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Nuclear quadrupole relaxation times are calculated for the halogen and alkali nuclei in a number of alkali 
halides using lattice phonon density curves computed by Karo. The calculated values of T\ at room tem
perature are generally lower than those obtained using the Debye model and in better agreement with ex
periment. The variation of T\ with temperature has also been calculated over the range 20°K to room 
temperature for Na23 and I127 nuclei in Nal. Excellent agreement is obtained with the experimental data on 
the temperature variation of T\ when use is made of the Karo distribution function. The Debye model 
gives a temperature variation comparable with experimental above 70 °K but a relatively slower variation 
below 70°K. 

I. INTRODUCTION 

A NUMBER1 - 1 0 of theoretical and experimental 
investigations have been made of the nuclear 

relaxation times T\ in alkali halides. The basic theory 
for the explanation of the relaxation times in ionic 
crystals was first proposed by Van Kranendonk.6 A 
number of authors7-9 have subsequently considered 
possible extensions of the theory to take account of 
additional contributions to the fluctuating field gradients 
at the nuclei that arise out of the vibrations of the 
lattice. These latter authors, as well as Van Kranendonk, 
all employed a Debye spectrum for the lattice vibrations. 
The first investigation concerning the significant 
influence of the departure of the lattice spectrum from 
the Debye model on the relaxation time T\ was made 
by Kochelaev.10 Kochelaev used approximate distri
butions for the optical modes in conjunction with Van 
Kranendonk's mechanism for the origin of the field 
gradient to calculate T\ in a few crystals. Subsequently, 
Weber5 has made careful measurements of the tempera
ture dependence of relaxation times in a number of 
crystals. He has compared his data with the theoretical 
dependence that one obtains with the Debye model and 
also when one uses some approximate distribution 
functions for the optical modes. Since detailed distri
bution functions for the lattice vibrations are currently 
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available11-13 in a number of alkali halides, it would be 
very helpful to calculate 7 \ for some of the alkali halides 
using more realistic distribution functions than the 
Debye model. The motivations for such a calculation 
are twofold. First, one would like to see whether T\ and 
its temperature dependence, as calculated with the 
more realistic distribution functions than the Debye 
spectrum, did in fact improve quantitative agreement 
with experiment or not. Secondly, it would be interest
ing to find out whether relaxation time data can be used 
as a sensitive test of the correctness of available vibra
tional distribution functions for the lattice. 

In Sec. II , we consider the theory for calculating T\ 
using a general lattice distribution function. These 
formulas reduce to the corresponding expressions given 
by Van Kranendonk,6 and Wikner, Blumberg, and 
Hahn,4 when one used the Debye model. In Sec. I l l , 
the calculated results for T± in a number of alkali 
halides at room temperature are presented, as well as 
the relaxation times for Na23 and I127 nuclei in Na l in 
the temperature range 20 to 298°K. The calculated 
results are compared with available experimental data 
and earlier theoretical results and the implications of 
this comparison are then discussed. 

II. PROCEDURE FOR CALCULATION OF 2\ 

Four possible mechanisms have been proposed for 
the relaxation process. Van Kranendonk6 has proposed 
that the vibrations of the lattice cause transient 
departures from cubic symmetry in the arrangement 
of the ionic charges around each nucleus. This de
parture in cubic symmetry causes fluctuating electric 
field gradients to appear at the nuclei which interact 
with the nuclear quadrupole moments to produce 
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transitions within the spin levels of the nuclei. Wikner 
and Das8 have considered the enhancement in the 
transient field gradients at the nuclei that are produced 
by the antishielding effects of the electrons on the ions. 
Wikner, Blumberg, and Hahn4 have shown that the 
dipole moments induced in the ions during optical 
mode vibrations can have a profound effect on the 
fluctuating field gradients at the nuclei. Yosida and 
Moriya7 have proposed that there is a certain amount 
of covalent binding in the alkali halides arising from 
the transfer of electrons from the negative ions to 
vacant electronic states of the positive ion. This 
electron transfer will be made to fluctuate by the 
vibrations of the lattice, leading to transient field 
gradients at the nuclei. Kondo and Yamashita,9 on the 
other hand, have considered the overlap between the 
occupied electron orbitals of adjacent positive and 
negative ions which fluctuate in the course of the lattice 
vibrations, and this also leads to transient field gradients 
at the nuclei. 

