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By extending Migdal's approximation for electron-phonon interactions in metals to the nonequilibrium 
case, it is possible to derive a set of transport equations which are exact to order (m/M)1/2. This coupled set 
of equations for the electron and phonon distribution functions is correct even in the situation in which 
the electronic excitation spectrum has considerable width and structure so that one might not expect a priori 
that there would be well-defined quasiparticles. Nonetheless, one of the forms of the electronic transport 
equation is identical to the transport equation suggested by Landau for the case in which the quasiparticle 
energy is well defined. The transport equations may be written in two different forms: In the first form, 
the electronic distribution function is labeled by a momentum vector; in the second, the labels are excitation 
energy and the position on the Fermi surface. Despite the width in the spectrum, the momentum-space form 
is identical with the Landau quasiparticle theory. The energy space form is slightly simpler because no wave 
function renormalization constants appear in the definition of the energies or in the scattering matrix 
elements. In fact, in the case in which there is space dependence but no time dependence this form of the 
transport equations looks identical to the weak-coupling Boltzmann equations. This identity is used to 
prove that to the accuracy of the adiabatic approximation the several transport coefficients are completely 
unchanged by the many-body effects of the electron-phonon interaction. These coefficients, which include 
the spin diffusivity and the viscosity as well as the ordinary conductivities and all the classical galvano-
magnetothermal effects are thus correctly predicted by the standard weak-coupling theory. Many-body 
effects are also absent in dn/djj, and the spin susceptibility; however, they do appear in the specific heat 
and in the response to time-dependent disturbances. 

I. INTRODUCTION 

IT is remarkable that many experiments on many-
body systems can be described by the independent-

particle model. Especially for metals, it was unclear 
why many-body effects were not more pronounced, but 
a number of years ago, Landau,1 in a famous series of 
papers, shed a great deal of light on the problem. 
Landau pointed out that the low-lying excited states of 
a Fermion system might very well have a natural one-
to-one correspondence with the low-lying states of the 
noninteracting system. On the basis of this corre
spondence, he was able to obtain the equilibrium 
properties, and also the transport equations describing 
situations not far removed from equilibrium. The equa
tions describe a set of weakly interacting quasiparticles. 
The main difference between this case and the limit of 
really weak interactions is that the quasiparticles have a 
modified energy-momentum relation and that there is 
a modification of the scattering matrix elements. 

The Landau theory is phenomenological, since it 
introduces unknown functions as phenomenological 
parameters. Nevertheless, it is of enormous importance, 
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1 L. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 32, 59 

(1957); 35, 97 (1958) [English transls.: Soviet Phys.—JETP 3, 
920 (1957); 5, 101 (1957); 8, 70 (1959)]; A. A. Abrikosov and 
I. M. Khalatnikov, Rept. Progr. Phys. 22, 329 (1959); Usp. 
Fiz. Nauk 66, 177 (1958) [English transl.: Soviet Phys.—USP. 
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since it catalogs completely the phenomena of the 
systems that it describes, and since it provides a target 
for theorists who wish to start from a less phenom
enological viewpoint. Several important advances have 
been made along this line. We mention the work of 
Luttinger and Nozieres,2 who show that as long as 
perturbation theory is formally correct, the Landau 
theory follows. That is, if the formal sum of perturbation 
series has certain crucial properties shared by individual 
terms in the series, then the Landau theory holds. 
Baym and Kadanoff3 made rather different arguments 
based upon the theory of Green's functions. 

The theories of quasiparticles so far mentioned have 
relied upon the following idea: If one considers an 
electron of definite momentum near the Fermi surface, 
one finds that it has a component with well-defined 
energy, that is, its lifetime is very long. The reason is 
that the phase space for the possible decay products of 
the electron is very small, because of the Pauli principle. 

In this paper, we investigate the question of whether 
a quasiparticle theory can be said to hold for the system 
of electrons and phonons. The previously mentioned 
work has been restricted to a system of Fermions 
interacting by means of instantaneous forces, as, for 

2 L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 37, 1794 (1959) 
[English transl.: Soviet Phys.—JETP 10, 1267 (I960)]; V. I. 
Karpman, Zh. Eksperim. i Teor. Fiz. 39, 185 (1960) [English 
transl.: Soviet Phys.—JETP 12, 133 (1961)]. J. M. Luttinger and 
P. Nozieres, Phys. Rev. 127, 1425, 1431 (1962); P. Nozieres, 
Theory of Interacting Fermion Systems (W. A. Benjamin and 
Company, Inc., New York, 1963). 

3 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics 
(W. A. Benjamin and Company, Inc., New York, 1963). 
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example, Coulomb repulsions. There have been sugges
tions recently that the quasiparticle picture fails for 
electron-phonon systems.4,5 Partially, this is a matter of 
semantics. We shall say that we have a quasiparticle 
theory if the system is described by a Boltzmann 
equation of the form suggested by Landau, even though 
various matrix elements, as well as the energy-momen
tum relations, are "renormalized." We shall not regard 
it as a failure of the quasiparticle concept if it turns out 
that the matrix-element (wave function) renormaliza-
tion is nontrivial. 

A more profound objection to the use of the quasi
particle concept in the electron-phonon system is that 
an electron injected into the system with a definite 
momentum cannot be said to have a definite energy, if 
this energy is above the Fermi energy by as much as 
coo, where coo is a typical or maximum phonon energy 
(the Debye frequency). Such electrons so rapidly emit 
phonons that their energy cannot be defined. If such 
comparatively highly excited electronic states are not 
of importance, there is no difficulty in extending the 
usual arguments leading to the Landau theory to the 
electron-phonon case as well. This will be the case 
provided we consider only perturbations varying slowly 
enough in space and time, and provided we restrict the 
temperature to be well below the Debye temperature. 
On the other hand, if the highly excited states are 
important, the usual arguments justifying the quasi
particle concept fail. 

There have been a number of previous attempts to 
justify the Boltzmann equations in the case in which 
the electron lifetime was not infinitely long.6 However, 
all of these attempts have been based on the approxima
tion that the decay processes involve no change in the 
electronic energy. Thus, the electronic energies have to 
be at least well defined. In the electron-phonon system, 
this situation occurs at temperatures well above the 
Debye temperature. Our theory includes this as a 
special case. 

There are many ways in which highly excited and 
short-lived electronic states can be practically obtained. 
One is to apply a microwave field whose frequency is 
comparable to the Debye frequency. Another is to 
apply a magnetic field so strong that the cyclotron 
frequency is comparable to the Debye frequency. A 
third is to raise the potential across a tunnel junction to 
a value of the order of the Debye frequency measured in 
electron volts. A fourth is to raise the temperature of 
the metal to the Debye temperature. We have been 
able to show that in the third and last cases, a quasi
particle theory (with a definite energy-momentum 
relation) holds and is essentially exact, in spite of the 
short lifetime of electrons of definite momentum. We 

4 L. P. Kadanoff, Phys. Rev. 132, 2073 (1963); also, L. P. 
Kadanoff, in Ravello 1963 Spring School Notes (Academic Press 
Inc., to be published). 

5 S. Engelberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963). 
6 J. S. Van Wieringen, Proc. Phys. Soc. (London) A67, 206 

C1954); C. V. Chester and A. Thellung, ibid. A73, 745 (1959). 

shall only treat the "high" temperature case in this 
paper, since the third case is a trivial extension of the 
temperature problem. 

The results of this paper are based upon the approxi
mations of Migdal7,8 which are believed to involve only 
errors allowed by the adiabatic (Born-Oppenheimer) 
approximation. This is not much of a restriction since 
the adiabatic approximation is always made in any 
theory of solids. This approximation regards as small 
the root of the ratio electron mass divided by ion mass. 
An equivalent small quantity is the ratio of the sound 
speed to Fermi velocity. Another equivalent parameter 
is the ratio of maximum phonon frequency (Debye 
frequency) to typical electron energy (Fermi energy). 

Although the frequency shale of the phonon system is 
small in comparison with the electronic frequencies, the 
wavelength scale is quite comparable. Wavelengths of 
typical phonons or electrons are comparable with the 
lattice constants. We shall follow Migdal in exploiting 
these facts characteristic of the electron-phonon system. 

