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should be noted that due to the presence of these overt 
effects a spin-orbit coupling constant deduced from a 
single multiplet that follows the Lande interval rule 
need not be representative of the entire configuration. 

When the parameters are derived from a least-squares 
method it is impossible to distinguish the contributions 
to the spin-orbit coupling constant that arise from the 
effects of electrostatically correlated interactions with 
other configurations and those that arise from the 
spin-orbit interactions within the configuration. Like
wise, in empirical determinations of the spin-other-orbit 
interactions for a configuration, it is impossible to 
decide whether the derived spin-other-orbit parameters 
represent a real spin-other-orbit interaction within the 
configuration or whether they are attributable to a 

I. INTRODUCTION 

IN previous papers1 a nonadiabatic theory of elastic 
scattering has been developed and applied, among 

other things, to the low-energy scattering of electrons 
from atomic hydrogen. At present the theory is being 
extended to cover inelastic S-wave scattering, and hence 
obtain the scattering cross sections <7is_is and cris_2s 

above the 2,? excitation threshold. This paper deals 
with the solution of the zeroth-order (angle-independent 
or relative s wave) problem described in Sec. I I of this 
paper. Only a brief review of the nonadiabatic theory 
is given since a full description is to be found in I. As 
pointed out in Sec. I l l , the elastic scattering cross 
section o-2s_2S may also be found from our calculation if 
it is assumed that the reciprocity condition is fulfilled. 

The accuracy of the solution is discussed in Sees. IV 
and V. In Sec. VI the nonadiabatic results are presented 
and compared with the results from the Is—2s close-

* Submitted by one of the authors (H.L.K.) to the faculty of 
the University of North Carolina in partial fulfillment of the re
quirement for the degree of Doctor of Philosophy. 

1 A. Temkin, Phys. Rev. Letters 4, 566 (1960); Phys. Rev. 126, 
130 (1962). The latter paper will be referred to as I in the text. 
Equations referring to it will be prefixed by a I. 

pseudo-spin-other-orbit interaction that arises out of 
the effects of electrostatically correlated spin-orbit 
interactions. 

Electrostatically correlated spin-orbit interactions 
are by no means the only possible correlated inter
actions that couple configurations. In fact, these 
interactions are probably of lesser significance than the 
electrostatically correlated two-particle orbit-orbit, 
spin-spin, and spin-other-orbit interactions between 
configurations. The properties of these interactions will 
be taken up in a later paper. 
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coupling expansion.2-5 The latter has been shown to be 
a variational approximate solution of the zeroth-order 
problem.1 Finally, the implication of our results for 
both the experimental and theoretical determination 
of the total inelastic cross section, <ris_2s is discussed in 
Sec. VII. 

II. ZEROTH-ORDER NONADIABATIC THEORY 

I t will be recalled from I that the nonadiabatic theory 
starts with a decomposition of the S-wave function 

*(rir4i2) = l/rinT, (2l+iyi^l(r1r2)Pl(cosd12), (12.3) 
1=0 

from which by substitution into the Schrodinger equa-

2R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958). 
3 P. G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129, 

1258 (1963). 
4 K. Omidvar, in Proceedings of the Third International Conference 

on the Physics of Electronic and Atomic Collisions (North-Holland 
Publishing Company, Amsterdam, to be published). Dr. Omidvar 
has kindly calculated for us the is-2s close-coupling results just 
above threshold. Cf. also, K. Omidvar, Phys. Rev. 133, A970 
(1964). 

5 R. Damburg and R. Peterkop, Proc. Phys. Soc. (London) 80, 
1073 (1962). 
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The nonadiabatic theory is applied to the inelastic S-wave scattering of low-energy electrons from atomic 
hydrogen. The zeroth-order (angle-independent) approximation for excitation of the 2s level from the 
ground state is described by the same equation used to describe elastic scattering below the 2s threshold, 
but with more complicated boundary conditions. The solution has been effected by expanding the wave 
function in terms of separable solutions. With the assumption of reciprocity it is also possible to obtain the 
2s—2s cross sections. The elastic (Is— Is) cross sections are within 1% of the close-coupling results in the 
triplet case, but are about 20% greater in the singlet case. The inelastic (Is —2s) cross sections are reduced 
about 20% in the triplet case and 20 to 40% in the singlet case, relative to the close-coupling results. 
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tion an infinite set of coupled two-dimensional differ
ential equations results. One defines a zeroth-order 
problem by neglecting the coupling terms of the 1=0 
equation: 

(A12+2/f2+E)$0
(0)(^2) = 0 (n>r2), (13.3) 

where 
A12=d2/dr1

2+d2/dr2. 

Our units are lengths in Bohr radii and energy in 
Rydbergs. 