Analyses of nuclear quadrupole interaction data in 
free alkali halide molecules indicate14 that there is very 
little electron-transfer covalency in these molecules. 
Since internuclear distances are larger in the solid state, 
as compared to the molecules, such electron-transfer 
covalency would be expected to be even less significant 
in the solid alkali halides. This observation argues 
against any important contribution from Yosida and 
Moriya's electron-transfer mechanism. The other three 
mechanisms are, however, comparable in importance 
depending on the crystal and nucleus in question. Since 
our aim in the present work is to investigate the sensi
tiveness of the relaxation process to the lattice spectrum, 
we have chosen to consider only Van Kranendonk's 
monopole, and Wikner, Blumberg, and Harm's dipole 
mechanisms. The temperature dependence predicted 
for Kondo and Yamashita's overlap mechanism is 
identical with that expected for Van Kranendonk's 
monopole mechanism. We shall now briefly outline Van 
Kranendonk's, and Wikner, Blumberg, and Hahn's 
procedures and adapt them to a general frequency 
spectrum instead of the Debye model. 

Following the procedure of Van Kranendonk,6 one 
can write the perturbation Hamiltonian describing the 
interaction between the nuclear quadrupole moment 
and the time-dependent^crystalline field produced by 
the lattice vibrations as 

li XX' 

wM(XX0 = S Apij-.exex'BiBj. (1) 

The various symbols in Eq. (1) have the same mean
ing as in Van Kranendonk's paper. The symbols Q^ 
represent the components of the nuclear quadrupole 

14 T. P. Das and M. Karplus, J. Chem. Phys. 30, 848 (1959); 
J. Chem. Phys. (to be published). 

moment tensor: 

e 0 = p [ 3 / 2
2 - / ( / + i ) ] , 

Ci=e-i*= (p/2)iiz(ix+iiv)+(/,+tfy)/j, (2) 

Q2=Q„2*=P(Ix+iIv)\ 

with P=eQ/I(2I—l), where Q is the conventionally 
defined nuclear quadrupole moment in barns (10~24 

cm2) and / is the nuclear spin. The components of the 
nuclear spin are represented by Ix, IV} and Iz. 

The normal coordinates q\ describing the displace
ments of the nuclei, are given by 

q\=8si(akp+a-kP)+i5S2(akp—#_kp). (3) 

The normal modes are enumerated by the quantity 
X= (k,p,s) which describes the momentum ftk, polari
zation p, and the additional index s for the lattice 
phonons. The tensor AMi;- describes the dependence of 
the field gradient tensor on the nuclear displacements. 
Thus, if the /*th spherical harmonic component of the 
field tensor is denoted by Wm then 

WV=E A^:r,ry, (4) 
ij 

where r»- and ry are the displacements for the ith and 
jth nuclei from the equilibrium positions. Finally, the 
quantity Bi is given by 

Bi(k,s) = 5Sti(cosk*az— l)+$«,2sin(k«a»), (5) 

where at is the radius vector joining the ith nucleus to 
the central nucleus, the one in whose relaxation we are 
interested. 

Using time-dependent perturbation theory for the 
perturbation Hamiltonian 3C2' in (1), one can obtain 
the transition probability P(m, m+/j) between the 
levels m and m+/x of the nucleus due to a Raman-type 
scattering process in which a lattice phonon is scattered 
by the nucleus to provide the necessary energy differ
ence between the initial and final nuclear states. 

