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Theory of the Surface Photoelectric Effect for One and Two Photons* 
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The theory of the surface photoelectric effect for the absorption of one and two photons is discussed 
systematically using Green's functions. The asymptotic form of Green's function leads naturally to the in
coming wave solution used previously by Makinson. By exploiting a commutation relation between the 
operators of momentum and Green's function, one can express the amplitude of the electron outgoing wave 
in a series which involves explicitly the force and the potential acting on the electron. In the Wentzel, 
Kramers, Brillouin, and Jeffreys (WKBJ) approximation, valid for a slowly varying potential, the leading 
term of the series gives the major contribution. In the other extreme, where the potential varies rapidly in 
an electron wavelength all terms can be approximately evaluated. In particular, for the square-well poten
tial the results are immediate. Other simple examples are given to illustrate the method. A discussion of the 
second-order photocurrent is given and our results are compared with earlier work. Finally, the equivalence 
of two models used in surface problems is discussed. It is shown that the finite plate model reduces to the 
semi-infinite model if one takes the average of the wave function, and not its square, as the plate thickness 
becomes infinitely large. 

I. INTRODUCTION 

THIS paper deals with a systematic theoretical 
study of the surface photoelectric effect in solids, 

for one and two photons. In the surface photoelectric 
effect an electron absorbs photons as a result of the 
variation in the potential which the electron sees near 
the surface of the metal. This mechanism is to be 
distinguished from the volume photoelectric effect 
which takes place directly by interband transitions, or 
indirectly when a third system such as a phonon or an 
impurity participates in the interaction of an electron 
and a photon. 

The model we shall analyze is rather simple and 
idealized. We consider an electron gas which is free, 
except for a general surface potential, which does not 
depend on the electron energy. The pioneering work of 
Bardeen1 on the nature of the surface potential in 
metals indicates that this potential is a function of the 
electron wave number k, and some theories of the 
photoelectric effect2,3 have made use of this result. 
Howrever, this early work of Bardeen ought to be 
reconsidered in the light of recent work on the theory of 
the electron gas. The work of Bohm and Pines,4 and 
others, suggest that the exchange and correlation effects 
are reduced as a result of the screening of the Coulomb 
interaction between the electrons. This would tend to 
justify the approximation that each electron sees the 
same potential. The radiation field will be quantized, 
and the interaction of electrons with the incident wave 
alone will be considered.5 

* An account of this paper was presented at the American 
Physical Society meeting at Buffalo, New York, June, 1963. See 
I. Adawi, Bull. Am. Phys. Soc. 8, 432 (1963). 

1 J. Bardeen, Phys. Rev. 49, 653 (1936). 
2 R. E. B. Makinson, Phys. Rev. 75, 1908 (1949). 
3 M. J. Buckingham, Phys. Rev. 80, 704 (1950). 
4 See D. Pines in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1955), Vol. 1, 
p. 367. 

5 A rigorous theory of reflection and refraction is far from 
complete at the present time. The work of L. I. Schiff and L. H. 
Thomas, Phys. Rev. 47, 860 (1935); and R. E. B. Makinson, 
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In Sec. II we shall discuss our approach which is 
based on the methods of Green's functions and the 
formal theory of scattering.6-8 This approach is general 
and systematic. It allows one to single out the terms 
which are relevant to the calculation of the photo
electric current. The amplitude of the photoelectron 
wave, far outside the metal, follows directly from the 
asymptotic form of Green's function. The "incoming 
wave" used by Makinson2 is thus obtained in a natural 
way. We shall, however, point out that the factorization 
of the transmission coefficient by Makinson is somewhat 
arbitrary. We shall find occasion to give a new and 
simple derivation of the famous "incoming wave" 
solution which is used in computing scattering cross 
sections.9'10 This derivation will hold in any number of 
dimensions. 

The one and two photon matrix elements are cast 
in a convenient form by exploiting a commutation 
relation between Green's function and momentum. 
The potential and the force acting on the electron occur 
explicitly in the matrix elements. For a slowly varying 
potential, the calculation of the first- and second-order 
photoelectric current reduce, approximately, to the 
evaluation of only single integrals. For a rapidly vary
ing potential, such as a square well, the results are 
immediate. 

In Sec. I l l we calculate the photoelectric effect 
using simple surface potentials, namely, a linear and a 
square-well potential. We shall see how the results of 
Smith11 on the second-order photoelectric effect, which 
happen to contain some unfortunate errors, can be 

Proc. Roy. Soc. (London) A162, 367 (1937), might offer a good 
starting point. 

6 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
7 M . Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 

(1953). 
8 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
Sec. 9. 

9 See G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954). 
1 0 1 . Adawi, Am. J. Phys. 32, 211 (1964). 
11 R. L. Smith, Phys. Rev. 128, 2225 (1962). 
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correctly derived from our formulas in a few steps. 
It is also possible to obtain useful approximations 
without resort to numerical integrations. 

We shall discuss two models which have been used 
in the study of the photoelectric effect,12"14 and other 
surface problems.15 Frohlich,12 and Sommerfeld and 
Be the13 have used a finite plate model which has two 
surfaces. Mitchell,14 and latter workers, on the other 
hand, have used the semi-infinite model which has only 
one surface. The aim of the discussion, aside from 
illustrating our methods, is to bring out clearly that 
the two models, as used, lead to different results, even 
when the width of the finite plate approaches infinity. 
Indeed, Mitchell might have realized the difficulty 
and the need for reconciling the results of the two 
models. However, he made no effort to settle the 
question, and since then the problem seems to have 
been forgotten. We shall resolve the difficulty in Sec. IV 
by describing a limiting procedure by which one can 
pass from a model with two surfaces to the semi-infinite 
model with one surface. 

There have been so far no experimental reports on 
two-photon photoelectric effect. It is hoped that future 
experiments with optical masers would succeed in 
disentangling this effect from other possible effects, 
as our understanding of the various interaction mecha
nisms improves. It is of interest to observe that Makin-
son and Buckingham16 have anticipated a second-order 
surface photoelectric effect long before optical masers 
were known. Their work forms an obvious extension 
to Makinson's2 earlier paper, and their method, as they 
state, applies only when the first-order effect is absent. 
In contrast our method holds regardless of the absence 
or presence of the first-order effect, and our point of 
view is entirely different. 

II. DERIVATION 

A. General Considerations 

Take the x axis normal to the surface of the solid, and 
let the static potential V, in which the electron moves, 
vary only in the x direction. Restricting the discussion 
to a single electron band, the electron motion in the 
y and z directions is separable and can be described by 
the wave function expi(kyy+k2z) normalized to one 
particle per unit surface area and satisfying cyclic 

12 H. Frohlich, Ann. Physik 7, 103 (1930). 
*8 A. Sommerfeld and H. A. Bethe, in Handbuch der Physik, 

edited by H. Geiger and Karl Scheel (Julius Springer Verlag, 
Berlin, 1933), 2nd ed., Vol. 24, p. 467. 

