined in detail. I t is shown here that one of the 
excitations corresponds to oscillations in mass density 
and the other to oscillations in charge density. Finally 
it will be shown that the criterion for the validity of 
the Boguliubov approximations is essentially the same 
as that found by Foldy for the one species case. I t is 
not asserted here that there is not a collapsed state of 
the system with energy lower than the ground state 
found by this method. The following calculation in any 
event will serve to illustrate the preceding method. 

We consider a volume V containing Ni bosons with 
a positive charge q± and N2 bosons with a negative 
charge q%. The case of a mixture of two different types 
of bosons with charges of the same sign, neutralized 
by a uniform background charge is essentially identical 
with this. Assuming the particles to be spinless and 
assuming only two-body Coulomb interactions, the 
Hamiltonian in second quantized representation is 

ff=E Di(*)fli+(J)fli(*)+fe(*>2+(i)fl8(4)] 

+ (1/2F) ^ {giitt)ai+{k"-k)aHV+k) 

+g22(k)a2+(kff-k)a2+(k,+k)a2(k
ff)a2(kf) 

+2g12(k)a2^kf,~k)a1
+(kf+k)a2(k

/,)a1(k
,)}, 

where 

and 

ti(k) = ¥k2/2mi) 

giJ(k) = 4:Trqiqj/k
2
J 

m0i+v=may qa+v=q<x> 

(30) 

(31) 

Using the commutation properties of the boson oper
ators and the neutrality condition (^1^1+^2^2=0), it 
is easily seen that the k = 0 term vanishes. 

Introducing the X notation and making the 
Boguliubov approximations for both species yields the 
following partial Hamiltonian: 

ff*= E Xi+PmiXrtEi? (32) 
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with and 

Ek°=-Uh(k)+ni0gn(k)+ti(k)+nJ>gti(k)}, (33) 

and the 17 matrix is given by (15) with 

M±k) = M±k) = fin±k) = gii(k). (34) 

The secular equation (28) for this case is 

\4-i\2th2+t22+2hn1
0g11+2t2n2

0g22] 
+^Lh%2+ 2h2t2n2«g22+ 2 / ^ W g n ] = 0. (35) 

This biquadratic equation is easily solved for the four 
\k with the result 

X=dzUKh2+t22+2(t1n1%1+t2n2
0g22)2 

^i(Lh2-t2
2+2(hn1

0gn~t2n2
0g22)J 

+ 16/i^i%2°gi22)1/2}1/2 

= ±§€±(4) . (36) 

The transformed partial Hamiltonian is now 

flr* = £fc°+F+/3XF 

= E,°+X1Fi+F1+X2F2+F2-X3F3+F3 

-X 4 F 4 +F 4 . (37) 

Again taking cognizance of the commutation properties 
of the F's and also ordering the X's such that the F's 
satisfy Eq. (26) we find 

ff*=£*0+i^+i€-+i€+(Fi+Fi+F8F8+) 
+i-€-(F2

+F2+F4F4+) 
and 

# = L (Ek»+-e++ici+f-A1+A1+e-A2+A2) . (38) 
k 

The transformation matrix could be found in accordance 
with the procedure described in the preceding section. 
This however proves quite cumbersome algebraically 
and will not be done here. 

I t is interesting to note the forms of the pseudo-
particle excitation energies in the limit of very small 
and very large momentum. 

/ « i V n2°q2
2\112 

lim €+(&) -> (4TWyiH + ) 
fc_K) \ mi m2 / mi m2 

ni°qi2m2
z+n2°q2

2miz r nfqi1' 
2L(«iv< 16(7r)1/2(m1W2)3/2L(^i0^i2m2+^20g22Wi)3/2J 

l i m e + ( 4 ) - > ^ 2 / 2 w i . 

k\ (39) 

(40) 

This is the plasma type excitation, exhibiting an energy 
gap and going over, asymptotically for large mo
mentum, into the normal energy-momentum relation. 

For the second type of excitation we find 

lim e~(k) • 
k-*0 

WW rniq\1fni-\-n2q2
2m2~\ rmqx 

2Lwig!: 

1/2 

2 {mim2)
ll2Lniqi2m2-{-n2q2

2mx J 
(41) 

lim e~(k) • 
Jc-+oo 

>Wk2/2nt2. 

Here there is no energy gap and the energy-momentum 
relationship is that characteristic of free particles. 
Algebraic complexity prohibits further analysis of these 
excitations. More insight into their character can be 
gained in the following more specific case. 

