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Estimates of the saturated magnetic remanence at 
0°K were obtained by fitting the low-temperature 
remanence data to paramagnetic expressions. The 
resulting estimates corresponded to a few percent of the 
available total moment of the solute atoms. 

The magnetic transitions did not occur in Co and V 
alloys of 1 at.% concentration. These alloys also did not 
exhibit a Curie-Weiss law. The occurrence of the 
transition in the case of Cr, Mn, and Fe does not follow 
uniquely from the particular form of magnetic transi­
tion exhibited at higher concentrations. Instead the 

1. INTRODUCTION 

THE quantum-mechanical treatment of second 
harmonic generation has been considered by 

many authors.1,2 As the conventional calculation for the 
second-order conductivity involves much algebraic com­
plexity, and the expression obtained contains many 
terms, the formula has been studied in detail only in the 
dipole approximation. 

Instead of following the conventional procedure, we 
make use of a rule which gives the expectation value of 
a quantum operator for any perturbation order.3 Our 
expression for the conductivity tensor amounts to a 
regrouping of terms in the conventional expression and 
takes a simplified form.3a We next apply this formula to 
the study of second harmonic generation in a free-
electron gas and find that in the optical region, the 
second-order conductivity tensor agrees with the clas-
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properties of the transition appear to be a general 
consequence of dilution in those alloys for which 
the transition-metal impurities exhibit strong para­
magnetism. 
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sical form,4 which is of the same order of magnitude as 
the experimentally observed second-order conductivity 
tensor of some solids like KDP, which lack' inversion 
symmetry. The second harmonic radiation generated in 
metals is shown to possess two resonances, occurring at 
the plasma oscillation frequency and half the plasma 
oscillation frequency which arise from the resonance of 
the plasma oscillation with the fundamental and the 
second harmonic radiation, respectively. These reso­
nance effects further enhance the possibility of large 
second harmonic production in metals. 

2. THE CONDUCTIVITY TENSOR 

Let us consider the interaction of an electromagnetic 
field with a system which is originally described by a 
Hamiltonian HQ. In a solid Ho will be the kinetic energy 
plus a periodic potential. The interaction Hamiltonian is 

# '= -—[A(* ,0 -P+P-A(* ,0 ]+—A*{* , t ) , (1) 
2mc 2mc2 

where A(x,t) is the vector potential for the electromag­
netic field, the gauge being chosen so that the scalar 
potential is zero and p= —ihV. Denoting Cs

+ and C« as 
the electron creation and annihilation operator of state 
s, which is an eigenstate of the unperturbed Hamiltonian 

4 R. Kronig and J. I. Boukema, Koninkl. Ned. Akad. Wet ens-
chap. Proc. Ser. B 66, 8 (1963). 
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We use a simple rule giving the expectation value of a quantum operator for any perturbation order to 
calculate the general second-order conductivity tensor of a solid. The expression for the conductivity tensor 
amounts to a regrouping of terms in the conventional expressions and takes a considerably simplified form. 
The formula is applied to second harmonic generation in a free-electron gas and reduces to the classical 
equation given by Kronig and Boukema in the optical region. The second harmonic radiation generated in 
metals is shown to possess two resonances occuring at the plasma oscillation frequency for p polarization 
and at half the plasma frequency for p and s polarization. The amplitude of the resonance is related to the 
imaginary part of the dielectric constant at the plasma frequency, €2(0*2,). Only metals with €2(cop)<<Cl (i.e., 
alkali metals, Ag and Al) will show resonant effects. 
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Ho, we obtain in the interaction representation, where o v s = (l/h)(E8>—E8). If we decompose Hr{t) in a 
jjf /A _ ewo tji'e-iH01 Fourier series, 

= 5£ ( p , A + A - p ) s S ' C s + C s ' e " W S ' S ' H'^f-e-^H'W), (3) 
e2 J~oo 27T 

+ : [ i 4 2 ( * , 0 ] « " C . + C . ^ * - " S (2) 
2wc2 then from (2) and (3) we obtain 

ZT(o>) = 2 [A(x, co—cos>s) -P+P#A(x, co—avs)]ss>Cs
+Cs 

2wc*>«' 

&>'-
+ L / A(£,co')-A(>, co—co'—ovs) CS

+CV, 

where A(x,co) is the Fourier transform of A(x,/), 

(4) 

r00 dco 
A(x,*) = / — A(x,co)er*««. 