14 K. Mitchell, Proc. Roy. Soc. (London) A146, 442 (1934). 
15 The same two models were used in the study of the surface 

effect in secondary emission from metals. E. M. Baroody, Phys. 
Rev. 92, 843 (1953) uses the semi-infinite model; while W. Brauer 
and W. Klose, Ann. Physik 19, 116 (1956), use the finite plate 
model. We shall treat this problem in a forthcoming paper [ I . 
Adawi, Phys. Rev. (to be published)]. 

16 R. E. B. Makinson and M. J. Buckingham, Proc. Phys. Soc. 
(London) A64, 135 (1951). This paper>as brought to our atten
tion after the major portions of our paper were completed; we had 
however anticipated it. 

boundary conditions. The unperturbed Hamiltonian 
Ho of the problem consists of the electron Hamiltonian 
He describing the electron motion in the potential 
V(x), and the free radiation Hamiltonian HT: 

1 
HQ=He+Hr=—p*2+V(x)+Ze afaffa>fi9 (2.1) 

2m 

where a^ and a$ are the creation and annihilation 
operators for the radiation oscillator ft of angular 
frequency cô , and px and m are the electron momentum 
and mass. 

In the nonrelativistic approximation the electron-
photon interaction Hi consists of a linear and a quad
ratic term in the vector potential17 A. To the extent 
that we neglect retardation and restrict the calculation 
to the absorption of one and two photons, the A2 term 
is of no interest. The only term of interest is given by 

eh/27rh\1/2 d 
#i=L/3 i—[ ) (e/r#)0jr--s£is ypapD, (2.2) 

m \ cop / dx 
where e is the electron charge, ê  is the polarization 
unit vector parallel to Ap, and x is a unit vector in the x 
direction. The parameter yp is defined by Eq. (2.2) in 
which D is used, for convenience, instead of d/dx. The 
radiation field has been quantized in a unit volume. 

We shall now use the steady-state method of scatter
ing theory6"8 which is, of course, equivalent to the time 
proportional transitions method. In the initial state V'o, 
let the electron be in state <£o with He$o= £o<£o, and the 
occupation numbers rip of the radiation oscillators 
are all zero except n$. The initial state is conven
iently written as ^o=|%,<£o) and the initial energy 
8o=Ei>+npfiG)p. The final state yjA, for outgoing waves, 
is a solution of the scattering equation: 

^+==|%,<£o}+ 
1 

Let 
So—Ho+ie 

-Hup. (2.3) 

(2.4) 

fa=y{?lnp(np-l)2l/2\n0-2, <£2>. 

It follows that the first- and second-order electron 
states are given by 

0i=GiZtyo, (2.5) 

fc^GiDGxD^o, (2.6) 

where the one electron Green's function18 Gr is defined 
for r— 1, 2, by 

Gr=(Er~He+ie)-1, 

Er=Eo+r?ia)0. 
(2.7) 

17 See, e.g., W. Heitler, Quantum Theory of Radiation (Oxford 
University Press, New York, 1954), 3rd ed., Sec. 13 and 14. 

18 It is customary to write Gr
+ instead of Gr for outgoing waves. 

Since we shall not discuss here other types of Green's function 
the -|- sign will be dropped. 
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The energy scale is such that an electron at rest at 
x~ °o has zero energy, or alternatively F(<») = 0. 

In the photoelectric effect one is interested in the 
amplitude of the outgoing electron wave. This is 
determined in Eqs. (2.5) and (2.6) by the asymptotic 
behavior of Gi and G2 in the position representation. 

B. Asymptotic Behavior of G(xyy) 

The one-dimensional case will be treated first as a 
special case of Green's function for the wave equation 
in any number of dimensions. This slight diversion is 
made to give a rigorous but not laborious derivation of 
the famous "incoming wave" solution.9 Let fi=2m/h2, 
G=jjig, U=nV, q2—fjiE, where E is the wave energy, and 
let A be the Laplacian in n dimensions. From the 
operational identity, 

q2+A~U+ie q2+A+ie\g / 

= go+goUg7 

we obtain 

g(x,y)=^go(x,y)+ fgo(x,z)U(z)g(z,y)d«z, (2.8) 

where go is the free space (£/=0) Green's function. 
Since,19 

go(x,y)=(4i)-1(g/(27r|x-y|))^)/2 

Xffcn/a-i^folx-yl), (2.9) 

we have for large x and finite y, 

go(x,y)^ (2iq)-l(-iq/lTv%) ("-u/V^erfc-y, (2.10) 

where q is parallel to x. Use (2.10) in (2.8) and substi
tute the symmetry relation g(y,z) = g(z,y) to obtain the 
asymptotic formula, 

g{^j)^{2iq)-l{-iq/2TTxYn-l)nei(iXv{y), (2.11) 

fl(y) = <r-**'H- / g(y,z)U(z)e~^zdnz. (2.12) 

v, as defined by (2.12), represents an incident plane 
wave moving in — x direction plus an outgoing scattered 
wave, and satisfies the wave equation (q2+A~U)v=0. 
Alternatively, v* represents a solution of the wave 
equation corresponding to an incident plane wave 
moving in the direction of observation x and a scattered 
incoming wave. 

For a general perturbation H\ the perturbed problem 
requires the solution of an equation of the type (2.5), 
namely, <fi=GH/<j>0=iJigH'(j)o. The amplitude & of the 

19 Equation (2.9) can be derived by remembering that A | x | n~2 

= _47 rn/28»(x) / r( iw_i) for n9*2 and Alns = 27r for w = 2, and 
examining the behavior of Hankel's function for small values of 
the argument. See, e.g., E. Janke and F. Emde, Tables of Func
tions, (Dover Publications, Inc., New York, 1945), 4th ed., p. 133. 

outgoing electron wave follows from substituting (2.11) 
into this equation and we have 

0(x)~ aeiq*= (-itn/Wq) (-iq/2irx) (w~1)/2 

X<^|# ' |0 oy**. (2.13a) 

In the transition matrix element, (v* \ E' | <£0), the 
potential V is treated exactly while H' is treated to 
first order. The simplest version of the Born approxi
mation neglects the integral term in (2.12) correspond
ing to the scattered wave and thus replaces v by a plane 
wave. The particle current dl in a solid angle element 
dQn at x is given by the current density (nq/m)\d\2 

multiplied by the area element xn~xd£lny namely, 

dl= {m/¥q){q/2Tr)n-ld2n\{v*\H,\4>,)\\ (2.13b) 

This is precisely what one would obtain from the time-
dependent approach7 for the transition rate to the 
plane-wave states eiVT, where q lies in the solid angle 
element dUn centered at x, and in the energy shell of 
thickness 8E centered at E. The factor multiplying 
I <»*|£r |0O>|2 in (2.13b) is simply (2ir/n)p(E). Since the 
final states have been normalized to one per unit volume, 
the density of final states p(E) is the volume in q space 
divided by {2ir)nhE1 namely, 

p(E) = dttnqn-^dq/dE) (2*r)-w 

= dQn(q/2Tr)n-1(tn/2Trh2q). 