Equation (13.3) can describe only relative s states 
and is therefore also called the relative s problem. In 
this paper we will consider incident electrons with 
energies greater than 10.2 eV. In such cases the target 
atom may be excited to the 2s state by collision. Hence 
the zeroth-order wave function $o(0) will be required to 
have the asymptotic form 

Km $0
(0)(rif2) = [04/&i) $mk1r1+aeikin'] 

ri—>oo 

XRis(r2)+beik^R2s(r2) . (2.1) 

For incident electron energies greater than 12.09 eV 
higher s states may be excited and for completeness 
should be included in (2.1). However since each new 
term added to the right-hand side of (2.1) adds greatly 
to the complexity of the problem, only the (Is) and 
(2s) channels are included in our calculation. 

In (2.1) ki is the wave number of the incident electron 
and k2= (ki2—0.75)1/2 is the wave number of an in-
elastically scattered electron. The function Rns(r) equals 
r times the nth. radial hydrogenic s state. A is an arbi
trary normalization of the incident plane wave, while 
a and b are constants which govern, respectively, the 
elastic and inelastic scattering cross sections. 

The zeroth-order wave function must also obey the 
additional boundary conditions1 

and 

$o (0 )(^2)|n=r2=0 triplet, 

(d/dn)$ow (nr2) | r i-r,= 0 singlet, 

$0<0)(ri,0) = 0. 

(12.6) 

(12.7) 

Here (d/dn) is the normal derivative. Equation (12.6) 
simply states the spatial symmetry of the wave 
f mnction: 

$o(0)(rir2) = =b$o (0 )(^i). 

The scattering cross sections obtained from (2.1) 
are 

k l 2 

a , i s- i s = 47r (2.2) 

Ml 2 

47T&2 \b\2 

o*is-2s = . (2.3) 
fti Ml2 

In order to ensure conservation of current, the con
stants A y a, and b are required to obey the relationship 

Im(A*a) = ki\a\2+k2\b\2. (2.4) 

To facilitate the solution of certain nonlinear equa
tions which appear in the problem, we let6 

case (i) A = ki(l — ia) , 
and 

a=x+iz2 

b=(k1/k2)
1i2zei8. ( 2 ' 5 ) 

As a check on the calculations the singlet case was 
also solved with7 

case (ii) A = ki, 
and 

a=(xe2i*i-l)/2i 

J = J [ ( V * J ) ( I - ^ ) ] 1 / V ( 8 I + W . ( 2 ' 6 ) 

In both cases the form of b is so chosen that Eq. (2.4) 
was automatically satisfied. Hence the complex numbers 
a and b are fully determined by the real numbers 
Re (a), Im(a), and Arg(b). The method of solution of 
Eq. (13.3) follows that used in I: $0

(0) is expanded in a 
series consisting of separable eigenfunctions of (13.3): 

$o(0) (rir2) = f — sinfeif i+aeik*Tl J 

XRis(r2)+beik^R2s(r2) 

+(?+H €ne-K^Rns(r2) . (2.7) 

The sum plus integral means, as usual, that the con
tinuum J states of hydrogen in addition to the discrete 
states must be included. For the discrete states 

Kn= (l—n~2—ki2) 

and for the continuum 

« P = ( 1 + £ 2 - £ I 2 ) 

1/2 

1/2 

(2.8) 

(2.9) 

With this relationship each term of (2.7) is an exact 
solution of (13.3) 

The expansion (2.7) automatically satisfies two of the 
boundary conditions (2.1) and (12.7) but not the third 
(12.6). In order to satisfy (12.6) we determine a, b, and 
Cn by the variational conditions1 

dIs/dXj=0 
Xj=a, Arg(b),Cn »=3,- • - , # + 2 . (2.10) 

dIT/dXj=0 

N is the number of terms, beyond the first two, in
cluded in the expansion (2.7) and 

Jo 

/•OO 

J 0 

|$0<o)(y1==r2)|2^ 

—®o(0)(rir2) 
dn 

(2.11) 

dr. 

6 H. S. Massey and B. L. Moiseiwitsch, Proc. Phys. Soc. 
(London) A66, 406 (1953). Our case (i) asymptotic wave form was 
suggested by this paper. 