7_oo 2T 

The current operator ja(x,t) of the system in the interaction representation is given by 

ia(x,0 = - E C ^ / ( x ) ^ ^ ( x ) - f ( x ) ^ / ( x ) ] C , + C r r ^ ' ^ ~ i a ( x , 0 £ ^ * ( x ) ^ ( x ) C r , + C r e - - - ^ . (5) 

Define 

i« (x ,0= f i«(Q,«)<r<"' exp(iQ.x)Jco^Q/(27r)4, (6) 

then we obtain from (5) and (6) that 

i«(Q,«) = — Z [exp(—iQ-x)^ a +^ a exp(—iQ-x)]r/rC
+r'Cr27r5(co-corr0 

2 m *•*•' 

£ [4«(x, co—corr>) exp(—iQ-x)] r / rC
+r 'C r . (7) 

Me rr' 

The expectation value of the current operator is given by3 

i«(x,/)s<^j(0li«(x,0|^i(0> 

=<^i(-«>)li«(x,0+(-i)/ — : e-™^ 
7_oo 27r ho)i-^-ie 

p &U f* <fco2[F'(co1)[ff'(co2),ia(x,0]]e-i('"1+»2), 

+ ( -D 2 — I — — +--- |^(-«>)>, (8) 
J-^ 2w J-^ 2T (hooi+ie) (^coi+^co2+ie) 

where \f/i(t) is the wave function of the system in the interaction representation and e is an infinitesimal quantity. 
Decomposing Ja(x,/) into Fourier components, 

j«(Q,«) = / Ja(x, t) exp (iut—iQ • x)dtd*x, (9) 
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we obtain from (8) and (9) 

i«(Q,o)) = <^ i ( -oo) | > ; a (Q > co)+( - l ) 
-x, 2ir h<j}\-\-it 

+ ( - i ) 2 / — / — — + •••!*/(-«>)>. (io) 
7-OQ 2w 7_oo 2TT (ho)i-\rie)(ho)i+ho}2-\-ie) 

Substituting (4) and (7) into (10), and retaining only the terms quadratic in A, we get 

ja<
2)(Q,*>) = -

ez rx don [[A(x,«i)-p+p"A(x,w1)]„/£exp(-tQ.x)i4a(x,w-«i)],>, f mVJ-aa 2x *«' { 2h(a)i-{-a)88') 

1 [A(x,«i)-A(x, w—coi)]M/ 
-I [exp(-iQ-x)pa+pa exp(-*Q-x)]s,s [ (/5-/s>) 

4 h(o)—coss/) 

63 f00 ĈOi 1 
/ E [A(X, CO-COl — CO8/r0*P+p-A(X7CO-COi — 0>8'r')]« 

8 w 3 C 2 J _ o o 27T fex>i ««'»•' 

X[exp(-iQ-x)pa+pa exp(-iQ-x)]r/s[A(x, coi-ow)'P+P'A(x, «i--av,0]«'r' 

X(/r'—fs')/(hu—^cosr/)+complex conjugate of last term with Q—> — Q, co—» -co. (11) 

In (11) f8 is the occupation number of state s. 
We define the second-order conductivity tensor by the formula 

/

dzqido>i 
or«/37

(2)(gi, Q-qi; coi, co-coi)£^(gi,coi)EY(Q-gi, co-coi) . (12) 

(2TT)4 

Since in a solid, an arbitrary translation does not leave the crystal invariant, such a definition is possible only when 
umklapp processes, which give rise to local-field corrections,5 are neglected. In this approximation, the symmetrized 
conductivity tensor is given from (11) and (12) by 

<^7
(2)(gi>22;coi,co2) 