For one dimension (2.11) gives the asymptotic 
formula, 

Gr(x,y)~ (ji/2iqr) exp(iqrx)vr(y), (2.14) 

whose application to Eqs. (2.4) and (2.5) yields the 
first-order photocurrent element dl\. 

dh=e(m/Vqd\yfi\*nfi\Mi\* (2.15a) 

Afi=<*i*|Z>|«o>. (2.15b) 

Equations (2.15a,b) are a special case of Eq. (2.13b) 
in which we set n=l, dtii—1 (the total solid angle in 
one dimension being 2, one for each direction), and 
Hf = y^2D. 

The second-order photocurrent element dli is simi
larly obtained by applying (2.14) to (2.4) and (2.6). We 
notice that GiDfo in (2.6) plays the role of <£0 in (2.5). 
Expanding G\ in terms of the eigenfunctions 4>$ of He, 
namely, G1(o:,y) = X;i0i(^)</)/(y)[E1-E<,+i€]~1, where 
He(j)j—Ej(j>j} we obtain 

ft=^W%)T^h~ 1) I If 212, (2.16a) 

M2-=Zj(^\D\<l>j)(cl>j\D\ct>o)(E1~Ej+ie)~1 

^(vflDGiDlto). (2.16b) 

The total current element20 dl is the sum of dl\ and dli. 
dlr is zero if Er is negative. 

20 In calculating the current element we use the usual formula, 

dl = (en/2mi) {/ (df/dx) -rp(d^*/dx) ) a v - (e2/mc) {fix • A (/)^>»v, 

where the average signs imply an integration over the radiation 
coordinates. Here, \p is used for ^ + of (2.4) and the vector potential 
is expressed in terms of the creation and annihilation operators in 
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We shall now exploit the simplicity of the one-dimen
sional model itself. For positive energy E the wave 
equation has in addition to the solution v(x) another in
dependent solution u(x) where u corresponds to a wave 
incident from the left, reflected, and transmitted to the 
right. The solutions u and v are best described by their 
asymptotic behavior using the scattering matrix S. 
Let the propagation constants of the wave at x= °o 
and x=— oo be q and k, respectively, i.e., q2=^E and 
k2=fx[mE— V(— oo)]. For the finite plate potential 
model q=k, since V{— oo) = 0, but q^k for the semi-
infinite potential model for which F(— <*>) approaches 
a negative constant — Vo. The amplitudes of the 
scattered waves (a2e~ikx,aieiqx) are related to those of 
the incident waves (a2eikx,aie~iqx) by the matrix 
equation: 

r w * \ (2.i7) 

With this notation, in which the comma separates the 
behavior of the function for x= — oo and oo? we write 
the asymptotic equations: 

u(x)~ (eikx+S22e-ikx, Sue
iqx), (2.18) 

v(x)~ (S2ie~ikx, Sneiqx+e~iqx). (2.19) 

From these definitions, the Wronskian W(v,u) = 2iqSn 
and Green's function can be written down 

G (x,y) = (fj>/2iqS u) [y (x) u (y) and v (y)u (x) ] 
for x<y and x>y. (2.20) 

Eqs. (2.18)-(2.20) give immediately (2.14). 
The procedure followed by Makinson2 amounts to 

writing our function v as -S îx- Using x instead of v in 
(2.15) and (2.16) Makinson2 concludes that the 
photoelectric current is proportional to the transmission 
coefficient of the potential since \.S2i\2(k/q) is the 
transmission coefficient. This reasoning is open to 
question, for equally well we could define a new function 
X by writing v=Sux where 

X~ ((Sii/Su)*-**, eiqx+ (l/Sn)e-iqx). 

Using % instead of v we would conclude that the photo-
current is proportional to |.Sii|2 which is the reflection 
coefficient of the potential. The correct conclusion 
seems to be that the characteristics of the potential 
enter implicitly the matrix elements Mi and M2 which 
determine the photocurrent, but it hardly serves any 
useful purpose to factor out a transmission or a reflec
tion coefficient in the manner just described. 

The functions u and v are orthogonal and can be 
properly normalized. They form with the bound states 
a complete set of functions. It is such a set which is 

the Heisenberg representation. If both Ei and E2 are positive, we 
have in addition to the terms dl\ and dli an interference term, due 
to A, between ^1 and ^2 which oscillates with the radiation 
frequency and has an average zero. However, in the final state, 
^1+^2, the photoelectron and the photons fly apart and are 
spatially separated. The vector potential A at the position of the 
electron is then small, and the interference term must be negligible. 

implied by the summation in (2.16b) over the inter
mediate states <j)j. This set of functions is more suitable 
to use in the variation of the constants method than the 
set used by Mitchell.14 The details are given in the 
Appendix. 

C. Results and Discussion 

We shall now cast the functions <j>\ and $2 in a 
convenient form using the following commutation 
relation in (2.5) and (2.6): 

GD=GDlE-He+ie]G 
= GZ-V'+(E-He+ie)DlG 
= DG-GV'G, (2.21) 

where — V is the force on the electron.21 Observing that, 

G^0=(f*a)/8)"Vo, (2.22) 

GtG^faetKGi-G*), (2.23) 

we obtain the basic equations: 

(fc»,0*i=*o'-<?iF'*o, (2.24) 

(^)0 2=G 20o / /+/2, (2.25) 

f2=-G2DG1V
,<l>Q, (2.26) 

(*«*)/2= -DGiV'<l>o+DGiV'4>Q 
+G2F /(Gi-G2)F /0o. (2.27) 

To illustrate this compact notation we give an example: 

2X71^0= (d/dx) fG1(x,y)V,(y)Uy)dy. (2.28) 

Equations (2.24)-(2.27) will now be used to derive 
and discuss more convenient expressions for the matrix 
elements Mi and M2 than those given by (2.15) and 
(2.16). The procedure is the same as before; we use 
(2.14) to examine the asymptotic behavior of <£r, 
r = l , 2, and set the amplitude of the outgoing wave 
exp(iqrx) equal to Qi/2iqr)Mr. In (2.24) the term ^t/^O 
since <£o is a bound state, and the term $1̂ —GiVf<t>o/ 
(ftwp) yields 

J f i = - ( ^ ) - V I ^ I * o > . (2.29) 

The form (2.29) for Mi might be more convenient 
to use than (2.15b), since the range of integration is 
limited only to the region where the potential is 
variable. The three dimensional version of (2.29) is well 
known although less practical than the dipole matrix 
element.22 It is possible to derive (2.29) from (2.15b) 
by considering the matrix element (vi | \JD>H^] \ $0) and 
using the commutation relation {t>}H^]=Vr. 