7 R. Karplus and L. S. Rodberg, Phys. Rev. 115, 1058 (1959). 
Our case (ii) asymptotic form was taken from this paper. 
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TABLE I. Satisfaction of the diagonal boundary condition IS = IT — 0 at various incident momenta k\. 

ki (atomic units) 

Is 
IT 

0.8662 

1X10-5 
3X10-5 

0.9 

3X10~6 

2X10-5 

0.94 

2X10-5 
3X10-5 

3s 
threshold 

0.95 

1X10-3 
1X10-4 

1.0 

5X10-3 
1X10-3 

1.1 

2X10-2 
2X10-3 

1.2 

4X10-2 
4X10-3 

1.5 

1X10-1 

1X10-2 

Since a and the (Cn) are complex, 2N+3 real equa
tions result from (2.10). These equations are linear in 
the Cn, hence 2N of them may be solved immediately 
to obtain the (Cn) in terms of Re (a), Im(a), and Arg(&). 
The procedure followed is analogous to that outlined 
in part four of I, although some of the integrals involved 
are slightly different in form. The integrals were ob
tained in analytic form and were checked by numerical 
integration. However, in the singlet case due to the 
difficulty of the numerical integrations the analytic 
results were in some cases only checked to one or two 
significant figures. In order to obtain sufficient accuracy 
it was necessary to solve for the Cn using double pre
cision arithmetic; i.e. 16 significant figures were retained 
in the calculations. The remaining three equations are 
highly nonlinear in Re (a), Im(a), and Arg(6) and were 
therefore solved numerically. All calculations were done 
on the IBM 7094 computer of the Theoretical Division 
of the Goddard Space Flight Center. 

III. THE SCATTERING MATRIX 

If an exact solution were obtained for the zeroth-order 
Eq. (13.3), then the reciprocity condition8 should be 
fulfilled and the scattering cross sections <T2S-2S and 
C2s-is could also be obtained from this same calculation. 
Although we have no direct check on how closely the 
reciprocity condition is fulfilled, it is expected that when 
Is and IT are small enough, reciprocity is satisfied to an 
accurate degree of approximation. The cross section 
a2s-is follows immediately from the reciprocity condi
tion, one form of which is 

0"2s-ls= {kl/k2)2(Tls-2s • 

I t is however necessary to introduce the scattering 
matrix S in order to obtain (r2s_2S. 

Many forms of the asymptotic boundary condition, 
Eq. (2.1), have been introduced by various authors. 
Two of the more common variations are of the following 
types: 

lim $o ( 0 ) ( ^2 )= (smk^+Tne^Ruir*) 

+ (h/k1yi*T12e
ik*r>R2s(r2), (3.1) 

lim * 0
( 0 ) = (e~-ihm-SXxeikiri)Ru{r2) 

n—>oo 
- ( V ^ ) 1 / 2 % ^ * s ( r 2 ) . (3.2) 

In (3.1) the 7 # are elements of the transmission 
matrix T while in (3.2) the S# are the elements of the 
scattering matrix S. The coefficient (&2/&i)1/2 multi
plying Tn and Su is introduced so that Ty and 5*y will 
be symmetric. 

Equations (2.1) and (3.1) are related in the following 
way: 

Tn=haA*/\A\\ (3.3) 

T12=k1(h/h)1t2bA*/\A\ (3.4) 

The S and T matrices defined by (3.1) and (3.2) are 
related by 

S = H - 2 i 2 \ (3.5) 

Here 1 is the unit matrix. 
If the S matrix is required to conserve probability 

current, then it will be unitary: 

S S * = 1 . (3.6) 

If the reciprocity condition also holds, then the S matrix 
will be symmetric: 

Si2=S2i- (3.7) 

From (3.6) S22 may be found to be 

£22 = — Su^SnS 21/1 Su [2. (3.8) 

8 A derivation of the reciprocity theorem as it applies to scat
tering matrices is given by J. M. Blatt and V. F. Weisskopf, 
Theoretical Nuclear Physics (John Wiley & Sons, Inc., New York, 
1952), p. 528. 

Finally, the reaction cross sections are given by the 
formula 

au^js = 7TI di3—Sij 12/ki2, (3.9) 

where 8i3- is the Kronecker delta function. The o-2s-2s 
thus obtained are listed in Table VI. 

IV. INTERNAL CONSISTENCY OF THE SOLUTION 

The integrals Is and ITf Eq. (2.11), should ideally be 
zero. Presumably if enough terms could be taken in the 
wave-function expansion, (2.7), this should occur to an 
arbitrary precision, however, for N>8 the determinant 
of the Cj, (j=l,N), was generally too small for accurate 
results to be obtained. By trial and error sets of terms 
in the expansion were chosen which minimized Is and 
IT. The confidence we have in our results depends both 
on the smallness of Is and ITj and on the consistency 
of the cross sections obtained by choosing different sets 
of virtual eigenstates. The magnitude of the obtainable 
Is and IT are shown in Table I. As can be seen Is and 
IT are both quite small for energies less than that re
quired to excite the 3s level of hydrogen. As soon as the 
3s threshold is passed, there is a marked increase in the 
size of the diagonal integrals (particularly in the singlet 
case). The size of the diagonal integral continues to 
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TABLE II. Investigation of the internal consistency of the singlet nonadiabatic calculations. This table is discussed in Sec. IV. 