In the next section we describe the starting point for 
our calculation, the Migdal approximation for the 
self-energy in the electron-phonon system and the 
exact transport theory of Kadanoff and Baym. In the 
third section the kinetic-energy variable is integrated 
out of the transport equation so that we may write an 
equation of motion for an electronic distribution func
tion which depends upon the excitation energy and the 
direction of the momentum vector. Section IV describes 
how the energy space equation of motion may be trans
formed back into momentum space. The resulting 
transport equation is exactly of the Landau form. In 
Sec. V, Landau's identifications of the densities and 
currents of conserved quantities is specialized to the 
electron-phonon case. The identifications are verified 
by a comparison with exact expressions for these 
densities and currents. In the final section we use these 
identifications and the transport equations in order to 
evaluate some thermodynamic derivatives and trans
port coefficients. 

II. FORMULATION 

The model electron-phonon system which we wish 
to study has the Hamiltonian 

# = Z ) €kCktck+! 2 coq°(aqtaq+a_qa_qt) 
k q 

+EAq)W^K+a_ q t ) . (1) 
M 

We have made a number of assumptions in order not to 
encumber the notation. The electron spin and band 

7 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) 
[English transl.: Soviet Phys.—JETP 7, 996 (1958)]; see also 
Ref. 5. 

8 MigdaPs ideas are extended to finite temperature in A. A. 
Abrikosov, L. P. Gor'Kov, and I. E. Dzyaloshinski, Methods of 
Quantum Field Theory in Statistical Physics, translated by R. A. 
Silverman (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 
1963), pp. 176-189. 
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indices and the phonon polarization indices have been 
suppressed. The bare electron-phonon matrix element 
v°(q) has been taken to depend only on q. I t is supposed 
to have the usual properties and is not necessarily very 
small. Umklapp processes have been neglected so that 
"momentum" is conserved. Anharmonic effects (direct 
phonon-phonon interactions) have been ignored. None 
of these simplifications is essential to the subsequent 
argumentation. 

In Eq. (1), c^ is a creation operator for an electron 
of momentum k, ek is the electron kinetic energy (energy 
of the Bloch state), and coq° is the zero-order phonon 
frequency. We work in a box of unit volume and set 
A = l . The aq operator destroys a bare phonon of 
momentum q. 

A convenient way of proceeding is to introduce at 
once the physical phonon operators, defined by the 
transformation 

aq = Uqaq+ FqO-q1". (2) 

The transformation coefficients, which are to be 
determined self-consistently, are given by the relations 

(2a) 

(2b) 

< + *V= «/o>q)+ (nq/<), (2c) 

2^qFq=nq /coq°, (2d) 

* / q
2 - F q

2 = l , 

= «_q , F q = F _ q , 

and the relation between IIq and coq is 

«q
2=(«q°)2+2nq«q (2e) 

The frequency wq will turn out to be the renormalized 
phonon frequency, while the quantity IIq will have the 
significance of the polarization part. Under this trans
formation the Hamiltonian becomes 

H=^ e ^ k ^ k + l 2 coq(o;qtceq+a_qQ;_qt) 
k q 

+ E ^(qVk+q tCk(aq+a-q t) 
k,q 

- * E nq^qt+Ce_q)(«q+a_qt). (3) 

q 

We have introduced the renormalized coupling constant 

Kq)2=^(q)2W/«,). 
In order to derive a transport theory, we define, 
following Ref. 3, the functions9 

g.>(M;r,0 = E [dfe** t'-t-ik''T 

X{c±+W M+¥)c±-w ,°Kt-¥)), (4a) 
9 Here the averages indicate that the system has been perturbed 

from an equilibrium distribution in a way analogous to Eq. (8-18) 
of Ref. 3. However, we differ from this reference in looking only at 
times t after the disturbance has been shut off. This specialization 
is made solely to simplify the writing and can easily be removed. 

g,<(M;r,*) = E 
/ * ' 

,iEt'+ik''t 

X (ck-iw J (t~¥)ck+w ,* [t- JO) , (4b) 

which represent, respectively, the local density of 
electrons and holes with spin quantum number a 
momentum k and energy E in the neighborhood of the 
space-time point r, t. 

In the same way, we define 

7-<(q,a>; r,/) = £ / * ' ei<at'+i^'t 

X(a,-WKt-¥)c*,+w(t+iO), (5) 

which gives the local number density of phonons of 
momentum q and frequency co. We shall also need the 
functions 

and 

r(q,z) = 

- / 

/ 

dEg>(k,E)+g<(k,E) 

2ir z-E 

dEA(k,E) 

2TT Z-E 

dec r^qjco)—r<(q,co) 

2TT 

(6) 

(V) 
z—co 

where z is a complex variable and we have not explicitly 
indicated the r, t dependence or the spin dependence. 

In the equilibrium case, g(k,s) and r(q,z) are in
dependent of r, t. There, it is more usual to define only 
the propagator D} given by 

D(q,t- 0 = KZXo, (*)+«_,+ «))(a_, (t')+a<? (*'))>. 

Perturbation theory can be expressed entirely in terms 
of D in view of the form of the coupling terms in the 
Hamiltonian. Transport theory can be expressed 
entirely in terms of D also, but we have chosen to 
introduce r to make the analogy between the electron 
and phonon transport equations more transparent. We 
shall also have to define temporarily the functions 
5>-<(q,o>) and S(q,z) by 

sHw) 
q' J 

exp(iq'-r+ia>0 

X<aq-k 't(/-iO<*-q-^(H40). 

The functions S will be shown to be negligible 
when the phonon renormalization is correctly carried 
out, as must be the case if the phonons are to be 
successfully interpreted as nearly independent elemen
tary excitations. 

In the equilibrium case, g(k,z) and r(q,z) can be 
determined with the aid of the Migdal approximation10 

10 See Ref. 8, Eqs. (21.8) and (21.22). These approximations are 
here rewritten in the language of Ref. 3. 
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by 
[a -« k -2 , (k ,«) ]g , (k ,8) = l , (8) 

C s - c o q - n ( q , 2 ) > ( q , 2 ) - n ( q , Z ) 5 ( q ) 2 ) = l ) (9a) 

[ - * - « q - n ( f L a ) l S ( q > g ) - n ( q 8 ) r ( q , 8 ) = 0 , (9b) 

where 

S » * 

and 

H(q,a) = 

" - / 

t iE2 f f>(k,E)+2,<(k,E) 

2TT z - E 

- / 

dE r , (k ,£ ) 

2TT Z - £ 
(10) 

• / 

dcon>(q,co)--n<(q,a>) 

2TT z—co 

do) 7(q,co) 

27T 2 —CO 

The widths S > and I P are given by 

- / 
— n q . (U) 

/

a°qao) 
- — & ( q ) ? [ f > ( q , « ) 
(2TT)4 

+ r < ( - q , - " ) ] g , > ( k - q , E - « ) (12) 
and 

d3ME 
n>(q,co) = E / — — [ > ( « ) ? 

* J (2TT)4, 

Xg<>(k+q,E+co)g,<(k,E). (13) 

We have already neglected the contribution of S>K in 
Eq. (12). The mathematical justification for this 
neglect, as well as for the neglect of s(q,z) in Eq. (9a) 
will be deferred until after we have had a chance to 
discuss the structure of II(q,z). The widths 2< and n< 
are defined by equations identical to (12) except that 
> and < are everywhere interchanged. 

The state of thermodynamic equilibrium at tempera
ture /3 - 1 and chemical potential ju is described by the 
solution of Eq. (8)-(13) with the subsidiary conditions 

g<(k,E) = e x p [ - ^ ( E - M ) ] g > ( k , E ) , 

r<(q,co) = exp[-/3co>>(q,co). (14) 

If we follow the ideas of Ref. 3, we see that when 
f>'< and g>>< vary slowly in space and time (r and t), 
Eqs. (8)-(13) remain equally true in the nonequilibrium 
case if we simply consider all the functions in these 
equations to depend upon r and t. However, the detailed 
balancing conditions represented by Eq. (14) fails. 
These conditions must be replaced by the generalized 
Boltzmann equations: 

[ E - 6 k - R e E , g > ] - C E > , R e d 
= - [ E - e . - R e E ^ l + E E S Reg] (15) 
= -E<(k ,E )g>(k ,E )+E>(k ,E )g<(k ,E ) 

[ c o - c o q - R e n ^ > ] - C n > , R e r ] 

= C « - o ) q - R e I I / < ] - C I I < , R e f ] (16) 
= "-n>(q,co><(q,co)+II<(q,co)f>(q,co). 