*3 

2m2o)io)2 
E C f nqip 

E \(n,k\—ihVp+hkfi |»',k—qi) 
n'rckL 2 

ha(fn,k— /n'.k-q) 1 WMn^ k—qi-q2> 
X « k-qi|»,k> 4 

[Acci+En/(k— qi)—En(k)+ie] 2 [korfko 2—E n(k)+E n , (k—q x—q 2)+ie] 

nqia+nq2a "I 
X « k — q i - q 2 | —ihVa+hka * |»,*)8/Sy- ( / n . k — / n ' . f c - q i - ^ ) I 

2 J 

1 ft^l/5 % 2 7 ) 
E (n,k\—ihVp+kkp \n\ k—qi)(w', k—qi| —ihVy+hky—hqiy | w", k—qi—q2) 

fyi n,n',n,f,k 2 2 

HqXa+q2a) 
-(n", k—qi—q2| —ihVa+hka |w,k) 

2 

( j n" ,k— qi— q2 / n' ,k— qi) 
^ _ _ _ _ . 

[>o2—Enr(k—q1)+En^(k—qi—q2)+ie]Zho)1+hcx)2—En(k)+En»(k—qi—q2)+ic] 

+ c.c. of last term with co2—> —co2, coi—•> —coi, 51 —» —51, g2—» •—</2 L, (13) 

e Stephen Adler, Phys. Rev. 126, 413 (1962). 
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where P stands for the permutation symbol and J3n(k) 
for the energy of the Bloch state in band n with wave 
vector k. In (13), all matrix elements are taken with 
respect to the periodic part of the Bloch wave functions 

<w,k |0 |» ' ,k '>s- - [un,k*(x)Oun>,v(x)dzx, (14) 
VaJ 

where the integration is over a unit cell and va denotes 
its volume. 

The expression (11) may be compared with the 
second-order polarization given by Armstrong et a/.,1 

and is seen to be considerably more compact. In the 
dipole approximation (qh q2, —»0), the first two terms 
on the right-hand side of (13) vanish, and the expression 
is equivalent but more compact than that given by 

In the optical region, the inequalities 

k-qi hqi2 

u£^h , 
m 2m 

show that nonlocal effects are negligible. The con­
ductivity given by Eq. (15) becomes approximately 
equal to 

ezN{qi«+q2
a) 

<*aPy(Si><l2; wi>w2) = — — ;—;—-fyj7 , (16) 
2 m2o) ico 2 (co i+co 2) 

where N is the total number of electrons per unit 
volume. Equation (16) agrees with the classical result. 
Although the right-hand side of (16) vanishes in the 
dipole approximation (t/i, q2 —> 0), in the optical region 
it is of the same order of magnitude as the conductivity 
tensor of a solid lacking inversion symmetry such as 
KDP, as measured by Ashkin et al.Q This is probably due 
to the fact that the inversion symmetry is not strongly 
violated for such materials. Although the conductivity 
tensor of the metal is comparable in magnitude to 

6 A. Ashkin, G. D. Boyd, and T. M. Dziedzic, Phys. Rev. 
Letters 11, 14 (1963). 

Butcher and McLean.2 For the calculation of the third 
and higher order conductivity tensors, the advantages 
of the present method will become even greater. 

3. SECOND HARMONIC GENERATION BY A 
FREE-ELECTRON GAS 

In this section, we turn to the application of Eq. (13) 
to the free-electron gas. The classical result has been 
given by Kronig and Boukema,4 and our quantum result 
reduces to it in the optical region where nonlocal effects 
are negligible. 

We consider a transverse electromagnetic wave inci­
dent on the plane boundary of a metal in the free-
electron approximation. The fundamental wave in the 
metal is then transverse and the conductivity tensor 
becomes 

KDP, the polarization is also proportional to the energy 
of the transmitted fundamental which for metals is 
usually small in the optical region. 