kl 
Atomic 
units 

0.9 
0.9 
0.9 
0.9 
0.9 
1.0 
1.0 
1.5 

Case (i) 

3X10-6 
i x i o - 5 
1X10-4 

5X10-4 
8X10"4 

5X10-3 
7X10-3 
1X10"1 

Is 

Case (ii) 

1X10~6 

7X10-6 

5X10-* 
3X10~4 

7X10-4 

3X10-3 
4X10-3 
8X10-2 

dis

ease (i) 

0.0339 
0.0339 
0.0334 
0.0309 
0.0289 
0.0469 
0.0463 
0.0131 

-2s 

Case (ii) 

0.0338 
0.0339 
0.0335 
0.0310 
0.0291 
0.0488 
0.0481 
0.0196 

cis-

Case (i) 

0.4674 
0.4674 
0.4676 
0.4680 
0.4672 
0.3263 
0.3283 
0.0958 

- Is 

Case (ii) 

0.4674 
0.4674 
0.4676 
0.4684 
0.4680 
0.3290 
0.3319 
0.1126 

Discrete 

3,4 
3 
4 

Virtual states 

0.05, 
0.05, 
0.05, 
0.05, 
0.2, 
0.05, 
0.05, 
1.15, 

0.3, 
0.3, 
0.3, 
0.3, 

0.6, 
0.5, 
0.5, 
0.5, 

3.4, 0.6, ( 
0.2= 
0.3, 
1.22 

Continuum 

0.9, 
0.7, 
0.7, 
0.7, 

3.75, 

1.1 
0.9, 
0.9, 
0.9, 
0.9, 

>, 0.45, 0.65, 
0.6, 0.8, 1.0, 
, 1.33, 1.43, 

1.1 
1.1 
1.1, 
1.05 

0.85, 
1.2, 

1.53, 

1.3 

1.0, 
1.4, 
1.63 

1.15, 1.30 
1.6 

increase out to 30.6 eV. At these higher energies there 
is also a marked decrease in the agreement of the cross 
sections obtained by choosing different sets of virtual 
continuum states. Again this was most bothersome in 
the singlet case. 

For the singlet case this behavior is illustrated in 
Table I I by the two top entries for &i=0.9 and the 
entries for &i=1.0 and &i=1.5. These entries represent 
some of the better runs obtained at these energies. The 
uncertainty in the singlet results can be gauged by com
paring case (i) and case (ii) results. [ In Table I I the 
cross sections are in units of irao2 and the statistical 
weight I is included. The columns labeled Discrete and 
Continuum virtual states refer to the n and p included 
in (2.7).] At the higher energies the triplet results seem 
to be quite a bit more accurate than the singlet results. 

I t should be remarked that it is an assumption that 
the zeroth-order Eq. (13.3) can be exactly satisfied 
subject to the more limited asymptotic boundary con
dition (2.1) in an energy domain in which we know that 
the 3s state, for example, is accessible. The above dis
parity in the quality of results on the two sides of the 
3s threshold may tend to indicate that this assumption 
is in fact incorrect. However, it is our opinion that the 
chief difficulty above the 3s threshold is not in the 
boundary condition (2.1) but in the loss of flexibility in 
the wave function in the region of interaction caused 
by the absence of the 3s state. Partial confirmation of 
this can be found in the last four &i = 0.9 entries in 
Table I I which illustrate the effect of omitting various 
low energy discrete virtual states from the expansion. 
Nevertheless because there is a provision for including 
a flexible choice of continuum states, we feel that any 
theoretical incompleteness in our expansion above 12.1 
eV can be largely compensated for. 

A more relevant question is how these cross sections 
will change by virtue of the redistribution of current 
when the totality of open channels is included. Clearly 
the present calculation cannot answer that question, 
although in some sense the assumption must be made 
that their effect is small. For if it were not, then the 
calculation of scattering in the ionization region would 
be a complete impossibility, because their inclusion 
would entail a wave function containing not only a dis
crete infinity of bound excited states but a dense in

finity of ionized states as well. I t is our opinion therefore 
that in close coupling, for example, when additional 
states are added at an energy where they may be 
excited their main effect arises from the increased flexi
bility they allow the wave function in the region of 
interaction rather than in the opening of the channels 
that they afford. Thus the present method, which places 
virtually no restriction on the number of terms that can 
describe the wave function in the region of interaction, 
is expected to contain most of the effects on the Is and 
2s channels of a close-coupling expansion with a similar 
number of terms. 