In writing Eqs. (15) and (16), we have used a general
ized Poisson bracket notation in which, for Eq. (15), 

dA dB dA dB 
C4,JB]= +VrA-VkB-VkB-VtA. (17) 

dE dt dt dE 

In Eq. (16) the brackets have the same meaning except 
that for d/dE we read d/dco and for Vk we read Vq. 
Finally, in Eqs. (15) and (16) the notation Re means 
that the complex frequency variables in g(k,z), r(q,z), 
2J(k,z), and II(q,z) are to be moved onto the real axis 
and the integrals in Eqs. (6), (7), (10), and (11) are to 
be interpreted in the principal value sense. Thus, for 
example, 

r dE A(k,E'>,/) 
Reg=Reg(k ,E ; r ,0 = (P/ — . (18) 

J 2TT E-E' 

III. DERIVATION OF TRANSPORT EQUATIONS 
IN ENERGY SPACE 

To make any progress with the equations of the 
previous section, we must employ a simplifying feature 
of this problem first noted by Migdal7 and subsequently 
used by many other authors.4,5 This simplifying feature 
results from the fact that all the phonon energies coq° 
are much smaller than p. For this reason, the only 
electrons which participate in the electron-phonon 
interaction are those with energies very close to fx. In 
fact, we usually need only consider electrons with 
|E—/x | and |€k—M| of the order of a typical thermal 
energy /3 - 1 or a typical phonon energy co0. 

The smallness of the phonon energies is reflected in 
a great sensitivity of 2J(k,z; r,t) to changes in z. In fact, 

d, S(k,s) 
-S(k,z) = 0 . 
dz coo 

(19) 

On the other hand, the momenta of the important 
phonons are quire comparable with electronic momenta. 
For this reason we cannot expect any corresponding 
sensitivity of S to changes in k. We can see that 

Vk2(k,s) = 0(2(k,s)/fto), (20) 

where ko is the typical electronic momentum, the 
Fermi momentum. From (20) it follows that 

d S(k,z) 
—S(k,z) = 0 , 
dek fx 

(21) 

where /*, the chemical potential, is far larger than co0. 
[We remark that Eqs. (20) and (21) fail for super
conductors because a new fundamental length, the 
coherence length, appears.] 

Because of the insensitivity represented in Eq. (21), 
we shall consider 2 (k,z; t>t) to be completely independ-
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ent of €k. We replace k in 2 by kF(k) which indicates 
that we consider k to be confined to the Fermi surface. 
Therefore it depends only on the unit vector % — k/1 k | . 
Henceforth we shall write 2(k,2; r,t) as 2 (£,3; r,t) and 
consider 2, 2>, and 2< to be completely independent 
of ek. 

This independence enabled Migdal to find ^4(k,o>) 
quite explicitly; it will permit us a considerable simpli
fication of our transport equations. To begin this simpli
fication we notice that Eqs. (6), (10), and (15) imply 
that 

4(k,E;r,fl 
T(k,E;r,t) 

lE-ek-Re2(k,E,T,t)y+i£T(k,E',r,t)J 
• (22) 

The function A, in contrast to 2 and r , is strongly 
peaked in ek. I t is just this peaking that limits our in
terest in the dependence of 2 on ek to values of ek in the 
neighborhood of E (~/x). Any slowly varying function 
of k multiplying A(k,E) can be evaluated at k = k ^ , 
with possible errors of order coo//x being incurred. Since 
we can see explicitly all the dependence of A upon ek in 
(22), it is possible to compute the area under the peak as 

(2TT)-I dekA(k,E;r,t) = l. (23) 

These properties of A(k,E,r,t) form the keystone of all 
our subsequent analyses just as their equilibrium 
analogs served as a keystone of MigdaPs paper. 

This method differs from the usual justifications of 
the Landau theory which are based on the smallness 
of the width T. I t is well known that T is negligibly 
small if the conditions \E—/z|<Kco0 and /5_1<$Cw0 are 
satisfied. If these conditions are relaxed, as is done in 
this paper, A (k,E,r9t) will have considerable width and 
structure when regarded as a function of E. The usual 
simplification of integrals over E will not then occur. 

Equation (23) enables us to define a distribution 
function /(#,£,r , /) by 

(27T)-1 jdeg<{eXE\ r,*) = / , & £ ; r,*), (24) 

which is the density of electrons with total energy E 
with momentum in the direction k. From (22), 

(2.) -fa >(e,k,E;r,t)=l-Mk,E;r,t). (25) 

Since, in full thermodynamic equilibrium the condition 
(14) holds, it follows that in equilibrium, we have 

/ ( l , E ) = {e 3 q) | j3 (E- / i ) ]+ l} - 1 , 

which is the usual Fermi distribution function. 
Next we rewrite U>< and 2 > < in terms of the 

distribution function / . To do this we use the fact that 

ddk r dtt r 
= / — deN(e,k), 

(2TT)3 J 4TJ 

where fdti is a solid angle integration. The e integral 
contributes only very near e = /i, so that we may replace 

fflk dQ, 

where 

/

dfk r all A r 

(2TT)3 J 4TT J 

No(k) = Nfa,k) 

(26) 

is the density of states in angle and energy evaluated at 
the Fermi surface, for electrons of one spin in the 
noninteracting system. If we make this replacement 
Eq. (11) implies that 

2>(£,£) = (47T)-1 f dtfdEfN0(k)[v(kF- V ) ] 2 

Xtl-f(k',E')Tr>(kF-V, E-E') 
+r<(kF'-kF,E'-E)-], (27a) 

2 <(£,£)= (47T)"1 [dtfdE'No[jk')[v(kF-kF'] 

Xf(k',E')[r<fa-kF',E-E') 

+r<(kF
f-kF,E'-E)-]. (27b) 

Exactly the same manipulations applied to Eq. (12) 
give 

n>(q,co) = II<(-q, -co) 

= L(47r)-2 [dttdtfNo(k)No(k') 

)? 

X[^(g) ] 2 (27r ) 4 5 3 (k^ -V-q) 

XLl-Mb,E+a)lMk',E). (28) 
I t is worth noting that 20->,< depends only on the 
density of electrons of one spin, whereas U>< depends 
on the distribution of both spins in equal measure. 

As is explained in Ref. 8, MigdaPs arguments for the 
approximation of n > j < break down when q is too small, 
i.e., only those phonons for which q/ko>wo/fi can be 
treated accurately by the perturbation theory method. 
This is not a serious drawback because the long-wave
length phonons are few in number and do not contribute 
appreciably to the electron self-energies, or to transport 
processes, except in special circumstances. The long-
wavelength sound waves can be treated a postiori by 
means of the electron phonon transport equations 
themselves. 

To find the electronic transport equation we integrate 
Eq. (15) over e. Because of Eq. (20) we can neglect 
Vk2 and Vk2< Then Eq. (15) implies11 

[a>-6*-2(£,£), /(^)]-[2<(l,£), J -£g(*AE)j 

= - 2 > ( M ) M £ ) + 2 < t o [ l - / t o ] . C29) 
11 In this equation and below, we shall drop the notation Re 

from Reg and ReS because we shall have no more use for the 
complex quantities themselves. 
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We can eliminate the term involving g in Eq. (29) if 
we notice that 

J 2TT J (2x)2 E-E' J 

>dE' 1 

2TT £ - £ ' ' 

This is not, strictly speaking, well denned but all 
derivatives of this object certainly vanish. Therefore, 
Eq. (29) becomes 

r 3 * " P A 32 , A df9 A 

1 2,(ft,E) \-fff(k,E)+—(k,E)—(k,E) 

+ (VkFek^)-Vr/,(&,£) 

= - S ^ ^ E j / ^ ^ + S ^ ^ E ) : ! - / , ^ ) ] , (,30) 

when the brackets are evaluated and terms like 

V ^ - V r / = O [ ( 2 / * 0 ) | V r / | ] 

are neglected. This neglect requires 2<̂ C/x which is 
certainly very well satisfied in the metal. 