Pirn, m+ix) = (2T/») f E 13C*/12 

J pf ,p,8f,8,kf,k 

Xp(Ei)p(Ef)dE4Ef, (6) 
where 

3C2*/= (m+fi, p', s', k' 13C2' | m, p, s, k). 

The initial and final states 

i(m9p,s7k) and /(w+/t, p\ sf, k') 

are delineated by the parameters describing the nuclear 
and phonon states before and after the transition. The 
lattice phonon densities in the neighborhood of the 
initial and final energies Ei and Ef of the phonon are 
given by p{Ei) and p(E/), respectively. Since the energy 
of the nuclear system is much smaller than the energy 
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of the phonons, E^Ef. Also the matrix elements15 

of qx are given by 

<»x+l |?x |»x>=<»x |?x |»x+l>=(*/^«) 1 / a (»x+l) 1 / 2 

and 
nx= W - l ) , x=fiw/KT, (7) 

where n\ is the number of phonons in the state X, and 
M is the molecular weight of the crystal (with K repre
senting the Boltzmann constant and T the absolute 
temperature). Using Eqs. (6) and (7), one then gets the 
following expression for P(m, m+fx): 

P(m, f»+/i) = ( 2 T T / M 2 ) | & , » | 2 E N^D^l-y^, (8) 
n 

where 
fm p(w) ex 

Dn= dcoLn(ka), (9) 
h w2 (ex-l)2 

ivM»= E #,.«,,.,,.,, (io) 

where the summations over i, j , I, and m are to be taken 
over different sets of particles for different values of /*, 
namely 

n=2 i—dzl, j=zLm 

n=3 i=ztl, j^zhtn (11) 

The factor (1—y^)2 is introduced in Eq. (8) to take 
care of the antishielding effects8 of the core electrons 
of the ion containing the nucleus under study. The 
functions Ln(y) are given by 

Li(y) = ^~m2y)}\ 

£i(y) = {3/2-2/ (y)+J / (2 3 f )}» , 

Lz(y) = {3/2-2f(y)+m2y)}{l-2f(y)+my)}, 
Lt(y) = {l-2f(y)+fW2y)}\ (12) 

with f(y) = jo(y). 

If we use the Debye approximation, 

p(a>) = V<f/2*W, (13) 

where v is the velocity of the long wavelength sound 
waves and V is the volume of the crystal, we get Eq. 
(37) of Van Kranendonk's paper from our Eq. (9). 

To obtain the contribution to the nuclear relaxation 
from the induced dipoles produced by the optical modes, 
we have to follow the procedure employed by Wikner, 
Blumberg, and Hahn.4 However, their Eq. (19) is 
based on the Debye approximation, while we would 
like to employ an expression in terms of a general 
spectral function popt(w). On revising the expression 
(18) of Wikner, Blumberg, and Hahn's paper to 

16 See for example, W. Heitler, Quantum Theory of Radiation 
(Oxford University Press, New York, 1954). 

include a general frequency distribution spectrum for 
the optical modes, the modified equation for P(m, m+y) 
due to the dipolar process becomes 

P(m, w + M ) = (27r /4i f 2 ) |Q M m |W,E(l - T o o ) 2 , (14) 

where 
r»m r *™popt2(co) ex 

E= / G(u)da)= do) (15) 
Jo Jo co2 (**- l ) 2 

and Ni and N% for the rock-salt structure are given by 

Nl=5292(dfx/deya-™, 

N2=8U0(dn/de)2a-10, 

where dp/de is the derivative of the dipole moment on 
an ion with respect to its relative displacement from 
its nearest-neighbor ion during the optical mode 
vibrations. Expressions for the derivatives dy/de for 
the positive and negative ions have been derived by 
Wikner, Blumberg, and Hahn4 in terms of the polariza-
bilities of the ions. 