V. EFFECTIVE RANGE EXPANSION ABOUT 
THE 2S THRESHOLD 

A final check was made to insure that our calculation 
was compatible with previous nonadiabatic (NA) 
calculations below the 2s threshold. Ross and Shaw9 

have recently developed a multichannel effective-range 
theory. This is an extension of the ordinary (single 
channel) effective-range theory which can in principle 
describe all channels of a reaction both above and below 
the threshold for a new channel. The correlation is 
accomplished in terms of an M matrix whose elements 
around threshold may be expanded in a power series 
in the energy. The first two of these coefficients reduce 
essentially to the scattering length and effective range 
in the one channel case. The M matrix has been used 
by Damburg and Peterkop5 to extrapolate the results 
of Is—2s close-coupling calculations immediately above 
the 2s threshold to infer the elastic scattering below 
threshold. In the same spirit we have extrapolated our 
present NA results to below threshold. In this case, 
however, the extrapolation was in the nature of a check 
as the NA results below threshold have already been 
calculated.10 For compatibility the extrapolated values 

9 M. H. Ross and G. L. Shaw, Ann. Phys. (N. Y.) 13, 147 (1961). 
10 A. Temkin and R. Pohle, Phys. Rev. Letters 10, 22 (1963). 

It should be emphasized that only results of the zeroth-order or 
relative s-wave problem of this reference are being considered and 
these show only one resonance. On the other hand, the inclusion 
of higher relative partial waves introduced more resonances. Cf. 
the erratum to the above, Phys. Rev. Letters 10, 268 (1963); 
A. Temkin, NASA Tech. Note D-1720 (unpublished); A. Temkin, 
in Proceedings of the Third International Conference on the Physics of 
Electronic and Atomic Collisions (North-Holland Publishing 
Company, Amsterdam, to be published); and Ref. 12. 
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FIG. 1. Comparison of the singlet nonadiabatic (Is—Is) cross 
section (solid line) near the 2s threshold with effective-range 
extrapolations. Circles are the nonadiabatic effective-range ex
trapolation. Triangles are the (Is—2s) close-coupling effective-
range extrapolation of Damburg and Peterkop. 

of (7is_is should then closely match the computed 
zeroth-order NA <TU-U below threshold. The usefulness 
of this check was brought home in our present calcula
tions, when the values which had been computed at an 
earlier stage gave an extrapolated singlet cri8_is that was 
not compatible with the explicitly calculated values 
below threshold. This helped lead to the discovery of 
a machine programming error which had caused earlier 
singlet results to indicate a spuriously high peak in 
<ris-2s cross section just above the 2s threshold.11 

The T and M matrices are related for relative s-wave 
scattering by the equation9 

T=kW(M--ik)W*. (5.1) 

In this equation k is considered to be a diagonal matrix 
with diagonal elements ki. The elastic scattering is then 
given by 

<Tls-ls=MM222+k2
2)/\ (Mn-ih) 

X{M,2-ih)-MnM2l\\ (5.2) 

TABLE III. The first two coefficients in the expansion of the 
M matrix elements at the 2s threshold, Eq. (5.3). 

MnQS) 
M2i(P) 
M22(0) 
Rn 
R\2 
R-22 

1.0610 
-0.0569 
-0.0368 

4.2267 
-3.9292 
11.489 

1.300 
-0.0629 
-0.0356 

4.82 
-4 .32 
11.54 

0.0293 
-0.0017 

0.1208 
1.1373 
0.0642 
5.1528 

0.0301 
-0.0017 

0.1206 
1.20 

-0 .06 
5.14 

a Close-coupling coefficients taken from Damburg and Peterkop (Ref. 5). 

11 H. L. Kyle and A. Temkin, in Proceedings of the Third Inter
national Conference on the Physics of Electronic and Atomic Colli
sions (North-Holland Publishing Company, Amsterdam, to be 
published). 

Expanding the elements of Af# about a reference 
incident-electron energy £0 , we obtain 

Mij(E) = Mij(Eo)+^Rij(E-E0)+ • • •. (5.3) 

In the effective range approximation the series is cut 
off after the second term. We take Eo to be 10.2 eV, the 
energy required to excite hydrogen from the Is to the 
2s state. The expansion is valid for E<10.2 eV, but in 
this case we must put £2=^2 in Eqs. (5.1) and (5.2). 

In the triplet case the expansion (5.3) is valid over a 
fairly long range, however in the singlet case the 
presence of a resonance just below the 2s threshold 
sharply limits the applicability of the expansion. Ac
cording to the analysis of Ross and Shaw,9 the effective 
range approximate formalism can describe only one 
narrow resonance below threshold. Below this resonance 
the formalism will not accurately predict the true scat
tering cross section. 