The derivation of the phonon transport equation is 
slightly more complicated. We first study the quantity 
Rell(qco), given by 

ReU(qo)) = — / do*'-
2TJ 

n>(q,co')-n<(qy) 
n q . (31) 

The values of w of greatest interest to us are of order coo. 
As Migdal has shown, the values of co' contributing 
appreciably to the integral in (31) are much larger, of 
order /x. Consequently, the electron distributions on 
which (31) depends must be evaluated at energies 
remote from the Fermi energy. Far from the Fermi 
surface, the electron states are either full or empty, 
independent of the slight ripples on the Fermi sea 
which represent the deviation from equilibrium. Indeed, 
these electron states are uninfluenced by the electron-
phonon interaction altogether. We may therefore 
compute ReII(g,a>) with great accuracy by using the 
formula (12) for II>'<(q,co) and putting for the electron 
distribution functions in (12), the functions of the 
noninteracting system at zero temperature. 

I t follows from the above arguments that ReII(q,co) 
is practically independent of frequency, for frequencies 
of order coo. We choose it to vanish by picking n q to be 

na 

(p 

2TT 
/ * / 

n>(q,co')-n<(q,co') 
(32) 

By this choice, we achieve the relation, valid for all co, 

Ren(q,co)/co = 0(co0
2/M2), 

which allows us to neglect Rell completely. 
Next we remark that the absorptive part of II(q,z), 

which we have denoted by Y(q,s), is very small. I t can 
be easily computed from Eq. (28) for, the entire fre

quency range. Migdal has computed this quantity in 
the equilibrium case, for which it is true that 

%quii (q,w)/co=0 (COO/M) . 

One finds an additional contribution to y arising from 
the deviation of the system away from equilibrium. 
This contribution is easily estimated as 

%ionequil(q,Co) = UGOQ/H , 

where U is a certain average displacement in energy of 
the electron states at the Fermi surface, away from 
their equilibrium values. This deviation from equili
brium we have assumed is small, so that we have 
£/<co0. I t is important to note, and easy to verify, that 
the frequency dependence of y is entirely contained 
in the equilibrium term which is simply proportional to 
co. This is the case for the interesting range | co | <<Qi. 

Thus we conclude that both the dispersive and 
absorptive parts of n(q,z) are very small. For nearly 
all purposes, we can completely neglect both. This 
result immediately justifies the neglect of the function 
s(q,z) which appears in Eq. (9). If z is allowed to 
approach a real positive frequency, the correction in 
Eq. (9a) can be estimated as being of order £n.(qw)22/ 
(co+coo), which is completely negligible. 

From Eq. (16) it follows that 

r>(q,co)-f<(q )co) = 7 ( q , c o ) / C ( c - c o ^ + i 7 2 ] ) (33) 

which is strongly peaked as a function of frequency 
about coq. The peak has an area 2ir. Thus, we are enabled 
to define the phonon distribution function as 

and 

dec 
N(q;r,i)= \ —r<(q>co;r>0 

2ir 

N(q;r,t) + 1 
lie 

t), 

(34a) 

(34b) 

where the integration is over the peaking of the inte
grand. Integrating Eq. (16) over the region of the 
peaking gives at once 

dt 
-iV(q;r,0+Vqcoq .V r iV(q;r,0 

= n<( f i W q)[^(q) + l ] -n<(g W q ) iV(g) . (35) 

We are able to drop the term [ n < , Re / ] , because 
n<, is smoothly varying at co = coq. 

Equation (35) is the phonon Boltzmann equation. 
We shall require the form of r>,<:(q,co) for larger values 
of co—cog later. I t is evident from (33) that we expect 
these quantities to drop off as (co—o)q)~

2. Direct sub
stitution shows that the relation 

f>.<( q > c o )= -n>,<d/da>(Rer) = dr>>< (36) 

holds for large co—coq. The quantity Rer is 

Rer= (co-coq)/[(co-coq)2+i72] (37) 
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and can be approximated as (P(l/(co—coq)) in view of 
the smallness of 7. 

Thus, r>(w) for example, has approximately a 
Lorentzian shape, with tails dropping off as (w—ooq)~

2. 
There is some important structure in the tail, in the 
neighborhood of zero frequency, since r> must vanish 
exponentially as e^ for negative frequency. This 
structure depends on the deviation of the system from 
equilibrium. Only the response of the ions represented 
by the main peak oi r>f< can truly be considered as a 
phonon response with a definite energy-momentum 
relation. The incoherent contribution of 5f>,<, which is 
rarely important at all, will turn out to give the ionic 
contribution to the electronic quasipartides. We shall 
return to this point later, when we have seen the explicit 
role played by the line shape. 

The fact that A(k,E) and r>—r< are Lorentzian 
rather than true 5 functions in the variables ek and co, 
respectively, is of no consequence in the calculation of 
those values of £>•< and ]!>•< which enter the equations 
of motion, Eqs. (30) and (35). Thus we can immediately 
write, 

r d& 
X>(k,E) = 2T / d*qdEf—No(k%v(q)j5*(kF-kF'-q) 

J 4TT 

X [ l - / r ( i ,
J J E / ) ] { 5 ( £ - £ , - « q ) [ l + i V r ( q ) ] 

+ 8(E-E'+a>q)N(-q)} (38) 

and 

dti 
2a<(k,E) = 2T / fflqdE'—No(k%v(q)j8*(kF-V+q) 

J 4TT 

X / . ( ^ , £ / ) { 5 ( E - £ , + c o q ) [ l + i V ( q ) ] 

+ 8(E-E'-a>q)N(-q)}. [39) 

The self-energy is 

r dti 
2a(h,E) = (? / fflqdE—#0[»(g)]V(kF-k/--q) 

J 4TT 

iMk^E'+^-Mk^E'-u,)) 
X - . (40) 

I E-E' J 

Terms proportional to N(q) do not appear in (40) 
because these terms are proportional to 

(? fdE'iE-E')-1, 

which vanishes. 
If we now finally collect all our results, the transport 

equations for the quasiparticle distribution function 
A'(q) and /become 

1 + • +(Vk ,€k J0.V r/ ,(fc,E) 
dE J dt dt dE 

= - 2 T T 

r dtf 
/ d\—dE'NJiv 

J 4TT 
( q ) ] 2 5 3 ( k F - V - q ) 

X{d(E-E'-<*qKZl+N(<filMk,E»tl-f,^ 

+ 5 ( E - E ' + W q ) ( [ t f ( - q ^ (41) 

C(d/ao+vqWq.vr]^(q) 
r dti dQ' 

= - ( 2 T T ) 4 E / No(k)No(k%v(q)yd*(kF-W-q) 
o- J 4w 4x 

X{N(q)tl-Mk,E)lfa(k', E-^)~[\+N{q)-]UkyE)l\-Uk, JE-« q ) ]} . (42) 

Equations (41) and (42) represent one form of our 
basic transport equations. Notice that, except for the 
terms dX/dt and 62/dE these equations are identical in 
form with the standard weak-coupling transport 
equations.12 The only difference is that where the 
kinetic-energy variable ek appears in the weak-coupling 
equations the total energy variable E now appears. If 
the distribution function depends upon space but not 
upon time, the transport equations are identical to 
those of the weak-coupling theory. 

12 J. M. Ziman Electrons and Phonons (Oxford University 
Press, New York, 1962). 

IV. TRANSPORT EQUATIONS IN THE 
LANDAU FORM 

We shall refer to Eqs. (41) and (42) as the energy-
space or (E-space) form of the transport equations. 
This form does not look like the Landau equations for 
a Fermi liquid because Landau works with the momen
tum variable k rather than E. In this section, we shall 
find equations which look similar to Landau's by 
transforming from E space into k space. 