(*) -J" ! 1 * - , <n> 
VdJ± L1 - (4w/3)a++aJ)ard J a + + « -

Z being the effective charge on the nearest-neighbor 
ion. Thus, while considering the relaxation of the alkali 
nucleus, (dp/de)- has to be used and Z = + l, while for 
the halogen nucleus, {djx/de)+ is pertinent and Z = — 1. 
In Eq. (17), a+ and a_ refer to the polarizabilities of 
the positive and negative ions and a is the nearest-
neighbor distance. 

In Eq. (15), com is the upper limit for the optical 
frequency. From Karo's calculated curves com is seen 
to equal the upper limit of the total distribution function 
used in Eq. (9). The lower limit for the integral in 
Eq. (9) is co=0 while the lower limit for Eq. (15) is the 
lower frequency cutoff comln for the optical modes. 
However, taking p0Pt(w) equal to zero below comin, the 
lower limit in Eq. (15) can be put equal to zero. 

In using Eq. (9) to calculate P(tn, m+n) for the 
monopole mechanism we need Ln(ka), which requires 
a knowledge of k for various values of co in Eq. (9). 
Such information can be obtained from theoretical 
or experimental dispersion curves.11"13 However, k 
occurs only in the form f(y) = (smka)/ka which is rather 
insensitive to variations in k. We have therefore used 
the relation 

<a=vk (18) 

to relate k to co, where the average velocity v is obtained 
from the Debye temperature by the relation 

fiv 
0 =—(3 d/4wMNA)m, (19) 

K 

K being the Boltzmann constant, d the density, M the 
molecular weight, and NA the Avogadro number. Van 
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Kranendonk's Eq. (37), on the other hand, involves A3 

as a factor and therefore depends more sensitively on 
the assumptions in Eqs. (18) and (19). Equation (14) 
for P(m, m-\-\x) due to the dipolar mechanism produced 
by the optical modes does not require a knowledge of k 
and is therefore not affected bv the approximation 
in (18). 

Once the probabilities P(m, m+/x) are available, one 
can obtain the spin-lattice relaxation time T\ using 
the relationship between T\ and P(m, M + M ) - I n the 
work prior to Wikner, Blumberg, and Hahn,4 an 
erroneous relationship was employed. For / = f , the 
relation used was 

where 
2 W / P H - 1 / P 2 , 

P2=P(—|, f) = P(|, — f). 

(20) 

(21) 

Wikner, Blumberg, and Hahn,4 and Hebel and Slichter,16 

have shown that the use of Eq. (20) amounted to the 
neglect of the A w = ± l processes that could occur due 
to the dipole-dipole interaction between the nuclei. 
They showed that the transition probability due to the 
dipole process Po was much stronger than P i and P2 . 
This meant that a common spin temperature could be 
assumed for all the Zeeman levels of the nucleus in an 
external magnetic field. Using the rate equations for 
the populations in the various Zeeman levels, the 
following expressions for Pi are obtained: 

/ = § , i / r 1 = ( f ) ( p 1 + 4 P 2 ) (22) 

In Eq. (23), 

and 
i Y = P ( i , * ) = P ( -

3 
"2> "I) 

- ! ) . 
(24) 

III. RESULTS AND DISCUSSIONS 

The matrix elements ()Mm, that occur in Eqs. (8) and 
(14), are tabulated in Table I for I=% and / = f . From 
Table I, it is clear that the matrix elements involved 

TABLE I. Matrix elements*1 Q^m for / = § and §. 

Spin^ 
m = | 

i=l /JL=2 

(12)1 

T — £ 
1 —' 2 

4(5)i 

10 
-eQ 

3 

4v2 
— — t 

10 

-eQ 
(12)1'2 

-eQ 
2(10)i 

10 
-eQ 

3 

ei 

10 

-eQ 

a The matrix elements other than those tabulated are related to these. 
Thus, for I = § , all the other possible Q^m are equal to Qi,i/2. For 7=f, 
Q-l,-3/2=Ql,3/2; Q-l ,_l /2=Q-l ,3/2=Ql,-3/2=Ql, l /2; Q-2,1/2 =Q2,l/2; Q-2,3/2 
= Q-2,l/2 =Q2,-3/2 =Q2,-l/2. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

FIG. 1. Plots of L1(y)J L2(y) and U(y). 

in P\ and P\ are related by a factor of (5/2)1/2, while 
those in P2 and P 2

r are related by a factor of 3. In 
obtaining the theoretical values of T\ for I127 it is 
therefore incorrect to take the matrix elements Q^m 
involved in the primed and unprimed transition 
probabilities as equal, as was done in Table I I of Ref. 4. 