THE SYMMETRICAL TWO SPECIES 
NEUTRAL CHARGED GAS 

We consider here the same system as in the preceding 
section where it is now specified that the two species 
of bosons have equal masses and equal, but opposite 
charges. Since the number of particles is not conserved 
in the Boguliubov approximation the neutrality con
dition takes the form 

<ziW+<?2<iv2Ho, 
(42) 

<7i<^i°>+<?i<E al+{k)al{k))+q2{N2") 

+g2<I>2+(%2(&)> = 0. 
k 

The fact that initially a fixed total number of particles 
were considered to be in the box now takes the form 

(Ni)+(N2)=constant, 
(43) 

(Ni°)+<Z ai+(k)ax(k))+{Nf) 

+(Z) a2+ (k)a2(&)) = constant. 
k 

By letting N2°~Ni°-}-A in the Hamiltonian and calcu
lating the quantities above it can easily be seen that 
the only way of satisfying these conditions is to have 

(iV1°)=(iV2
0). (44) 

The preceding calculation will therefore be considered 
with the additional conditions 

nti=m2 [and therefore h (k) = t2 (k) = t], 

qi=-~q2 [and therefore gu(k) = — gu(k) = g22(k) = g~], 

and ni°=n2°—n0. 
The eigenvalues now take the much simpler form 

\ = ±Ui2+2tn°g±2tn°g}1i2=±:h± (45) 

and the ground-state energy is 

^ o 4 E [(/2+4/^)1/2- (t+2n°g)2. (46) 

In this case the algebra involved in carrying out the 
procedure for explicitly obtaining the transformation 
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matrix is greatly simplified, with the result 

- A V2/2 -B 0 

-A v2/2 B 0 

- B O A v 2 / 2 | 

IB 0 -A V2/2J 

U= 

density and of the charge density in a wave packet 
composed of superpositions of states of various numbers 
of the two types of excitations with a single momentum. 
Such wave packets will be given by 

f t+2n°g+e+)1/2 {t+2n°g-e+ 

A = \ , 5 = 
4e+ J I 4e+ 

1/2 

(47) 

(48) 

and 

l0i>= E £,»!<*) | »!(*)> 
»l(A) 

1*2)= E C,„2(A>|»2(*)), 
n%(k) 

(56) 

where M is the momentum of the quasiparticle and the 
C»(fc) are the weighting factors for the various states 

From the commutation relations it is easily shown j n t n e distribution. 
that 

u-^pu+p, 
and thus the F operators can now be expressed in 
terms of the original operators. The result is 

Y1^A(X1-X2)+B(Xz-Xd, 

F 2 = v 2 / 2 ( X H - X 2 ) , 

F 3 = ^ ( X 1 - X 2 ) + ^ ( X 3 - X 4 ) , 

F 4 = v 2 / 2 ( X 3 + X 4 ) . 

Obviously, as was arranged, 

F 4
+ ( - * ) = F 2 ( * ) , 

The number-density operator is given in terms of the 
(49) 

field operators by 
P=t+{r)+{r), (57) 

or for a composite system 

P=£*«+to*«(r), (58) 

(50) where \f/(r) destroys a particle at the point r. 
For a two-component system the mass and charge 

densities are given by 

and 
Yz+(-k) = Y1(k). 

The partial Hamiltonian is 

Hk=E1?+h++h-+h+(Yi+Y1+YsYs+) 

(51) and 

pmasS = E ^a^a+(r)^a(r) , 
a 

Poharge = L Qa^a
+ M<Aa W • 

(59) 

(60) 

To obtain the second quantized representation of these 
operators we expand the field operators as follows: 

+ J e - ( F 2 + F 2 + F 4 F 4 + ) (52) 
and, using (51) or (29), 

# = E C ( ^ 0 + | 6 + + | e - ) + e+F 1+F 1+e-F 2+F 2] 

^«(r) = J2 a«(k)Uk>a(r), (61) 

or 

H = E l(Ek»+}<&+i<r)+e+A1+A1+e-A2+A2l. 
k 

The asymptotic forms of the energy-momentum 
relationships for the pseudoparticles are now quite 
simple: 

/87m°\1/2 / fis \ 
lim **-(*)-> Ag( J +( W 

\ m / \\ 

where the UkaWs form a complete set of single-
particle wave functions. The #a(&)'s are the usual 

(53) 
destruction operators. In particular we may choose the 
IPs to be plane waves in which case we find 