Our expansion parameters Mij(Eo) and Ry were ob
tained by fitting a two-term polynomial of the form 
(5.3) to the computed values of M%j in the range 
0<^ 2

2 <1.5X10~ 3 . They are given in atomic units in 
Table I I I together with the coefficients obtained from 
the Is—2s close-coupling values by Damburg and 
Peterkop.5 In Fig. 1 the computed NA elastic cross 
section is compared with our effective range extrapola
tion. As can be seen the extrapolation quite accurately 
reproduces the resonance near ki2=0.797. The second 
peak at kx2=0.735 is spurious in the present zeroth-
order problem but more resonances are actually present 
when relative p waves are included in the calculation.10'12 

VI. RESULTS 

The results obtained for the spherically symmetric 
portion of the L — 0 scattering cross sections o-ia_is, 
o*i8-2«, o"2s-2S are shown in Tables IV to VI and in 
Figs. 1 to 3. For comparison purposes the (Is—2s) 
close coupling results are also given. As previously 

ELECTRON ENERGY [EV] 

FIG. 2. Comparison of zeroth-order nonadiabatic Is—2s excitation 
cross section with the close-coupling Is—2s expansion. 

12 M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) 82, 
192 (1963). 

NA = nonadiabatic C C = close coupling* z 

Singlet Triplet P .04 
NA CC NA CC 3 
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TABLE IV. The spherically symmetric portion of the L = 0 elastic (Is—Is) cross section for the scattering of electrons 
by atomic hydrogen in units of irdo2. NA = nonadiabatica; CC = close coupling Is—2s.h 

k\ (au) 

0.810 
0.863 
0.864 
0.86429 
0.8645 
0.865 
0.8654 
0.8656 
0.8658 
0.866 
0.86601 
0.86602 
0.866025 
0.86604 
0.8661 
0.8662 
0.870 
0.880 
0.89 
0.90 
0.94 
1.0 
1.1 
1.2 
1.5 

Energy (eV) 

10.061 
10.132 
10.155 
10.163 
10.169 
10.179 
10.189 
10.194 
10.198 
10.203 
10.2033 
10.2036 

10.2040 
10.2055 
10.2085 
10.298 
10.536 
10.777 
11.02 
12.02 
13.605 
16.46 
19.6 
30.6 

case (i] 
0.4790 
0.4755 
0.4742 

0.4955 
0.4826 
0.4674 
0.399 
0.327 
0.239 
0.175 
0.095 

Singlet 
NA 

0.635 
0.760 
1.20 
1.337 
0.0 
0.2925 
0.3893 
0.4255 
0.4465 
0.4743 
0.4768 
0.4795 

) case (ii) 
0.4789 
0.4754 
0.4740 
0.4955 
0.4954 
0.4825 
0.4673 
0.399 
0.330 
0.250 
0.190 
0.113 

CC 

0.4244 
0.4235 
0.4541 
0.4568 
0.4454 
0.4324 

0.2824 
0.1865 
0.1397 
0.0905 

NA 

3.995 
3.994 
3.958 
3.864 
3.773 
3.684 
3.349 
2.905 
2.300 
1.833 
0.974 

Triplet 
CC 

Threshold 

3.995 
3.993 
3.957 
3.864 
3.772 
3.684 

2.903 
2.297 
1.829 
0.9716 

NA 

4.470 
4.468 
4.454 
4.359 
4.256 
4.151 
3.748 
3.233 
2.550 
2.023 
1.087 

Sum 
CC 

4.4194 
4.4165 
4.4111 
4.3208 
4.2174 
4.1164 

3.1854 
2.4835 
1.9687 
1.0621 

a The statistical factors £ and | aife included in the cross sections. When available case (ii) results were used to find the total scattering cross sections. 
b All close-coupling results were computed by K. Omidvar, Ref. 4. 

stated this latter calculation is a variational approxi
mate solution of the zeroth-order problem.1 The internal 
consistency of our calculations has already been ex
tensively examined in Sec. IV. For the nonadiabatic 
entries in Tables IV-VI the number of significant 
figures given indicates the internal consistency of the 
calculation with the last significant figure being in 
doubt. For the singlet entries at &i=1.5 even the first 
significant figure is uncertain. The NA singlet-case (i) 
cross sections are the ones which are plotted in those 
figures, however the case (ii) calculations are of equal 
weight. 