In Eq. (8) for P(m, nt+p) for the point charge 
process, the quantities N^ involved may be obtained 
from Table II of Van Kranendonk's paper. Substituting 
the values of N^n in Eq. (7), we find that one requires 
the following combination of integrals involving Li, Li 
and L4, namely, 

£=P i+Ar f0 .665£>4 

l / r i = ( 4 / 3 5 ) [ ( i V h P i ' ) + 4 C P 2 + i Y ) ] . (23) where 
-F 

Jo 

F(a>)du, (25) 

X [>*/(«*-1)2]-

Correspondingly, for the dipolar process, we have to 
compute the quantity E in Eq. (15). Unlike the Debye 

h 

h 

h 

L 

~ 
J s 

^1. 

/ / 
/ 
/ 
/ 
/ 
/ 

/ 
/ 

/ 

1 V \ r\ a/v^ 
2.0 2.5 

GO 
3.5 4.0 

X Id'3 SEC"' 

16 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959). 

FIG. 2. Curves for F(co) in Nal with Karo and Debye distri
bution functions at r = 298°K, The solid curve is for the Karo 
function and the dashed curve for the Debye approximation. 
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approximation, when a more realistic distribution is 
used, D and E cannot be obtained from the areas under 
the same curves in each case for all the alkali halides 
(with only the upper limit determined by the Debye 
temperature of the particular crystal in question). For 
the frequency distribution p(co), we have used the 
calculated curves of Karo.12 In our calculations, Karo's 
functions p(co) have to be normalized according to the 
relation 

Jo 
p(a))da> = 2N, (26) 

where N is the number of molecules in the unit cell 
of the crystal. The normalization integral is taken as 
2N and not 6N because in Eq. (8) the summation over 
p(=l, 2, 3) has already been performed and we have 
only to take account of the fact that there are two 
ions in each unit cell. In Fig. 1, the plots for Li(y), 
L2(;y), and Lt(y) are presented as functions of y. Since 
Karo's curves extend to much larger o)m than in the 
Debye approximation, one has to plot the curves for 
Ln (y) for larger values of the arguments y than is done 
in Van Kranendonk's paper.6 In Fig. 2, Ffa) for Nal 
is plotted as a function of co using Karo's p(co). In the 
same figure we have also presented for comparison 
the function F(u>) that would be obtained using the 
Debye approximation. The temperature used in Fig. 2 
is the room temperature J T = 2 9 8 ° K . The values of the 
Debye temperature for the various crystals that we 
have investigated were taken from Wikner, Blumberg, 
and Hahn.4 These, together with the average velocities v 
obtained from Eq. (19), as well as the antishielding 
factors (1—Too), are tabulated in Table II for the various 
alkali halides which we have considered. In Fig. 3 
the curves for G(oo) against co in Nal at T=298°K is 
compared with the curve obtained by Debye approxi
mation. For all the alkali halides that we have con
sidered, namely NaCl, NaBr, Nal , KC1, KBr, KI, 
RbCl, and RbBr, curves of the type in Figs. 2 and 3 
were drawn at J=298°K. The areas under these curves 

TABLE II. Values of Debye temperature 0 , average velocity v and 
antishielding factors used in the calculation of 7\. 