If E\ is negative Mi is zero and GiV'fo^O and 
DGIV'4>Q~0 in (2.27). If Et is positive GiF'tf>0 is a free 
state; however, for the integral G22XnF/#o which 

21 The relation (2.21) can also be derived by operating on both 
sides of the differential equation, (E—He)G(x)y)=d(x—y), by 
(d/dx-{-8/dy) and carrying out some elementary manipulations. 

22 See Ref. 8, Sec. 59. 
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defines / 2 in (2.26) to exist, a convergence factor 
(cutoff) must be applied to the function GiV'4>o. With 
this in mind the function DGiV'cfro is to be assigned the 
asymptotic value zero in (2.27). The remaining terms 
in (2.25) and (2.27) give asymptotically an outgoing 
wave of the form exp(^2#) which is what we would 
expect from energy conservation, since the physical 
process corresponds to an electron absorbing two 
photons. The matrix element M2, for positive E2, 
consists of the contributions of the three terms which 
contain G2$or/, DG<&'<$>§•, and G2V'(6a—-G2)FV>o, and 
these we shall denote by M 2

X, M22, and if2
3, respectively. 

By definition, 
M 2 = M2

1+M 2
2+M 2

3. (2.30) 

With the aid of (2.14) we find that 

M2l=tya>e)-l(v2*\D*\fo), (2.31) 

which can be written as 

M21=K^(i)-
1(v2*\V\ct>o) (2.32) 

using Schrodinger's equation and the orthogonality 
of v2 and 0O. Similarly, 

M2
2 = iq2(1icop)-2(v2*\V/\<l>o), (2.33) 

Xl(E1-Ej+ie)(E2-Ej+ie)^-\ (2.34) 

M2 as given by (2.30)-(2.34) is, of course, equivalent 
to (2.16b), but it is not possible to derive Eqs. (2.30)-
(2.34) from (2.16b) alone (without introducing £2) 
since (2.16b) does not contain G2 in full and we have 
no longer access to the commutation relation of G2 and 
D. If in (2.16b) we use the commutation relation of G\ 
andD twice, remembering that (z;2*\Gi= — (fio)^)~1(v2*|, 
we see that (2.16b) gives exactly the same thing as 
(2.30)-(2.34) provided that 

(v2*\D\ F 0 o H ^ 2 * | V'\4>o)-(v2*\ V'GiV'lfo). (2.35) 

(2.35) is an identity which follows from the asymptotic 
form of the commutation relation (2.21) when G=G2. 

For situations of practical interest F, titop and E2 are 
of the same order of magnitude, namely, a few electron 
volts, and we shall not distinguish between these 
energies in the following estimates. Assuming V 
~0(KV), where O is an order of magnitude symbol, we 
see that M£\M£~\\Klqi. The matrix element M£ 
can be given the estimate, 

Jlf2
8-OC(*cop)^<w2*|(702|*o)], (2.36) 

and consequently l f 2
2 : l f 2

3 ^l : /c /g 2 . If the relative 
change in the potential over an electron wavelength 
is small the parameter K/q2 is small, and the term M21 in 
(2.30) is dominant while M2

2 and M"2
3 are first- and 

second-order corrections. This situation obtains in the 
semiclassical limit described by the Wentzel, Kramers, 
Brillouin, and Jeffreys (WKBJ) approximation, and to 
first order in n/qz we have 

M2~M2
1+M2

2. (2.37) 

To this approximation, the evaluation of M2 requires 
evaluating only single integrals as is the case for Mi 
which occurs in the first-order effect. I t is of interest 
to observe that the matrices Mi and M22 have the same 
form which makes first-order calculations partially 
useful for second-order calculations. The zeroth-order 
approximation, M^JkfV, is equivalent to setting 
EJ=EQ in (2.16b) as can be seen from comparing 
(2.31) to (2.16b). 

If, on the other hand, the potential varies so rapidly 
in an electron wavelength that V behaves like a delta 
function, the integrals for M22 and M£ become trivial 
and the integral for M21 can be evaluated or estimated. 
We shall see from the examples of Sec. I l l that the three 
terms of (2.30) are comparable in magnitude, and Eq. 
(2.36)—which holds in the opposite extreme—still 
gives a reasonable estimate of M%. We are led to conclude 
that Eq. (2.36) gives a good approximation for a 
slowly varying potential and a reasonable estimate for 
a general potential. 

The formulation of this section will find applicability 
in discussing effects of third order or higher, however, 
we must then include in the perturbation the quadratic 
term in the vector potential. We remark also that by 
superposition we can treat the problem for any initial 
state of the electron gas and the radiation field. Such 
an initial state may be written as a coherent superposi
tion of states of the type ^0 which has been here 
considered. 

III. EXAMPLES 

A. Semi-Infinite Square Well (SSW) 

In this model V(x)= — Vo for x<0 and zero for 
x>0. For a general positive energy we can determine 
the scattering matrix S by solving for the wave func
tion23 u or v of (2.18) and (2.19). Since we shall be 
concerned with electron states of energy Er, as defined 
by (2.7) with r now taking the values 0, 1, and 2, we 
shall denote the corresponding 5 by Sr. The negative 
energy states, or "bound" states, are of the form u, 
except that q is replaced by ip where p2= —yE, and the 
function u is divided by V2 which normalizes u to one 
in a unit length.24 We easily find 

1 /q—k 2k \ 
s —' „)• (3.1) 

g+&\ 2q k—q/ 

<f>o = 2-1/2(eik«x+S220e-ik°x, S^e"^), (3.2) 

G(*,o)= -i^k+q)-1^*^*), (3.3) 

where the comma in (3.2) and (3.3) now separates 
negative and positive values of x. 

23 A solution for u determines 6*12 and ^22. The relations qS\2 
— kS2i, and «S'ii6,i2 +5i2'S,22 =0) discussed in the Appendix 
determine Sn and S21. 