In order to transform into k space, we begin with a 
definition of the quasiparticle energy of the Landau 
theory 

E,(k;.r ,0 = €k+2XE(k; r,t),k; r,t). (43) 
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We can define a new variable 

(44) 

which can be used as a basic variable instead of E. This 
variable clearly has the significance of the local kinetic 
energy of a quasiparticle with total energy E. 

For the remainder of this section, we assume that for 
each €k there exists a unique £(k ; r , J ) which solves 
Eq. (43). This uniqueness is known to fail in several 
cases of interest.13 

A k-space distribution function can be defined as 

»„(k; T,t) = fv(E,%\ r , l ) | ^ ( k , M ) . (45) 

The transport equations can now be transformed into 
k space. However, from (43) 

d E , ( k ; r , 0 = Z a ( k ; r , / ) 
X[der\-dL9(E,%; r,0 | ^ ^ ( k > r , o ] , (46) 

where dZ is to be computed at fixed E and 

r as* * I 
Z,(k; r ,*)= 1 (£,*;*,*) 

L dE I 

This Z(k) is called the wave function renormalization 
constant. From (46) it follows that 

VrE(k) = Z(k)[V1S(k,E)] J P . j j ( k ) , (48a) 

-E(k)=z(k)[(a/aos(*,£)]fcj(k), i48b) 

j' 
T(fc,r,0J 

(47) 

VkE(k) = Z(k)Vk€k. (48c) 

The last relation follows because Vk2(£,£) is negligibly 
small. Equations (48) may be used to rewrite the trans
port equations, since 

dn{k) = [df(k,E)+ (df/dE) (k9E)dE(k)l, (49) 

where df(k,E) is to be taken at fixed E. After some 
algebra we discover that the electronic transport 
equation, Eq. (41), may be expressed in k space as 

l(d/dt)+Vk£(k) • V r - VrE(k) • V k > ( k ) 

= -Z(k)Ds>(J&,£(k))»(k) 

- 2 < ( £ , E ( k ) ) [ l - » ( k ) ] , (50) 

which is exactly the Landau form of the transport 
equation. Notice that we have not assumed that T is 
small compared to co0 or fi~l in the derivation of this 
equation. Therefore, we can conclude that the Landau 
transport equation is valid for all temperatures much 
lower than the degeneracy temperature. This is a much 
wider range of validity than we might have guessed a 

To complete the transformation into k space, we 
rewrite 2>, 2<, n > , and II< in terms of k-space variables. 
From (48c) 

/

dQ, r 

—dENo{k)= / , 

<fa dE(k) 
dek—NQ 

47r Jek - / ( 2 ^ 
-Z(k) . (51) 

Therefore, the collision terms in the Landau-Boltzmann 
equation may be rewritten with the aid of (41) and 
(51) as 

Z(k)S>(k,£(k))= (2TT)-2 f d*qd*kflv(q)yZ(k)Z(k')d*(k-k'-q) 

X [ l - n ( k O ] { 8 ( E ( k ) - E ( ^ (52a) 

Z(k)S<(k,£(k))= (2TT)-2 fd*qdWtv(q)JZ(k)Z(k')8*(k-k'-q) 

X^(kO{5(£(k)-E(kO-coq) iV(q) + 5 ( £ ( k ) - E ( k O + c o q ) [ l + A r ( - q ) ] } , (52b) 

These collision terms differ from those of the weak-
coupling theory only in the appearance of the exact 
energies and of the extra factor Z(k)Z(k') in the 
scattering matrix element. In the weak-coupling theory 
this factor is replaced by unity. 

In the transformation from E space to k space, the 
only part of the phonon-transport equation, Eq. (42), 
that is modified is the collision terms !!>•<. These 

become 

n>(q,co) = £ f -CHq)]2Z(k)Z(k')58(q-k+k') 

n<(q,a>) = £ 

X 8 ( c q - £ ( k ) + £ ( k ' ) ) » ( k ) D - n ( k ' ) ] ; (53a) 

i (2T)' 
-t>(«);pz(k)z(koa»(q-k'+k). 

13 If the inverse to Eq. (44) is not unique, we must define several 
branches to the quasiparticle spectrum, such that integration over 
ek and summation over the branch index is equivalent to integra
tion over E. The interpretation of the several branches is similar 
in spirit to the interpretation of the several poles found on the 
second Riemann sheet of g(k,Z) by Engelsberg and Schrieffer 
(Ref. 15). 

X 6 ( c o q - £ ( k , ) + E ( k ) ) n ( k ) [ l - ^ ( k / ) ] . (53b) 

Again the only change from the weak-coupling limit is 
in the modification of the energies and in the appearance 
of wave function renormalization constants. 
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All of the results of this section could have been 
derived by making the (unjustified) quasiparticle 
approximation14 

g>(k,£) = 2 r f ( w ~ £ ( k ) ) Z ( k ) [ l - » ( k ) ] , 

g<(k,E) = 2T5(a>-E(k))Z(k)n(k) (54) 

in the basic transport Eqs. (15) and (16). 
Equations (54) are wrong because A (k,E) has, when 

/3_1^a>o, considerable structure which is not reflected 
in the 5 functions. Nonetheless, the quasiparticle theory 
exists despite the failure of Eq. (54). 

V. CONSERVED QUANTITIES AND 
CONSERVATION LAWS 

Since the Landau transport equation has been 
verified for the electron-phonon system in a metal, we 
might expect that Landau's identification of the 
densities and currents of conserved quantities might 
well be correct. According to Landau, the density of 
electrons with spin a should be 

»„(r,*) = (2TT)-3 ffflknafr; r,/) , (55a) 

while the particle current for spin <r is 

j , ( r , 0 = (2TT)-3 / j 3 £[V k £ , (k ; r ,*)>,(k; t,t). (55b) 

The time derivative of the energy density is 

d r d*k d 
-€ ( r , / ) = £ / ——E,(k;r ,0-~»,(k; r ,*) 
dt cr J (2x)3 dt 

d r ddq 
+ ~ / ——coq7V(q;r,/) (55c) 

dtj (2TT)3 

with energy current 

/

d?k 
— — { V k i [ ^ ( k ; r , 0 ] 2 K ( k ; r , 0 
(2TT)3 

r dzq 
+ 7 — i [ V q < M q ; r , 0 . (SSd) 

i (2TT)3 

The "momentum" density is 

G(r ,0-(27r)~ 3E [fflkkn,fct,t) 

+ (2*)-*[d>q<iNq(r,t) (SSe) 

and the divergence of the stress tensor is 

/

d3& 
k[V k £, (k ; r,0 • V rn,(k; r,0 

(2TT)3 

- V A C k j r ^ - V k W ^ k ; ^ ) ] 

r dzq 
+ qVqcoq .V r^(q;r,/) . (SSf) 

i (2x)3 

We shall see that Eqs. (55) are, in fact, quite correct 
in the model which we have considered. In the more 
general model which is applicable to real metals, the 
concept of "momentum" density loses much of its 
meaning, since "momentum" is not conserved when 
umklapp processes play an important role. We shall 
specialize the Hamiltonian (1) still further, however, in 
order to bring out the relationship of the present theory 
of the electron-phonon system, with the ordinary 
Landau theory in which phonons are not involved. We 
shall assume spherical energy surfaces, i.e., we shall take 
€k=£2/2m.. 

With this simplification, there is one result that we 
might want to take over from the Landau theory which 
is not, in fact, permissible. We might be tempted to 
identify the electronic mass flow current m?sa)ff(r,t) 
with the electron quasiparticle part of the momentum 
current by writing 

/

(fib r d^k 
[ V k £ A k ) > , ( k ) = £ / k«„(k). (56) 

(2TT)3 « . (2x)» 

Equation (56) is false; we shall see this in detail below. 
As a first step in verifying the identifications (55), we 

verify that the densities and currents defined in this 
manner satisfy the standard conservation laws. 