Crystal 

NaCl 
NaBr 
Nal 
KC1 
KBr 
KI 
RbCl 
RbBr 

Debye 
temperature51 

0 (°K) 

281 
200 
151 
227 
177 
130 
179 
140 

V 

(m/sec)b 

3360 
2532 
2076 
3035 
2481 
1949 
2518 
2050 

Antishielding Antishielding 
factor for 

positive ionc 

(1-7- )+ 

5.50 
5.50 
5.50 

13.84 
13.84 
13.84 
50.30 
50.30 

factor for 
negative ionc 

( 1 - 7 - ) -

50.4 
100.0 
180.0 
50.4 

100.0 
180.0 
50.4 

100.0 

x l 0 , 3 S E C ~ ' 

FIG. 3. Curves for G(<a) in Nal for both Karo and Debye 
distribution functions at T = 298°K. The solid curve iŝ  for the 
Karo function and the dashed curve for the Debye Approximation. 

were read off to be used in Eqs. (8), (15), and (25). Simi
lar curves were also plotted at T=200, 100, 70, 40, and 
20°K for Na l to calculate 7 \ for Na23 and I127 nuclei 
as a function of temperature. The curves for F(ui) and 
G(co) at T=20°K are presented in Figs. 4 and 5, 
respectively. When we compare Fig. 2 with Fig. 4 or 
Fig. 3 with Fig. 5, we find that at low temperatures 
the Bose factor ex/(ex— l)2 reduces the relative contri
butions to the areas from the high-frequency regions of 
the F(o)) and G(co) curves. For rigorous quantitative 
accuracy, the lattice distribution functions p(co) for the 
particular temperature concerned should be employed. 
Unfortunately such curves are not available; we 
therefore made use of Karo's calculated curves at 
T=298°K. However, Karo has made a comparison 
between the calculated and experimental values of the 

a K. Lonsdale, Acta. Cryst. 1, 144 (1958) 
b Calculated from O using Eq. (18). 
« E. G. Wikner and T. P. Das, Ref. 8. Although more recent values are 

available in some cases, the same values as the ones used by Wikner, 
Blumberg, and Hahn are used to facilitate comparison. FIG. 4. Curve for F(») at r = 20°K for Nal. 
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*• . 2 x l O J S E C 

FIG. 5. Curve for G(a) at r = 2 0 ° K for Nal. 

dispersion frequencies, Debye characteristic tempera
tures and moments of the distribution curves at 0 and 
298°K. The agreement is quite good. I t seems therefore 
that our use of a single p(co) function for all tempera
tures should not be a significant source of error. Finally, 
to obtain the temperature dependence of Pi according 
to the Debye model, we needed the corresponding values 
of D and E at various temperatures. The values of D 
can be obtained from Tables I and I I I of Van Kranen-
donk's paper, using the value of ©=151°K for the 
Debye temperature in Nal . To obtain the values of E 

FIG. 6. Plot of Ti for Na23 nuclei in Nal as function of tempera
ture. o—values of 7\ using both monopole (M) and dipole (D) 
mechanisms and Karo distribution function; x—values of T\ 
using M mechanism only and Karo distribution function; A— 
values of T\ using M and D mechanisms and Debye approxi
mation; • —values of 7\ using M mechanism only and Debye ap
proximation; •—experimental values of TV 

with the Debye approximation, we had to calculate the 
integral Jl®,Tx2ex/(ex— l)2dx for the various tempera
tures in which we were interested. 

In Table I I I we present our calculated results for 
room temperature (298 °K) together with those of 
Wikner, Blumberg, and Hahn4 and experimental results 
for comparison. In the first column, the alkali halide 
and nucleus of interest are listed. The second and third 
columns contain the calculated values of P i and P 2 

(also Pi and P<1 for /=•§) for the monopole mechanism 
using the Karo distribution functions. The fourth and 
fifth columns give the values of P i and P 2 from the 
induced dipole mechanism calculated from Eq. (15) 
with the Karo distribution function for the optical 
modes. The values of the total P\ and P2 , which are 
combinations of the contributions from the monopole 
and dipole mechanisms, are presented in the sixth 
and seventh columns. The calculated values of T\ from 
the monopole and dipole mechanisms are presented in 
the eighth and ninth columns. Wikner, Blumberg, and 
Harm's calculated values of T\ using the Debye model 
are presented in the tenth and eleventh columns. 
Kochelaev's calculated values10 for T\ for two crystals 
and the experimental values of T± at room temperature 
are presented in the last two columns. 