To calculate the second harmonic generation by a 
fundamental wave of angular frequency co incident on a 
metal, we need to solve the Maxwell equations with 
appropriate boundary conditions. The general solution 
has been given by Bloembergen and Pershan,7 and 
Kronig and Boukema have treated the boundary con­
dition for the nonlinear metal.4 The result is that the 
harmonic wave in the metal is given by 

E2=eTS2 exp(ik2'X— 2uat) 

AwkiT 
H <Sir

2a(co) exp(2*kir-x—2&>0 , (17) 
coe(2co) 

where k2 is the wave vector of the homogeneous wave of 
frequency 2co and SIT, k i r refers to the amplitude and 
wave vector of the transmitted fundamental. The func­
tion a(o)) is found from Eq. (16) to be 

a(co) = - < ? W / 4 M V (18) 

7N. Bloembergen and P. S. Pershan, Phys. Rev, 126, 606 
(1962). 

ez ir r dzk r / ftk-qi ftgA 
<r«/j7(gi,g2;coi,co2) = Z^0%wi,Yg2CO2)«H / 2—— I V f w i 1 )57«(/k~/k-q1) 

2m2o)ico2 v*J (27r)3L \ m 2m/ 

1 (2ka— qia— g2a)5/37(/k— /k-qi-q2) 

4coi+co2-[>k- (q i+q 2 ) /w]+[^ (q 1 +q 2 ) 2 / 2w] 

ft k(}ky(2ka— qia— g2«)C/k-qi-q2— /k-qi) 

2m r k-q2 ft?i2 ft(qi+q2)
2ir ftk-(qH-q2) ft(qi+q2)

2-] 

L m 2m 2m JL m 2m J 

+c.c . of last term with qh q2, coi, co2-^ —qi, —#2, —toi, —co21 [ . (15) 
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and e(u>) is the dielectric constant of the metal. The 
amplitude £2 is given by 

0 9 

-(47rA)Sir2a(co)sin(9t-

€(2co)[€1/2(2a\) cos0;+cos02r]' 
(19) 

where 0; is the angle of incidence. The reflected harmonic 
amplitude §2R is given by <§2[€(2co)]1/2. 

We define the angles 

sin0iT=-
sin04-

[«(«)] 1/2 
sin02r=-

sin0; 

ixw 
(20) 

then when the incident wave of amplitude Si is p 
polarized (s polarized) the amplitude SiT

p,s is given by 

S1T
P 

~s7 
SIT8 

2 cos0»-

€1/2(co) COS0i+COS0ir 

2 cos0* 

Si cos04-+€1/2(o)) cos0ir 

(21) 

Equations (19)-(21) are also valid for damped waves 
when the angles become complex. 

To examine resonant phenomena we separate the 
dielectric constant into real and imaginary parts 

e(co) = ei(a>)+ie2(co) (22) 

and define a plasma frequency cap by €i(cop) = 0. When 
the fundamental frequency is near o)p a resonance in 
both the reflected and transmitted harmonic amplitudes 
will occur near normal incidence for p polarization. 
Consider the frequency dependence of S2 at an angle 
0 ^ 1 given by 

sin20»2=€1(co), (23) 

then (19) gives 

Air a(o)p) 
8: 

X-

c e(2a>„) [€1/2(2WJ))+COS02T] 

{le1(co)+iei(w)2U2+[ie2M/e1(cc)+ie2(co)J^ 
(24) 

Resonant effects will occur only for those metals for 
which e2(o>p)<<Cl. These include the alkali metals,8 Ag,9 

and Al.10 The contribution to e2 arises primarily from 
interband transitions.9,10 Then in the frequency region 
where (e2)

1/2<ei<Cl, £2 and S<LR have the form 

«2~[>i(a>)]-1/2; eY^Eeitco)]-1/2 . (25) 

Thus the size of the resonance is determined by e2~
1/4 

and occurs near normal incidence. However at normal 
incidence (0;=O) no second harmonic is generated. 

When the harmonic frequency 2co is near the plasma 
frequency a resonance occurs for both s and p polariza­
tion. If we consider an angle of incidence defined by 
sin20;=ei1/2(2co), a similar analysis shows that in the 
range (e2)

1/2<ei<^l, £2 and &2R have the form 

<g2-[e1(2co)]-1; S2
R^e1(2oi)J-^ (26) 

so that the size of the resonance is determined by 
[e2(cop)]~

1/2 and [€2(c0j,)]~1/4, respectively. 
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