24 All energies E> — V0 are allowed and there are no true bound 
states in this model. Since the matrix 5 has no poles for negative 
E(q=ip), as can be seen from (3.1) we can use this matrix to 
describe all energy states. 
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Since V'=V<fi(%), it follows immediately from the 
denning equations tha t : 

or, 

Jf 1= - (f^fd^VoVi^offi) , (3.4) 

M2
2=^2(^^)-2Fo^2(O)0o(O), (3.5) 

M2^(^)-Woh2(0)MO)tG1(Ofi)-G2(Ofi)2 
= -i(ficoe)-WoV2(0)ct>0(0)Zk1-q1- ( *2 -g a ) ] , (3.6) 

where the relation juFo=&r2—<?r2 has been used in (3.6). 
The matrix M2

l reduces to evaluating the integral, 

v2(x)<l)o(x)dx, f 
which will be performed using the Wronskian of the 
two functions. Multiplying the wave equations, 

V2"+(q2
2-U)v2=0, 

^o , ,-(^o2+^o=0, 
by <£o and v2, respectively, and subtracting we obtain: 

(d/dx)W(v2i(l>o) = (q22+po2)v2cl)o= 2^co^20o, 

and 

2fiho)J v2<t>0dx=v2(0)<t>o'(0)-v2'(0)<l>o(0). (3.7) 

Since (2.19) and (3.2) givev2
;(0) = -ik2v2(0), v2(0) = S21

2, 
^>o/(O)=-^o0o(O), and 0o(O)==Si2

o/V2, we can write: 

M2
l = iFo^co i 3)-2 t ;2(0)^o(0)(-^2+^o), 

i^/2V0q2k0 
M2=- (k2-2k1+2q1-ip0). (3.8) 

(hup)2(q2+k2) (ko+ipo) 

If Ei<0, qi in (3.S) is replaced by ip\. 

h = a4 {aBkf)
s (67rNec) (»„ V ) (e* • %YJi, 

j--if 

A comparison of (3.5), (3.6), and (3.7) shows that 
the three second-order matrix elements are all of the 
same order of magnitude, except near the threshold 
where q2 is small and M*2

2 becomes negligible, which 
supports the arguments presented in the previous 
section. Also, the identity (2.35) can be easily verified. 

Equations (3.4) and (3.8) are now used in (2.15) and 
(2.16) to obtain dl\ and dl2. The total current densities 
Ii and I2 are obtained by summing over the initial 
states. In general, an appropriate summation over the 
initial radiation states must be performed; however, 
we shall restrict the discussion here to one radiation 
oscillator, and sum only over the electron states. 
Appropriate to an electron gas in a metal at zero 
temperature, we multiply dlr, r=l, 2, by 2(dko/ir) 
X(dkydkz/4:Tr2) and integrate over the hemisphere 
k(?+ky

2+kg
2 = kf> k0>0, where kf is the radius of the 

usual Fermi sphere. I t must be emphasized here that 
the quantization of the electron motion in the x direction 
does not follow from the semi-infinite potential model 
itself, it is rather a supplementary condition added to 
the model. In contrast, the finite-plate potential model 
has discrete bound states; and in the continuum limit, 
the number of electron states in the interval dk0 per 
unit length, and for a given spin direction is given 
precisely by25 dko/ir. This difficulty will disappear when 
we describe in Sec. IV a limiting process by which the 
semi-infinite model is deduced from the finite model. 

Using the fine structure constant a, the speed of 
light c, the Bohr radius as, the electron density iV", and 
the radiation wavelength (divided by 2w) X& and 
defining the energies /x"1^2, ^wp, and Vo, by ef, Of, and 
rjf, respectively, where f is the Fermi energy ix~lkf2, we 
deduce the following transparent formulas for the 
current densities 

( l -eXe+O-^e "G \(e+Qyi*+(e+Q—nyi* 

h=^a\aBkfy(3Tr2NecXn^- l)V)(e/r £)4/2, 

(3.9) 

(3.10) 

(3.11) 

1 rl 

/*=-
* -

e)(e+20-r?)1/2e : 1 / / 
ie+2&yi2-{e+2tt-r)) 

\-v)112/ (€+20) 1 / 2 +(e+20-7 7 ) 1 

X | (e+20) 1 / 2 -2(€+0) 1 / 2 +2(e+0-7 ? ) 1 / 2 - i ( i 7 -€) 1 / 2 | 2 ^e . (3.12) 

The lower limits of integration in the integrals Jr, 
r=l, 2, are determined by the condition qr>0 or 
e+rQ~v>0. If e+O-7?<0 in (3.12), (e+Q-r))1'2 is 
replaced by i\ (e+O—T?)1/2| . Note that aa^k/^hkf/(mc). 

Useful results can be derived near the threshold 
where the photoelectrons are excited from the vicinity 
of the Fermi surface. Define the energies er and 2r by 
the relations, er+rO—77=0, and l-\-rQr—rf=0 for r = l , 
and 2, The lower limit of integration in Jr becomes er 

and the integrals can be approximated by integrating 
only over (1— e)(e— er)

1/2 and setting e = l in the 
25 This follows easily from Bohr's quantization rule. Mitchell 

(Ref. 14) has left out a factor 2 by using (dko/2ir) instead of 
dko/ir. The factor 2 was restored by Makinson (see Ref. 5) but 
its origin became unclear after Makinson attributed it to the spin 
in his footnote on p. 377. The resolution of this rather trivial 
point is the following: states of negative ko are identical to those of 
positive h, and consequently the Fermi sphere of free electrons 
becomes in the presence of the surface a hemisphere with the 
spectrum twice as dense in the ko direction as it is in the kv or h$ 
directions. 



A794 I . A D A W I 

remaining terms. We have the equations 

7 i « (2/15)(l-«i)W[(l+S2)V2_ (i_€ l)i/2] 

xca+ayft+Ci-*!)1^1, (3.13) 
/»«(2/15)(l-e»)W[(l+20)1/»- (1-62)1'2] 

XC(l+20)1/2+(l+€2)1/2]-1l(l+2a)1/2-2(H-0)1 '2 

+ C 2 fo-O-l)1'2- (u-l)1 '2] 12, (3.14) 

which imply that for fi near the threshold frequency 
0„ the photocurrent dependence on frequency is given 
by 

7ioc(0-01)B/Sr I, (3.15) 

/2oc(0-a2)5/20-6. (3.16) 

From (3.14) we see that J2 can be of order 10~3. For 
wpXi38=l which corresponds to np=10n cm-3 and 
X^= (27r)103 A, Eq. (3.11) shows that for ordinary 
metals I2~10~z A/cm2. 

The current density I\ is the same as given by 
Mitchell14 (except for the factor 2). Equation (3.8) is 
equivalent to Eq. (43) of Smith11 when the quantity 
— 2/?ia. in that equation is replaced by +2pXx. The 
material which follows Eq. (43) in Smith's paper 
suffers from many unfortunate errors, which we believe 
to have corrected here. 

B. Linear Potential 

Another simple potential for which the evaluation 
of Mi and M2

2 is immediate is defined by: 

V(x) = — VQ, x<—a, 
= (V0/2a)(x-a), \x\<a 
= 0, x>a. (3.17) 

From the Wronskian property used in evaluating M2
l 

in Sec. IIIA, we have 

(v*\ 7,|0o>= F 0 (2a^^) - 1 [PF(^o) ] -° a (3.18) 

which shows that Mi and M2
2 are determined from the 

values of the wave functions and their derivatives at 
the points x=zLa. These values are given in terms of 
the elements of the scattering matrix; for the wave 
functions have the same form as those discussed in 
Sec. IIIA with the comma now separating the regions 
x<a and x>a and thus apply at the points x= ±a . 