From Table I I I it appears that the calculated values 
for T\ from the Karo distribution curves are consistently 
smaller than the values obtained by Wikner, Blumberg, 
and Hahn from the Debye model. This comparison 
with the theoretical values of Wikner, Blumberg, and 
Hahn is more meaningful for the monopole mechanism 
than for the combined effects of the monopole and 
dipole mechanisms. The reason for this is that the 
values of P i and Pi for the dipole mechanism obtained 
by Wikner, Blumberg, and Hahn were overestimated 
since they used the total distribution function p(co) 
in (15) instead of the distribution function for the 
optical modes only. This probably accounts for the 
fact that for Na23 nucleus in Nal , their calculated value 
for the total T\ is smaller than our value, as opposed 
to the general trend in the other cases tabulated. In 
general Table I I I also indicates that the calculated 
values of Pi with Karo distribution function are in 
better agreement with experiment than the values 
obtained by Wikner, Blumberg, and Hahn with the 
Debye spectrum. The calculated relaxation times are 
thus seen to be sensitive to the assumed frequency 
distribution function p(co) and can therefore serve as an 
additional measure of the accuracy of calculated density 
functions p(co). I t would be interesting to recalculate 
Pi with some of the other distribution functions p(co) 
that are currently available11,13 or become available 
in the future. However, one would not expect as 
remarkable a difference between values of Pi obtained 
with different calculated functions p(co) as is obtained 
with Karo and Debye functions. A comparison between 
the curves for p(co) in Nal obtained by Karo12 and by 
Cochran, Brockhouse, and Woods13 shows general agree-
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FIG. 7. Plot of 7\ for I127 nuclei in Nal as function of temperature. 
The notations for points have same meaning as in Fig. 6. 

merit in gross features and only a slight difference in 
the relative peak heights for the optical- and acoustic-
mode densities. 

In Figs. 6 and 7, we have plotted the calculated 
values T\ for Na23 and I127 in Na l as a function of 
temperature. Both the values of T\ arising from the 
monopole mechanism alone, as well as the values 
obtained from the combined effects of the monopole 
and dipole mechanism have been plotted. For com
parison, we have also plotted the values of T\ obtained 
from the Debye model and the experimental values. 
I t is apparent from these figures that the temperature 
dependence of T\ calculated using the Karo model 
closely resembles experiment for both Na23 and I127 

nuclei, although the absolute values for I127 are some
what lower than experiment. This close agreement of 
the temperature dependence with experiment for both 
nuclei is remarkable; because, while the monopole 
mechanism is the leading contributor to relaxation for 
I127, it is the dipole mechanism which is the leading 
contributor for Na23. The dipole mechanism depends 
on the optical mode density popt(<o), while the monopole 
mechanism depends on the entire density function 
p(co). In comparing the temperature dependences for 
both Na23 and I127 nuclei, we are therefore really 
subjecting the different parts of the density distribution 
function p(w) to test. The good agreement between 
experiment and theory therefore indicates that both 
the low- and high-frequency regions of Karo's calcu
lated p(o) are substantially correct. At temperatures 
above 70 °K, there is unfortunately no marked difference 
between the temperature dependence of 2 \ calculated 
from Karo's distribution curve and the Debye model 
for both Na23 and I127 nuclei. But below 70°K the 
Debye model leads to a slower increase in 7 \ with 
decreasing temperature than the Karo distribution 
function. The reason for this is clear from a comparison 
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of the curves for F(o)) and G(co) in Figs. 2 and 3 obtained 
from the Debye and Karo models. The Debye model 
involves a maximum frequency com of about 2X1013 sec -1 