1 ^ t o l K r ) = E a+(k')a(k)e >-i(k'-k)r (62) 

fc-H) Kl6(2Trn°q2m^ 1/2 > 

m2 

lim €+(&)-> 
&->«> 2m 
(the plasma-type excitation relations), 

and 
WW 

e~(k) = for all k (free particle). 
2m 

(54) 

(55) 

In order to gain some insight into the nature of these 
excitations consider the expectation values of the mass 

If fiuk is the energy of a single quasiparticle of 
momentum k, then the time evolution of an eigenstate 
corresponding to the excitation of n such quasiparticles 
is given by 

\n(k,t))=\n(k,0))e-in»kt 

= \n(k))e~ina3kK (63) 

I t is now a simple matter to calculate the mass and 
charge density expectation values in states composed 
of superpositions of such wave functions. The results, 
for n°^>n, are 

(0 l | pmass | 0 l )=2^° , 

(0l|pcharge|0l)~COs(&r — COjfcZ+0) , 

(02|pmass|02)— 2fl°^COs(kr — 0)kt+(j)) , (64) 

($2|pcharge|$2) = 0 . 
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(The constants of proportionality and the phase 
angle <j> depend on the chosen CVs.) Thus, the plasma-
type excitations consist of oscillations in charge density, 
while the free-particle excitations consist of mass-den
sity oscillations. 

A similar interpretation arises from calculations of 
the transition probabilities between the ground state 
and states with one of the two types of pseudopartides. 
Again it is found that 

(0|pmass|&i) = 0 , 

(0\p6h*w\ki)~eiikr-ukt), 

<0 | P m M . | *2>-« i ( * M *° , (65) 

(0 |p charge|^2)=0, 

where \ki) denotes a state with one pseudoparticle of 
type i with momentum k and (01, of course, corresponds 
to the state with no pseudoparticles present. Thus, 
excitations of the first type could be induced by an 
electromagnetic field and excitations of the second type 
by a gravitational field. 

In order that the Boguliubov approximations be 
applicable the number of particles in excited states 
must be a small fraction of the total number of particles 

I. INTRODUCTION 

MORE than a century ago Michael Faraday dis
covered the effect which today bears his name. 

He observed that when plane-polarized light is passed 
through matter which has been placed in a homogeneous 
longitudinal magnetic field, the plane of polarization of 
the emergent light is rotated through some angle 6 with 
respect to the incident beam. The amount of rotation 
per unit field strength per unit optical path length is 
commonly referred to as the Verdet constant V. 

Any optical activity exhibited by a medium, be it 

or 
(N-No/N0)=(n-no/no)<^l (66) 

for both species of bosons. 
In both cases this reduces to 

1 r00 

/ 3 W K < 1 , (67) 
7T2^oio 

where B is given by Eq. (48). 
This integral corresponds to that of Foldy5 if his no 

is replaced by 2m. Thus, 

(n~m/m)=2^Qrso, (68) 
where 

Q= 1.905, 

rs0= (3/47r)1/3[m^/^2(2^o)1/3], (69) 

and again the approximations are valid at high densities. 

ACKNOWLEDGMENTS 

I wish to thank Dr. Leslie L. Foldy for his kind 
assistance in this research. I am also indebted to the 
Weizmann Institute of Science for the preparation of 
the final manuscript. 

this magnetically induced type or its natural counter
part, is indicative of a nonzero value of the quantity 
nr(v) — tii(v), where nr(v) and n\{y) are the indices of 
refraction of the medium for right and left circularly 
polarized light of frequency v, respectively. In terms of 
6, the optical path length d, and the vacuum speed of 
light c, we may write for nr{y) — ni(y) 

nr(p)-nl(v)=(c/Tv)(d/d), (1) 

and in terms of V and the magnitude of the longitudinal 
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Verdet Constant of the "Active Medium" in a Laser Cavity 
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It is shown that the frequency of the intensity modulation observed when the output of a gas laser in a 
homogeneous axial magnetic field is veiwed through a polarizer is simply related to the Verdet constant of 
the "active medium." This method is used to determine the Verdet constant of "active" neon at 0.633 /*. A 
value of 5.9X 10~7 rad/cm-Oe is obtained. Theoretical expressions for the Verdet constant of a dilute mona-
tomic gas at a frequency close to the center of a Doppler-broadened line are derived for the three allowed 
transitions, A / = 0 and A/ = ± l . The results of the experiment and the theory are used to estimate the 
threshold values of the absorption coefficient and the population inversion density in the present case. 