In Fig. 2 the nonadiabatic o-is_2s cross sections are 
compared with the close-coupling expansion with the 
Is and 2s channels open. The close-coupling results just 
above threshold were kindly computed for us by 
Dr. Omidvar of the Theoretical Division of the Goddard 
Space Flight Center. They appear to be in good agree
ment with those of Damburg and Peterkop.5 The other 
close-coupling results were obtained from Marriott2 

and Omidvar,4 which in turn are in good agreement with 
those of Smith and his co-workers.3'13 The nonadiabatic 
results are about 40% lower than those of the close-
coupling calculation. In fact the case (i) nonadiabatic 
o"is_2s cross sections agree quite well with the variational 
calculation of Massey and Moiseiwitsch.6 

Figure 3 shows the zeroth-order nonadiabatic elastic 
singlet cross section in the neighborhood of the thresh
old (10.203 eV) and out to 30 eV. A definite Wigner cusp 

13 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962). 

is indicated at threshold. The close-coupling results, 
dashed line, also indicate a cusp at threshold. Above 
30 eV the case (ii) nonadiabatic <rls_is remains 20% 
larger than the close-coupling results and as such are 
larger than the plotted case (i) results which at these 
energies are within 5% of the close-coupling values. 

The (Tis-u curve is shown as varying smoothly above 
the 2s threshold. Actually tentative results indicate 
that there is probably a slight ripple in the elastic cross 
section just below the 3s excitation threshold. The mag
nitude of this ripple appears to be only a few percent 
of the total cross section and it is difficult to separate 

10 10,1 10.2 10.3 10.4 11 

ENERGY [eV] 

20 

FIG. 3. Comparison of the zeroth-order nonadiabatic elastic scat
tering cross section with the close-coupling Is—2s expansion. 
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TABLE V. The spherically symmetric portion of the L = 0 (Is—2s) cross section for the excitation of atomic hydrogen 
by electrons in units irao2. NA = nonadiabatica and CC = close coupling Is—2s. 

ki (au) 

0.86604 
0.8661 
0.8662 
0.870 
0.880 
0.890 
0.90 
0.94 
1.0 
1.1 
1.2 
1.5 

Energy (eV) 

10.2004 
10.20176 
10.2041 
10.294 
10.536 
10.776 
11.02 
12.02 
13.605 
16.46 
19.59 
30.61 

Case (i) 

0.0066 
0.0142 
0.0204 

0.0313 
0.0318 
0.0339 
0.0448 
0.046 
0.035 
0.031 
0.013 

Singlet 
NA 

Case (ii) 

0.0066 
0.0142 
0.0204 
0.0354 
0.0314 
0.0319 
0.0338 
0.0448 
0.048 
0.040 
0.039 
0.019 

CC 

0.0168 
0.0266 
0.0420 
0.0356 
0.0355 
0.0375 

0.0725 
0.0701 
0.0547 
0.0241 

Triplet 

NA 

9.9X10-6 

1.5X10"5 

7.8X10-5 

I.8XIO-4 

2.7X10-4 

3.8X10-4 

9.1X10-4 

1.9X10-3 
3.3X10-3 
4.7X10"3 

5.6X10-3 

CC 

9X10-6 

I.6XIO-5 

8.3X10-5 
1.9X10"4 

2.9X10-4 

4X10~4 

2.1X10-3 
4.4X10-3 

6.1X10-3 
7.3X10-3 

Sum 

NA 

0.0066 
0.0142 
0.0204 
0.0355 
0.0316 
0.0322 
0.0342 
0.0457 
0.050 
0.043 
0.044 
0.025 

CC 

0.0168 
0.0266 
0.0420 
0.0358 
0.0322 
0.0379 

0.0746 
0.0745 
0.0608 
0.0314 

* See Table IV footnotes. 

TABLE VI. The spherically symmetric portion of the (L = 0)2s—2s cross section for the scattering of electrons by 
atomic hydrogen in units of -irao2. NA = nonadiabatica; CC = close coupling Is—2s. 

k2 (au) 

0.00503 
0.0114 
0.0174 
0.0831 
0.1562 
0.2052 
0.245 
0.365 
0.500 
0.678 
0.831 
1.225 

Energy (eV) 

0.0003 
0.0018 
0.0041 
0.094 
0.332 
0.573 
0.819 
1.82 l 

3.40 
6.26 
9.39 

20.41 

Case (i) 

654 
622 
579 

19.6 
3.69 
0.441 
0.43 
1.8| 
1.81 
1.3 
0.60 

Singlet 
NA 

Case (ii) 

654 
622 
579 
137 
19.6 
3.68 
0.441 
0.41 
1.9 .i 
1.81 

1.3 
0.55 

CC 

650.3 
602 
135.55 
19.36 
3.515 
0.3303 

1.532 
1.115 
0.8980 
0.5702 

NA 

205 
204 
170.6 
110.4 
71.21 
45.99 

7.37 
0.02 
1.37 
2.45 
1.94 

Triplet 

CC 

206.8 
172.3 
110.5 
71.20 
45.94 

0.2102 
1.36 
2.112 
1.811 

sum 

NA 

827 
783 
307.6 
130 
74.89 
46.531 

7.78 
1.92 
3.17 
3.75 
2.49 

CC 

808.8 
307.85 
129.86 
74.715 
46.27 

1.7422 
2.475 
3.010 
2.3812 

» See Table IV footnotes. 