as compared to 4X1013 sec -1 for the Karo distribution 
function. In addition, in contrast to the Debye distri
bution function, there is a break in the Karo distri
bution function at 1.8X1013 sec -1 between the acoustic 
and optic branches. These factors indicate that the 
Debye model emphasizes the lower frequency region and 
would therefore lead to a weaker temperature depend
ence at lower temperatures when there is a significant 
depletion in population of the high-frequency optic 
branches of the Karo distribution. 

As regards the consistently higher absolute values 
of T\ that we obtained at all temperatures from our 
calculations as compared to experiment for I127, the 
following explanation could be offered. Since the calcu
lated temperature variation of T\ is in consistent agree
ment with experiment at all temperatures, we require 
an additional mechanism which will contribute to 7Y 
but have the same temperature dependence as our 
calculated result. Such a mechanism is the overlap 
mechanism considered by Kondo and Yamashita,9 

which would be expected to lead to exactly the same 
temperature dependence as D in Eq. (15). On the other 
hand, the temperature dependence of the induced 
dipole mechanism is different from that of the monopole 
or the Kondo-Yamashita overlap mechanism. The good 
agreement between experiment and theory for the 
absolute values of 7 \ as well as its temperature depend
ence for Na23 in Nal indicates that the Kondo-Yamashita 
overlap mechanism is relatively less effective as com
pared to the dipole mechanism. This observation is in 
keeping with quadrupole coupling data in alkali halide 
molecules14 which show that the quadrupole interaction 
for the positive ion nuclei can be interpreted quite 
well by the point multipole model while the negative 
ion nuclei seem to require a consideration of the overlap 
between the electronic wave functions for the ions. 
I t would be interesting to study the temperature 
dependence of the 7 \ for halogen nuclei in heavier 
alkali halides such as rubidium and cesium halides. The 
polarizabilities of Rb + and Cs+ ions are substantial 
enough so that the induced dipole mechanism would 
be expected to be significant and one would expect that 
the observed temperature dependence cannot be 
explained by the monopole or Kondo and Yamashita's 

overlap mechanisms alone. Also a study of relaxation 
times and their temperature dependence as a function 
of pressure would be interesting. Since the overlaps of 
the ions depends exponentially on distance, the overlap 
mechanism would gain in effectiveness with increased 
pressure over the induced dipole mechanism and also 
the monopole mechanism. A marked change in the 
temperature dependence of 7 \ would therefore be 
expected with pressure especially for the positive ion 
nuclei. In addition, with increasing pressure, Yosida and 
Moriya's covalent mechanism,7 involving electron 
transfer from the negative ion to unoccupied states of 
the alkali ion, may become effective. This mechanism 
would, however, also have the same temperature 
dependence as D in (25), as is the case for the monopole 
and overlap mechanisms. 

CONCLUSION 

Our calculated results indicate that one can obtain 
a significant check of the correctness of calculated 
phonon distribution functions p(co) using data on 
nuclear relaxation times and their temperature depend
ences for alkali halides, especially if careful measure
ments of temperature dependence of T\ are made at 
low temperatures (70°K or lower). Using Karo's 
calculated distribution functions for a number of 
alkali halides, a fair overall agreement is found between 
experimental values of T\ at room temperature and 
theoretical values obtained by using a combination of 
contributions from Van Kranendonk's monopole and 
Wikner, Blumberg, and Hahn's induced dipole mecha
nisms. The temperature dependence for T\ obtained 
by our calculations for Na23 and I127 are also in very 
good agreement with experiment. I t would be interest
ing to recalculate the values of 7 \ and their temperature 
dependence when results of improved calculations, 
using the shell model, are available.13 Also an additional 
test of theory would be made possible if the temperature 
dependence of 7 \ under pressure were measured.17 
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