These conservation laws follow from the integral 
invariances of the Boltzmann equation. By using the 
expansions (52) and (53) for %>>< and !!>•< we find the 
following integral invariants 

r d*k 

J (2TT)3 

f Off,(TO 

£„(k) 

k 

Z „ ( k ) { 2 , > ( k , £ > „ ( k ) - 2 < ( k , £ „ ) [ l - « „ ( k ) ] } 

CO 

+ / 
d*q 

(2*Y 
q 

{n>(q,co9W(q)-n<(q>co f f)[l+7V(q)]} = , (57) 

14 Reference 2 includes detailed discussions of the application of quasiparticle approximations like (67) for the situations in which 
these are valid. 
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which we have written in a vector notation. Equation (57) may be combined with the phonon Boltzmann equation 
(42) and the electronic &-space Boltzmann equation (50) to give the required conservation laws: 

de(r ,0 /d/+V-j € ( r ,0 = 0, 

dG(r,t)/dt+V-X(t,t) = 0. 

(58a) 

(58b) 

(58c) 

Thus, we see that the identifications (55) are consistent in the sense that the quantities thus defined satisfy the 
right conservation laws. One cannot yet conclude that these identifications are correct—one can only say that if 
the densities are correctly identified, then the currents certainly are. 

To get a more solid verification of (55) we must compare these expressions with more exact expressions for the 
densities are currents of conserved operators. To make this comparison, it is convenient to work in E space. The 
transformation of Eqs. (55) to E space is easily effected with the aid of Eqs. (48) and (49). The results of this 
transformation are 

dna 

dt 

de 

d r dti r d A "I A 

- / —dENo(k)\ 1 2,(ft,E) k ( * , E ) ; 
dtJ 4TT L dE J 

dil 

Air 
-dEN0VkFekFfff(k,E); 

dt 
• = E 

r dti f r 

dE 
-Mk,E) 

.dt .dt LdE 
-f«(k,E) E+- I 

d*q 

dt J (2TT)3 
Mq)\ 

dQ, A r d3q 
—dEN0E(VkFekF)fa(k,E)+ / iCVQV]iV( ?) ; 
4TT J (2x)3 

cr 

r <M 
G=E / -^ 

* J 4?r 

/

d£l c d^o 
—dE(kF)i(VkFeM(k,E)+ / ffi(V,«q)^(q). 
4TT J (2x)8 

•dEN0kF\ 
dMKE) 

dE > (Wl?*VWl 

(59a) 

(59b) 

(59c) 

(59d) 

(59e) 

(59f) 

Equations (59) are convenient alternative forms for 
the densities and currents. Notice that all three currents, 
j , j e , and X take exactly the same form as in the weak-
coupling theory except for the replacement of the 
dummy kinetic-energy variable e of the weak-coupling 
theory by the dummy variable E in the exact theory. 
This form invariance will be important below where we 
compare the calculations of transport coefficients in 
the weak coupling and exact theories. 

Equations (59) should be compared with the exact 
expressions for the densities and currents. Let us begin 
with the particle current because that is the simplest 
case. The exact expression is 

}<r 

d*k dE k 

(2TT)3 2TT m 
grHKE); (60) 

which may be written in terms of f(k,E) with the aid 
of (24) and (26) as 

/

dQ, kF 
—dE—fff(k,E). 
47r m 

In this way, the correctness of Eqs. (59b) and (55b) is 
verified. In particular, we may conclude that the 
number of electronic quasiparticles is the same as the 
number of electrons, and the charge of a quasiparticle 
is the electronic charge. 

From the exact theory, the time derivative of the 
density is 

dflo- d r 

dt dtJ 

r dil d 
= No —dE— 

J 4TT dt 

dsk dE 

(2TT)3 2TT 

dQ d 

&HKE) 

•Mk,E). (61) 

Equation (61) does not look the same as (59a). The 
difference between these is the term 

dQ d2a(k,E) A 

—dENQ Mk,E) 
4TT dE 

(62) 

However, Eq. (40) for 2 may be used to verify the fact 
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that expression (62) vanishes. Therefore, Eqs. (55a), 
(59a), and (61a) all give equally valid expressions for 
n(t,t). 

Next consider the "momentum" density which is 
exactly 

G(r,0 = Z(27r)-4 [d*kdEkg<QL,E) 

+ (2x)~4 f d*qda>(ir<(q,co). 

Equations (34), (36), and (60) enable us to simplify 
this as 

/

/7Q /» d^O 

—dENokFf(k,E;r,t)+ / • qN(q;t,t) 
4*- J (2ir)3 

f <Pq rdca 1 dH< 
+ q<P/ • • (63) 

J (27r)3 J 2T o)—coq do) 

The last term is the contribution of the structure of 
the line shape of r>(q,co). The principal value has the 
effect of eliminating the contribution of this term in 
the immediate neighborhood of o> = coq, which contribu
tion is taken into account by the second term. 

We may substitute the identity 

- / 
d*qda> q d l T 

(2?r)4 co—-coq do) 

-?/ 

(q,w) 

—dENQMk,E)kF—(k,E) (64) 
4TT dE 

into (63) and immediately verify that the identification 
(59e) is correct. Equation (64) follows from Eqs. (28) 
and (40) after a few manipulations. 

We can now understand why Eq. (56) is not true. 
This equation would set the electronic mass flow 
current equal to the part of the momentum density 
which comes from electronic quasiparticles. However, 
the quasiparticle is part of the time a combination of 
electron and ion motion, so that the quasiparticle 
momentum is partially electronic, and partially ionic. 
In the usual Landau theory, the quasiparticle momen
tum belongs partially to one electron and partially to 
its surrounding cloud of correlated electrons, but all of 
the momentum is electronic. 

The following interpretation can be given to the 
terms of Eq. (63). The first term is the electronic mass 
flow. The second term is the part of the ionic momentum 
that we associate with the true phonons which have the 
dispersion relation cuq. The final term is the part of the 
ionic momentum which cannot be associated with the 
phonons, but which we have been able to incorporate 
as part of the quasiparticle momentum. 

The great virtue of the Landau theory is that it 
manages to associate all the necessary physical quanti

ties with the quasiparticles, in this case, with the 
electrons and phonons. Because of the definite energy-
momentum relations, calculations are simplified and 
made more intuitive. There are no terms in the Landau 
theory, besides the collision terms, which are not 
associated definitely with one or the other type of 
quasiparticles. In the straightforward Green's function 
theory, on the other hand, contributions like the last 
term of (63) are commonplace. These off-energy-shell, 
away-from-Fermi-surface contributions are difficult to 
deal with. 

One may ask why it is that it is possible to lump such 
quantities into the quasiparticle terms. Why are we 
able to find such miraculous identities as Eqs. (62) 
and (64)? The answer seems to lie in the existence of 
the conservation laws. On the one hand the Green's 
function theory satisfies the conservation laws whether 
or not we take into account the peaking of the distribu
tion functions g< and r<. On the other hand, we have 
seen that the areas under these peaks, namely, f(k,E) 
and iV(q), must also satisfy the conservation equations, 
Since it is virtually impossible that two distinct sets of 
"additive" conserved quantities exist,15 there must be 
identities connecting the two forms of the expressions 
for the conserved quantities. 

Since we have verified the Landau-theory expression 
for the momentum density, it follows from the conserva
tion law that Eqs. (55f) and (59f) for the stress tensor 
must be correct. 

To verify the Landau-like expressions for the energy 
density and energy current, we must employ arguments 
rather similar to those above, which unfortunately 
involve much more algebra. We shall not present these 
arguments here but reserve them for an Appendix. 

VI. EVALUATION OF PHYSICAL QUANTITIES 

We now have two forms of the electronic transport 
theory: a momentum space form which looks essentially 
identical to that of the Landau theory, and an energy 
space form which is somewhat simpler and easier to use. 
Despite the greater simplicity of the energy space 
results, it is instructive to study in detail the result of 
applying the standard Landau approach to our system. 