The scattering matrix is determined by solving for 
the wave function, 

(g— ik(x+a) Qe—i(l{x—a)jL.J)eiq{x—a)\ ^ 

In the region | x \ < a, the solution is written as a 
combination of the Airy integrals Ai(z) and Bi(z), 
which we shall denote simply by A (x) and B(x), where 
x and z are related by z= (jjLVo/2a)ll3(x—a—2aE/V0). 
Denoting the values of A(x) and B(x), and their 
derivatives A'{x) and B'(x) at x = ± # by A±J B±1 

A±', and B±, we find by elementary methods that C 

and D are given by 

/C\ 1 /iq " 1 \ / i 4 + B+\ 

\D/~~2iqW(A,B)\iq 1/V4+' J5+V 

XCAJ ~AB;)Q-
 (31<>) 

where the Wronskian26 W(A,B)= (^FO^TT^)1 '3. The 
scattering matrix is given by: 

5 U = (D/Qe-w, (q/k)S12=S21=e-w+**/C, 

S22=-(S21/S21*)SU*, (3.20) 

which completes the information necessary for a 
calculation of Mi and M2

X. No numerical computations 
will be given here, since we hope to return to this 
problem in the future and discuss the first and second 
order matrix elements in the WKB J limit. 

C, Finite Square Well (FSW) 

In this model,12-13 V(X) = — VQ for [# |<a, and 
V(x) = 0 for \x\ >a. We shall derive Mi for this model 
to introduce the discussion of Sec. IV. The symmetric 
bound states <£o* and the antisymmetric states $oa 

contribute the matrix elements Mi8 and Mia, respec
tively. If we define a symmetric, and an antisymmetric 
Green's function by 

G*(x,y) = G(x,y)+G(x, - y ) , 

G*(x,y) = G(x,y)-G(x,-y), 

and use (2.24) we obtain 

*i»(*) Gi'(x,a)VrfQ'(a)(h(ae)-1, 

$i*(x) Gi'ixrfVriQ'iaXftoe)-1, 

where <t>i8'a(x) and Gis'a(x,a) have the same symmetry. 
It is evident that, for positive x, 

Gs(x,a)=fji(iq coska+k sin&a)-1 

X (cosjb, coskaeiq(x~a)), (3.23) 

Ga(x9a)==fji(iq sinka—k coska)~l 

X (sin&#, sinkaeiq(x-a)), 

where the comma separates the ranges 0<x<a, and 
x>a, and symmetry considerations determine Gs and 
Ga for negative x. The poles of Gs and Ga for q=ip are 
given by: k sinka—p coska=0, and k coska+p smka=0. 
These poles determine the location of the symmetric 
and antisymmetric bound states, respectively, and it 
follows that27 <l>os(a) or <t>va{a) = ±.arli2h\h+ipv\-\ 

26 We use the Airy integrals as defined in H. Jeffreys, Phil. Mag. 
33, 451 (1942). In this definition, IF(Ai(s),Bi(s)) = l/ir and thus 
W(A(x),B(x))=(l/ir)(dz/dx). See also H. Jeffreys and B. 
Jeffreys, Methods of Mathematical Physics (Cambridge University 
Press, New York, 1956), p. 508. 

27 The propagation constants h and po are, of course, different 
for the symmetric and antisymmetric states. Here, these con
stants should be taken to mean the appropriate constants for the 
state under consideration. 
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To within an unimportant ± sign, we find from (3.22) 
and (3.23) that 

Mx
s>a= - 2k0qiVo(fi^^a1'21 h+ipQ\ ^Sdl^*, 

2nXi*==i sinkia(iqi sin&ia—k\ coskia)"1, (3.24) 

2flXi°=i coskia(iqi coskid+ki sin^ia)-1. 

For comparison, we write Mi for the SSW taken from 
(3.4) after renormalizing $0 to one in the length 2a, 
namely, 

M1=-2koqiVoL^a^(k0+tpo)(qi+k1)J-K (3.25) 

First of all, if a and Vo are of order unity in atomic 
units, or, more precisely, if (fxVo)lI2a is not a large 
number, the FSW has a small number of bound states. 
The normalization constant a112 in (3.24) should be 
replaced by the exact factor (a+l/po)112, and the 
matrix elements Mis and Mi° are used in the usual way 
to calculate currents or cross sections. Evidently, in this 
limit, the FSW and SSW models are quite different. 

However, we are interested here in the limit of very 
large OuF0)

1/2# which will permit a comparison of the 
two models. The essential differences are that 3TZi 
(used for m,is>a) of (3.24) is replaced by {qi+ki)~l in 
(3.25), and that 2HIi and |2flZi|2 are periodic in k\a, and 
as kia—* co? neither 9TCX nor |9fti|2 tend to a definite 
limit unless the limit is taken in the Abel sense. The 
Abel limit for a periodic function f(x) as x —* oo is 
given by 

lim/(s) = lim€/ e~iXj(x)dx^ — / f(x)dx, (3.26) 
*-*" ^° 7o 2irJ0 

where the last equality follows from expanding f(x) 
in a Fourier series. The Abel limit is thus obtained by 
taking the average of the function, (/). We have two 
possible interpretations based on averaging 2HIi or 
|9fTli|2. 

If we apply (3.26) to 9TCi and make the substitution, 
eiIcia=z, we obtain that 

<9fTli)= (2TTI)-1 I mx(z)dz/z, 
J c 

where the contour of integration C is the unit circle. 
For real #i, SflZi is analytic in z for |z\ < 1, and we have 

(9n1
s)=(2frr1«)=mi1(0)= (gx+^x)-1, (3.27) 

which is precisely what we need to establish the 
equivalence of the FSW and SSW matrix elements. In 
this sense, the SSW can be looked upon as a FSW for 
which kid—* oo, and hence the two models share the 
quantization rule of the FSW which reduces in the 
continuum limit to the rule previously discussed in 
Sec. IIIA. Thus the difficulty of the bound states in 
the SSW model is removed. 

If, on the other hand, we follow Sommerfeld and 
Bethe,13 and insert | Mi8,a |2 in (2.15a), and then average 

13TCi5'a|2 we obtain by a contour integration that 

<|9fTl^|2)=<|9Tl1«|2)=[a1(g1+^)]-1, (3.28) 

which is a factor (qi+ki)/qi larger than the SSW value 
(qi+ki)~2. The current density Ii based on (3.28) is 
given by (3.9) with J\ of (3.10) replaced by 

1 r1 

Jx=- / ( l-e)€1 /2[(e+0)1 /2~(€+^-^)1 / 2]^. (3.29) 

Near the threshold (3.29) and (3.10) give 

/ i« i ( l -6 1 ) 2 [ ( l+0) 1 / 2 ~( l -6 1 ) 1 / 2 ] , (3.30) 

/1oc(^-01)2Q-3; (3.31) 

in contrast to (3.13) and (3.15) of the SSW. The results 
given in Eqs. (3.28)-(3.31) agree with those of Sommer
feld and Bethe,13 except for some minor differences. 