CLOSE-COUPLING 

15 20 25 30 
ELECTRON ENERGY (EV) 

FIG. 4. The top four curves represent the total close-coupling 
theoretical and the experimental cross sections for the Is—2s excit
ation of H by electron impact. The two bottom curves give the 
L — 0, angle independent portion of this cross section. 

it from the ordinary scatter in the calculated cross 
section at this point. This effect also occurs in the 
(\s—2s) and (2s—2s) channels, and it may be analogous 
to the resonance in au-u below the 2s threshold but 
much reduced in scale. 

Our triplet elastic cross sections agree with the close-
coupling results to better than 1%. Since the triplet 
cross sections dominate in this region, the total non-
adiabatic elastic cross section (as-\-crt) lies within 2% 
of the close-coupling result. 

It would be of interest to be able to solve the zeroth-
order Eq. (13.3) exactly by numerical means. A con
tinuing effort is being made to do this with the non-
iterative method which has already been used in the 
triplet case below threshold.14 So far the results have 
been unsatisfactory. This is at least partly due to the 
large effective interaction radius between the 2s state 
of hydrogen and the scattered electron. 

14 A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (1963). 
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VII. DISCUSSION 

Figure 4 compares the spherically symmetric portion 
of the inelastic cross section with the total close-
coupling theoretical cross section and with the total 
experimental cross sections obtained by Stebbings 
et al.u and Lichten and Schultz.16 Examination of the 
graph indicates that the nonadiabatic L=0, Is—2s 
cross section is reduced from the Is— 2s close-coupling 
(CC) results by about the same percentage as the 
Lichten and Schultz cross section is reduced from the 
Is—2s—2p CC results around the region of maximum 
cross section (15 eV) or as the Stebbings et al. are from 
the Lichten et al. results over most of the energy range. 
Thus this calculation reinforces what one would be 
tempted to believe on looking at the Is— 2s—2p results 
in comparison with the experimental results: a more 
exact theoretical calculation will reduce the theoretical 
cross section toward the experimental results. 

As to the amount of this decrease one must be infi
nitely more circumspect in guessing. In the language of 
the nonadiabatic theory the L=0 part of the Is—2s—2p 
calculation refers to the relative s+p wave problem 
whereas the Is— 2s calculation refers to only the relative 
s-wave problem. From that point of view, the latter 
appears to be a better approximation relative to its 
complete solution (to which the present paper is ad
dressed) than the former is to its complete solution. In 
either case, it might seem ridiculous to try to approxi
mate by two or three terms what in principle is de
scribed by a singly or doubly (discrete plus continuous) 
infinite set of functions. Here, however, one must recall 
what Seaton17 long ago emphasized, that the explicit 
(anti) symmetrization of the wave function in fact 
doubles the number of terms and goes a long way in in
cluding the effects of the continuum in these calcula
tions. Secondly, with regard to the Is— 2s—2p calcu-

15 R. F. Stebbings, W. L. Fite, S. C. Hummer, and R. T. 
Brackmann, Phys. Rev. 119, 1939 (1960). 

16 W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959). 
17 M. J. Seaton, Phil. Trans. Royal Soc. London A245, 469 

(1953). 

lation, the singlet L=0 gives only the second largest 
contribution to <ris_2s. The largest contribution comes 
from the triplet L~\ state. Experience thus far indi
cates that the close-coupling approximation is much 
more accurate in triplet as opposed to singlet states. 

Thus it is very difficult at this time to infer the correct 
normalization of the experimental result. In view of the 
many competing elements which are either included or 
left out of the close-coupling calculation, our own 
opinion is that the correct normalization of the experi
mental result is between those of Lichten et al. and 
Stebbings et al. and closer to the latter, very close, in 
fact, to that curve where the error bars of the respective 
experiments overlap.11,18 This conclusion is supported 
by a recent (\s—2s—2p—?>s—3p) close-coupling cal
culation by Taylor and Burke19 which produced more 
than a 30% decrease in cris_2s at 16.5 eV from the close-
coupling (Is—2s— 2p) calculation.3-4 

Our results and those of Damburg and Peterkop5 also 
show that one must be very cautious in naively ex
trapolating cross sections to threshold using the Wigner 
threshold behavior law.20 The present results, Table V, 
indicate that the law's range can be exceedingly small. 
When the 2p state is included in the calculation the 2s 
and 2p states are degenerate and Wigner's threshold 
laws no longer necessarily apply.12 
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