As we have just noted, there is one major point of 
difference between the Fermi liquid case and the 
electron-phonon system: the failure of Eq. (56) which 
results from the contribution of 5r< to the momentum 
density. This failure in turn invalidates two important 
results of the Landau Fermi liquid theory in our case: 

m r dQ! A A 
_ = 1 - £ N0 / — / , , . ' ( ! * • k / ) f t . * 7 2 
m* <r,<r' J 47T 

(65) 

and also the relationship of the chemical potential to 

15 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1958), p. 11. 
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electronic density, 
dfl 7T2 

—= + £ (47T)"1 / dO'/,.,,(kF;k,') 

X ( l - £ 4 ' ) / 4 , (66) 

where /<,,*> (&F; £ / ) is denned by16 

(67) 

To see how these expressions must be modified in the 
electron-phonon case we calculate dn/djj, by using 
Eqs. (55a) and (61) to find the response to a slow 
variation of the chemical potential with time. From 
(63), 

dn dndfx r dtt df(k,E) 
—= = 2 / — dENo . 
dt dn dt J 4TT dt 

However, in equilibrium, 

M£)=/o(£)=C^ ( B-" )+i]-1 , 
so that 

d A df0(E)dn df0(E)dfi 
-f(k,E) = = . 
dt dfx dt dE dt 

Thus, Eq. (61) implies that 

dn r d£l mko 
— = 2 / — N0= , 
dfi 4?r 

(68) 

which is exactly the same result as in the weak-coupling 
theory.17 For electron-phonon interactions, Eq. (68) 
replaces Eq. (66) of the Fermi liquid theory. 

Equation (55a) may be used to find an alternative 
evaluation of dn/djji. From (55a), we have 

dn r 
- = 2 / 
da J 

d3k d 

du J (2ir)8dju' 

dsk d 

fo(E(k)) 

J (2ir)3d£ L d/x J 

= 2 dekNo- - 1 + / /(k;k ')—— . 
J 8E I J (2TT)3 dn J 

(69) 

Since, in our case, fVt<rr is diagonal, fff,^(k,k,) = 8<Tt<rf 
Xf(k,k'). At temperatures such that jS-1 is much 
smaller than typical phonon energies we can follow 
Landau in making the replacement 

d*k' dn{kf) 1 dn r dQ' 
•/(k;k') = —f(kF;W) 

~ ' J dir 

r d6k 

J ^ r (2TT)3 dn 2 djj,, 

16 One should notice that fao>(k\ k') is diagonal in spin space 
in our case. 

17 An identical argument leads to D. Simkin's result that the 
spin susceptibility is unaffected by electron-phonon interactions 
£ thesis, University of Illinois, 1963 (unpublished)]. 

and 

/

r / de\ m r 
de= dE[—) = — dE 

J \dE/ <m* J 

to find 

dn nt*kor 1 C d&f dn~] 

__= h__ / _ / ( k F ; k / ) _ . 
dp. 7T2 L 2 J 4TT d/J 

A comparison of Eqs. (68) and (70) indicates that 

(70) 

dQ' 

m 

r i 
= l-Wo — / ( k F ; V ) . 

J 47T 
(71) 

For the case of the electron-phonon interaction, Eq. 
(71) may be used at low temperatures in place of 
Eq. (65) of the Fermi liquid theory. 

The specific heat may be evaluated with the aid of 
Eqs. (55c) and (59c) if we interpret the time derivative 
in this equation to refer to a gradual change in the 
temperature T. It is natural to split the specific heat 
into two terms. The phonon contribution is 

Cp=— f 
dT J 

d*q 1 

( 2 T T ) 3 e ^ - 1 
(72) 

Since coq is independent of temperature, this is exactly 
the usual weak-coupling phonon specific heat. 

The electronic quasiparticle specific heat is given by 

C< 
ds(E)-id/0(E) rda rr as(E)-i. 

= 2/ — dENoEll 1+ 
J 4TT IL dE J dE J dT 

d2(k,E)df0(E)] 

dT dE 

/

dzk d 

— - £(k)—/0(£(k)). 
(2*-)3 dT 

The second equality gives us 
C'=%irl(m*/m)TN<l 

(73) 

(74) 

at temperatures far below the typical phonon tempera
tures. The first equality implies an expression for the 
electronic specific heat which is valid at all temperatures, 
namely, 

(P r dtidQ' 
Ce=%ir2TNo+2-- / dEdE' N0(k)N0(k

f) 
T J 4TT 4TT 

x-
a/0(£) d/o(£') 

dE dE' 
\v(q)J 

(E-E'y 
J 

E-E'+wt 
(75) 

It ought to be remarked that the electronic contribu
tion to the specific heat can be distinguished experi
mentally from the ionic contribution only for tempera
tures much less or rather greater than the Debye 
temperature, since both the magnitude and temperature 
variation of the lattice specific heat overwhelms the 
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electronic contribution in the intermediate temperature 
range. In the low-temperature case, the result can be 
shown to agree with that found by Eliashberg.8'18 In 
the range above the Debye temperature, the result is 
given by (74), but with w* set equal to m. 

Finally, we consider some of the transport coefficients: 
the viscosity, the thermal conductivity and the spin-
diffusion coefficient. These are usually defined by con
sidering the local equilibrium situation in which the 
distribution functions are such that the collision terms 
in the Boltzmann equations vanish, and the distribution 
functions depend upon space but not upon time.19 In 
our case, the local equilibrium solutions are20 

/ i r (^E) = { e x p 0 8 ( r ) [ E + k , - v ( r ) - M . ( r ) ] ) + l } - 1
> (76a) 

^ (q )={exp03( r ) [co q +q. W ( r ) ] ) - l} - i . (76b) 

Because of the spatial dependence of these terms they 
produce forcing terms on the Boltzmann equations (41) 
and (42) in that the left-hand sides of these equations 
become, respectively, VkFe^F-Vrf and Vqwq- Vr7V(q). The 
transport coefficients are then defined in terms of the 
currents which appear in response to these forcing terms. 
Thus, for example, the thermal conductivity K is 
defined as the coefficient which connects the energy 
current and the gradient of the temperature 

j \(r) = - K V r ( r ) . 

But, in this situation in which there is no time 
dependence, the Boltzmann equations (54) and (55), 
the expressions (73b), (73d) and (72f) for the currents 
are precisely identical in form to those which appear in 
the weak-coupling limit. The only change is the 
renaming of the variable of integration, e—> E. Thus 
the exact transport coefficients which emerge from the 
solutions to these exact equations must be the same as 
those which are found by solving the weak-coupling 
Boltzmann equations. We may conclude that the spin 
diffusion coefficient, the viscosity (which is related to 
the damping of low-frequency phonons), and the 
thermal conductivity are all predicted quite correctly 
by the standard weak-coupling theory. Other transport 
coefficients which are unaffected by the interaction are 
listed in the final section. 

VII. CONCLUSIONS AND DISCUSSION 

We have seen that for the model considered, the 
electron-phonon system can be described by the 
traditional Boltzmann equation, with corrections of the 
Landau type, and with matrix elements renormalized. 
Thus the concept of quasiparticles can be considerably 
extended, even into a region where an energy-momen
tum relation does not obviously exist. That a precise 

18 G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 43, 1005 (1962) 
[English transl: Soviet Phys.—JETP 16, 780 (1963)]. 

19 Chapman and Cowling, Mathematical Theory of Non-Uniform 
Gases (Cambridge University Press, New York, 1960), Chap. 7. 

20 Reference 3, Eq. (10.13). 

energy-momentum dispersion relation can be defined at 
all rests upon the circumstances that the momentum 
dependence of many important functions is weak. In a 
certain sense, therefore, the quasiparticle states of this 
theory are states of definite excitation energy and 
definite position on the Fermi surface, but are smeared 
out in an unimportant way in momentum space about 
the Fermi surface. 

The importance of this result is that it leads one to 
believe that there is nothing to worry about in the use 
of the Boltzmann equation throughout the entire 
temperature range in metals. With the Landau correc
tions, ordinary transport properties should be capable 
of description to a very high accuracy. These Landau 
corrections have, to our knowledge, been written down 
for the electron-phonon system for the first time, 
although the equations are exactly what an educated 
guesser might come up with. 

However, there exists a simpler statement of the 
transport theory for this case than the Landau k-space 
description. In E space, the transport equations have 
an extra simplicity resulting from the disappearance of 
matrix-element renormalizations. Many-body effects 
only appear in the time derivative terms in the transport 
equation. 