We shall argue that the first limiting procedure which 
deals with the average of the matrix element itself, and 
not its square, is the correct procedure. This pro
cedure is essentially based on cutting off the "spatial" 
oscillations in the amplitude of the outgoing wave, 
expiq(x— a), in Eq. (3.23). Such oscillations, being in 
essence a "memory" of the surface barrier at x~— a, 
can not survive as the separation of the two surface 
barriers becomes sufficiently large. This, in spirit, is not 
different from the cutoff applied to the "temporal" 
factor exp(—iEt/fi) in the wave function as t-+ db oo. 
Indeed such a cutoff was used in the derivation6*7 of 
the basic equation (2.3). We shall now proceed to 
generalize the results of the equivalence of the two 
potential models to more involved potentials than 
square wells. 

IV. EQUIVALENCE OF MODELS 

An examination of Eqs. (2.24)-(2.27), or (2.5) 
and (2.6), shows that the averages (Mi) and (M2) 
are strongly related to the averages (^1(^,3;)) and 
(Gi(x,y)G2(y,z)). We shall now investigate the average 
(G(x,y)) for the finite plate potential defined by 

V(x) = -VQ, -2a<x<0, 
= Vt(x) x>0, 
= V2(-2a-x), x<-2a, (4.1) 

where the origin has been chosen for convenience, near 
the surface from which electron emission is observed, 
and where the two barriers, V\ and F2, which need not 
be the same, rise to zero in a distance much less than a. 

The problem will essentially reduce to identifying 
certain averages as elements of the scattering matrix 
for the semi-infinite potential obtained from (4.1) by 
setting V2— — VQ, Let us denote this matrix by 2, and 
reserve the symbol S to the scattering matrix of the 
potential V itself. Denoting the two solutions of 
Schrodinger's equation for the potential Vr(x), r= 1, 2, 
which behave asymptotically as eiqx and e~iqx by fr{x) 
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and gr(x), respectively, we can write 2 for future 
reference, in terms of the values of fh gh and their 
derivatives / / and gi at the origin, namely,23 

1 
2 = -

-ikgi(p)-gi'(P) 2ik 

2iq -//(oj+fi/^O). 
X Y (4.2) 

i (0) / 

Let us begin the discussion with the symmetric 
potential for which Vi=V2 in (4.1), and the line 
x= — a is a line of symmetry. 

A. Symmetric Potential 

The symmetry of the potential imposes that we work 
with symmetric and antisymmetric wave functions 
and Green's functions, and that these functions need 
be defined only over the range x > — a. I t is clear that, 
for example, the term G2V

,GiV/^o in (2.27) can be 
written as, 

a. G2
s(x,y)V'(y)Gl

a(y,z)Vl(z)4>0
s(z)dydz! 

—a-J —a 

or 

-aJ —< 
G2-{x,y)V,(y)Gl

s{y,z)V,{z)<i>^(z)dydz, 

depending on the symmetry of the bound state, where 
now 

G*>a(xjy) = G(x,y)±G(x, -2a-y), 
(4 4) 

0os 'a (tf) = ±<£os 'a(~ 2 a - x). 

For positive energy we can define symmetric and 
antisymmetric states by 

</>s(x) = (co$k(x+a), A8/i(a:)+A.*gi(a;)), 

4>a(x) = ($mk{x+a), A«/i(a)+A«*gi(*)), 

A,= (i/2q)[g1'(0) coska+kgiiO) sinAa], 

Aa= (i/2^)[g1
,(0) sinka-kgi(0) coska'], (4.5) 

where the comma is at the origin, the star denotes as 
usual the complex conjugate, and gi(x) = fi*(x) for 
real q. The bound states correspond to the zeros of 
As,a* for q=ip, and have the form (4.5) multiplied by 
the normalization constant ar112. 

Gs'a is now constructed from the functions u of 
(2.18) and <j>s'a of (4.5), and the result is 

G*>a(x,y)= W2<,qASta*S12)lji>
s>a(x)u(y) and <t>s'a{y)u{x)~] 

for x<y and x>y. (4.6) 

Since u/Su is determined completely by the semi-
infinite potential (SIP) and can be written as 

»(*)/Si2= (1/S12)(e ik*+222e- ik*, SX2/x W ) , (4.7) 

we have to concern ourselves only with the aver
age (</>s'VAs>a*). From (4.5) the averages needed are 
(cosk(x+a)/A*), (As>a/As,a*), and (sin&(x+#)/Aa*). 

These averages are performed using the unit circle 
contour of Sec. IIIC. For positive energy (real q) the 
functions to be averaged are analytic functions of the 
complex variable, z=eika, for \z\ < 1 . If F(z) represents 
any of these functions we have the simple result, 

i (F(z)}= (2m)-1 / F(z)dz/z=F(0). (4.8) 

dz 

Using (4.5), (4.8), and (4.2) we have 

(cosk{x-i
ra)/h.s*) 

2q r erikxz-1+eikxz 

2ir Jc/i'(0)(a+r-1)--«'ft/1(0)(j!-jr1) z 

= 2t ?[/ i ' (0)+*A!/i(0)]-1<r«*=28 1^-»' , 

(As/A*) 

(4.9) 

'1 [ £L 
MJcfi 

g 1 ' ( 0 ) (z+z- 1 ) -^g i (0 ) (z -2 - 1 ) dz 

2vi Jc / i ' ( 0 ) ( z + z - 1 ) - ^ / i ( 0 ) ( 2 - 2 - 1 ) z 

(4.3) 
And similarly, 

(sin& (x+a)/Aa*) = 22ie~ikx 

<A«/Aa*>=2n. 

(4.10) 

(4.H) 

(4.12) 
Thus, 

<A, i f l*V'0(*)>= (S2ier**», 2n/ i (*)+gi( t f ) ) , (4.13) 

where the right-hand side is the function v{x) for the 
SIP, and we conclude that 

(Gs>a(x,y)) = G(x,y) for the SIP. (4.14) 

I t is important to observe that the averaging process 
removes the distinction between Gs and Ga, and 
eliminates the incoming wave eikx in (4.9) and (4.11) 
which amounts to neglecting the wave reflected from 
the boundary at the left. 

For negative energies (q=ip), / i and gi are real and 
two simple poles appear in the integrands of (4.9) 
and (4.10) corresponding to the zeros of A*s which are 
given by ^ ^ - [ / / ( O J + i f t / x C O ) ! / / ^ ) - ^ ^ ) ] - ! 
and which indicate the appearance of two bound states. 
Similarly, two poles appear in the integrands of (4.11) 
and (4.12) at za

2= — zs
2. Since these poles lie on the unit 

circle \z\ = 1 , the path of integration has to be modified 
for negative energies. The definition G= (E—He-\-ie)~l 

assigns a small negative imaginary part to the poles of 
G, and consequently the values of k corresponding to 
the bound states, namely, &o=&o(1\ &o(2\ etc., must be 
understood as ko—ie. The transformation z= eika pushes 
these poles slightly outside the unit circle. Therefore, 
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the contour C in (4.8)-(4.13) must be dented, if 
necessary, to place outside the contour of integration 
any poles such as zs and za which occur at | z \ — 1. With 
this modification in the path of integration C, Eq. (4.8) 
becomes the fundamental equation of the averaging process 
for negative and positive energies. Equations (4.9)-(4.14) 
apply now to all energies. 