This extra simplicity has enabled us here to show 
that the spin diffusivity, the thermal conductivity, and 
the viscosity are all correctly predicted by the standard 
weak-coupling theory in the sense that there are no 
many-body electron-phonon interaction corrections to 
these quantities. For just this same reason, the tunneling 
rate,4 the spin-lattice relaxation time,4 the dc electrical 
conductivity,21 the anomalous skin effect,21 and the 
de Haas-van Alphen effect,22 dn/dfi and the spin 
susceptibility17 are all unaffected by these many-body 
effects. In addition, it easily follows from our equations 
(generalized to include the effects of an external static 
electromagnetic field) that the thermopower and all 
the galvano-magneto-thermal coefficients are correctly 
calculated by weak-coupling theory. 

On the other hand, it is known that the low-field 
cyclotron resonance frequency23 and the specific heat8-18 

are indeed modified by electron-phonon interaction 
effects. Thus, considerable progress has already been 
made in sorting out the effects of electron-phonon 
interactions in normal metals. 

The question arises how well our simplified model 
reflects the properties of real metals. There are at least 
three important points. First, Coulomb effects have 

21 S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto) 
29, 341 (1963); see also, K. Baumann and J. Ranninger, Ann. 
Phys. (N.Y.) 20, 157 (1962). 

22 S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto) 
30, 271 (1963). 

23 A calculation of the cyclotron resonance frequency is men
tioned in Ref. 22. From our point of view this calculation can be 
understood by considering ¥ = ma; i.e., dG/dt= — jXB/c. Since 
G has in it an electron-phonon interaction correction [Eq. (72e)] 
while j does not [Eq. (72b)], the resonance frequency must be 
modified, 
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to be included. I t is known that with Coulomb effects 
alone one can obtain the Landau equations.2 These 
strong effects lead to self-energy and vertex corrections, 
etc., which are weakly varying in both momentum and 
frequency. I t seems highly plausible, therefore, that one 
can build the electron-phonon Landau theory on an 
underlying Coulomb quasiparticle theory. This com
bined theory, as well as the relationship of the present 
theory to graphical analysis, is presently being studied. 

The same sort of remarks apply to the additional 
complications introduced by the presence of impurities, 
which are present in all real metals.24 

Thirdly, lattice effects have been glossed over. The 
most important of these is perhaps the existence of 
umklapp processes. There is no difficulty in extending 
the theory to take these into account although, if 
umklapp processes are present, the concept of crystal 
momentum density loses much of its meaning. The 
result is as expected; all that is needed is to include the 
umklapp processes in the collision and self-energy 
expressions. Some interesting problems can be anti
cipated if the structure right at the zone boundaries are 
important, or if there are usually small band splittings, 
caused by spin-orbit effects, say. In this case, the 
distribution function cannot be diagonalized in advance, 
but has to be regarded as a density matrix with a small 
number of dimensions. 

Other extensions of the theory will be needed to take 
into account disturbances of high frequency (of order 
a>o). Disturbances arising from weak magnetic fields, 
and slowly varying electric fields are easily included in 
the natural way. The response of the system to a high-
frequency microwave field may not have a simple 
transport description, since even the energy levels 
become poorly defined. However, the problem might 
well be soluble, since MigdaPs arguments still apply. 
On the other hand, there are arguments which indicate 
that the classical effects of a strong magnetic field 
(cyclotron frequency comparable with the Debye 
frequency) can be incorporated in the natural way into 
the Landau-Boltzmann theory. Thus, for example, 
the high-field magnetoresistance can be calculated on 
the weak-coupling model. These arguments will be 
presented in a future communication. 

Finally, it is tempting to speculate that the normal 
fluid in superconductors might, after all, be susceptible 
to a nearly exact description of the Landau type. 
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APPENDIX: VERIFICATION OF LANDAU-LIKE 
EXPRESSION FOR THE ENERGY DENSITY 

In the main body of this paper we claimed that the 
equivalent expressions (55c) and (59c) defined the time 
derivative of the energy density. In this appendix we 
investigate this claim and establish its plausibility. 

We begin by rewriting the Landau expression for the 
energy density by integrating Eq. (59c) by parts to 
obtain 

deL/dt=d(e1+e2)/dt+I+dep/dt, (Al) 
where 

«i = E ( 4 : . ) - / dQdENoEf<r(k,E). (A2) 

€2= - E t k ) " 1 / d2dEN0E(-Af„(k,E), (A3) 

and 

e p = ( 2 i r ) - » f d > q t f ( q ) , (A4) 

/ = - E ( 4 T T ) - 1 [dQdEMk,E)&2,/dt. (AS) 

Notice that / does not even appear to be a total time 
derivative. If our identification of the time derivative 
of the energy density is to make any sense at all we 
must show that J is a total time derivative. If we use 
Eq. (53) for S we can show after a little manipulation 
that 

I=de*/dt, (A6) 
where 

€3 = —W*)-iT,f dQdEN&,(k,E)Mk,E). (A7) 

Therefore, we can integrate Eq. (Al) to construct a 
quantity, 

eL=el+e2+e,+ ep+C. (A8) 

Here, C is a constant of integration which is independent 
of time and which therefore makes no contributions to 
changes in eL. 

The quantity eL is dimensionally an energy. I t 
satisfies a local conservation law 

deL/dt+V-j\ = 0. 

Since there exists only a limited number of conserved 
quantities, it is hardly conceivable that eL can be 
anything else but the energy density. 

To make this point more firmly, we consider the ex
pression for the energy density 

6 = E ( 2 T T ) - 4 fdfik dE^E+e^g^^e) 

+ (2TT)-4 l d \ da> cor<(q,co), (A9) 

which is exact when 5< is negligibly small. 
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Unfortunately, we cannot easily evaluate expression 
(A9), in general, because we do not know fdeeg*^. 
Consequently, we specialize to the case of local thermo
dynamic equilibrium25 in which 

g<{k,E) = A„{k,E)U^E). (A10) 

where / is the local equilibrium distribution function of 
the form (88a) where we allow /3, v, and na to be func
tions of r and /. The consideration of this case is sufficient 
for establishing the correctness of our formula (87) 
for the electronic specific heat. Since Eq. (22) implies 
that 

de(E-e-29)A*=0, (AH) 

we may rewrite expression (A9) as 

d*k dE 

-? / Eg<r<(k,E) 
(2TT) 3 2TT 

/

dzk dE 
-——^{kE)g<{k,E) 
(2TT)3 2TT 

/

ddq do) 
•— (ar<(q,a)), 
(2TT)3 2TT 

e = £ (2*.)-* fd*kdEEg< (k,E) 

-hi! (2v)-* [ dmE2(k,E)g<(k,E) 

+ (2TT)-4 f&qdwr<(q,w). (A12) 

26 Note added in proof. One of us (R. E. P.) has succeeded in 
generalizing the proof of this Appendix to the general nonequi-
librium case. This proof then permits us to conclude that Eqs. 
(55c) and (59c) are always correct expressions for de/dt. 

With the aid of the replacement 

(2TT)-3 fd*k-+ (47T)"1 fdttdeNo 

and the use of the sum rule 

(2Tr)-1[deA(k,E) = l, 

we can see that the first two terms in (A 12) are, respec
tively, identical to ei and €3 except for a time-independ
ent constant of integration. Therefore, we discover that 

e-eL= (2TT)-4 / d*qdua)r<(qJo>)-e2-ep (A13) 

when we neglect the irrelevant constant of integration. 
Equation (36) enables us to express r< in terms of 

A(q) and 5r<=-[d(Rer)/dw]n< Therefore, 

/

ddqdoo 1 d 
[con<(q,co)]-e2. (A14) 

(2x)4 o)—6oq do) 

A substitution of expression (28) for 7r< leads, after 
considerable manipulation, to the result that the right-
hand side of (A14) vanishes. 

Therefore, in local thermodynamic equilibrium, our 
heuristic identification of de/dt is identical with the 
exact expression for this quantity. If our identification 
of the energy density is wrong, then there must exist a 
new conserved quantity20 whose density is e— eL. This 
new quantity must vanish whenever the system is in 
local thermodynamic equilibrium. It seems impossible 
to us that such an object can exist, and consequently 
we take the Landau-like identification of the energy 
density to be correct. 