We shall now extend the results of Sec. IIIC to this 
model. In taking the average of the matrix elements 
Mis>a and M2

8'a (contributed by <£os'a) we must leave 
the bound states intact28 and average only the Green's 
functions. Since (Mis>a) involves only (Gis>a) we obtain, 
using (4.14), the results of the SIP. Similarly, the terms 
in (M2

s'a) which contain only (G2
s'a) reduce to the 

corresponding terms of the SIP, and we must deal with 
those terms in M2

s>a which contain two Green's func
tions, namely, G2V

fGiVf<t>o which has been given 
explicitly in (4.3), and G2F'G2F'0o of (2.27). Now 
G2

8'a and Gi8>a are periodic in k2a and faa, respectively, 
which can be treated as two independent variables for 
averaging purposes, and we simply obtain that the 
average of the product (G2

s>a:Gis'a), reduces to the 
product of the averages, namely, (G2

s'a): (Gis'a) which 
brings us back to the SIP; the colon here denotes that 
an operator such as V separates the two Green's 
functions. 

From the symmetry of the problem the term 
G2F

/G2F
/0o brings the product G2

8:G2
a which is 

periodic in the variable k2a. Performing the average 
in the complex plane of eik2a we find using (4.8) that 
(G2

s:G2
a)=:(G2

s>a):{G2
s>a) which is equivalent to the 

SIP result. 
Thus to second order, the results of the symmetric 

and the SIP models are identical, and in fact the results 
can be extended to higher order.29 

B. General Potential 

The potential is now defined by (4.1) with V29^V\. 
The relevant Gi(x,y) is given by (2.20) and we must 
now solve for the functions u(x)/S\2 and v(x). We find 
by elementary methods that 

u(x)/S12=Af2(x+2a)+Bg2(x+2a), 
aeikx+l3e-ikx, fi(x), 

28 The exact location of the bound states, namely, the exact 
values of ko and po are of no great interest in the continuum limit, 
only the density of states as given by the rule dko/ir is important. 
In both the finite and the SIP models <£o has the same behavior at 
the barrier and that influences the matrix elements in the same 
way. 

29 This conclusion has to be somewhat qualified, for in consider
ing the average (Gr:Gr-i: • • -Gi) it is possible that for certain 
bound-state energies an angle, say, kna is an integral multiple of 
another angle kma, and, hence, these two variables are no longer 
independent, and the average of the product may fail to yield 
the product of the averages. This possibility arises, the earliest, 
in fifth order, for if k2/ix—'hoip/3 we have ks,a = 2kia. Using (4.9)-
(4.12), and performing the average in the complex plane z = eik™a, 
it is simple to show that for the symmetric potential we will obtain 
{Gn

s'a:Gm
s'a) = {Gn

s'a):(Gm
s'a). However, we have not succeeded 

in extending this result to the general potential of Sec. IVB. 

for 

x< — 2ay —2a<#<0, x>0, 

respectively, where 

A = ( 4 ^ ) - H [ g / ( 0 ) - ^ 2 ( 0 ) ] [ / / ( 0 ) + ^ / i ( 0 ) ] e - 2 ^ 

^ = ( 4 ^ ) - i { [ ~ / / ( 0 ) + ^ / 2 ( 0 ) ] [ / / ( 0 ) + ^ / 1 ( 0 ) > - 2 ^ 

+ [ / 2
, ( 0 ) + ^ / 2 ( 0 ) ] [ / / ( 0 ) - ^ / 1 ( 0 ) > 2 ^ } , (4.15) 

«=(2«)-1C/i /(0)+«/1(0)], 

/ 5=- (2«) - i [ / 1
/ (0 ) -« / i (0 ) ] . 

The scattering matrix 5 and the function v (x) can now 
be written down23: 

-B*/A —2iqa 

—4iqa/ 

a/A 

\<r2i*a/A (B/A)e~ 

v(x)=A~1g2(x+2a), 

yeikx+5e-ikx, Sii/i(s)+gi(aO, 

(4.16) 

(4.17) 

for x< — 2a, —2a<x<0, x>0, respectively; the coeffi
cients y and 8 are given by 

T=Cgi'(0)+t*g»(0)][2tfti4]-V«-, 

5= [-«i'(0)+tftg»(0)J2*ki;rV* t t s. 
(4.18) 

We are now ready to discuss the averages (Mi) and 
(M2) for this model. From (2.29) or (2.15b) we see that 
(Mi) depends only on (vi). Applying (4.8) to (4.17) we 
have: 

<7>=<l/4> = 0, 

(4%)[-g2 /(Q)+^2(0)] 
6 ~(2^)Cg2,(o)-%2(o)][//(o)+^/1(o)]~221, 

(Sn)=-(B*/A) (4.19) 

[g2 /(Q)-^2(Q)][g1
/(0)+^gi(Q)]_ 

Lg2\o)-ikg2(o)Tfi'(o)+ikf1m~ " ' 

which means that (vi) is zero for #< — 2a and coincides 
with the SIP function for x>— 2a. Letting #—>«>, 
(Mi) assumes the SIP value. 

To discuss (M2) it is simplest to work with the defini
tion (2.16b) which gives the average (v2(x): Gi(x,y)}. 
Averaging v2(x) first introduces a cutoff in x for x< — 2a 
which means that (Gi(x,y)) has to be considered only for 
x>—2a. This amounts to leaving the function Ui/Su 
intact and averaging only30 v± which introduces again a 
cutoff now in y for y< — 2a. The barrier V2 has thus 
been eliminated and as a —> °o we are left with the SIP 
model with one barrier, namely, V\. Clearly, the 
procedure applies to higher order matrix elements29 

30 For negative energy, A has four zeros on j % \ = 1 as can be seen 
from (4.15). Eqs. (4.19) remain valid when the path of integration 
is modified as in Sec. IVA. 
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and the equivalence of models extends to other 
perturbations. 

In brief, two surface barriers are necessary to intro
duce the correct quantization rule; but as the separation 
of the two surfaces becomes large, each surface displays 
surface phenomena characteristic of its own barrier and 
independent of the other surface barrier, a result which 
is taken for granted in the SIP model but which we find 
hard to justify without resorting to the averaging 
procedure we have discussed.31 
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APPENDIX 

The orthogonality of the functions u and v of (2.18) 
and (2.19) follows directly from the properties of the 
scattering matrix 5 defined by (2.17). The time reversal 
symmetry (complex conjugation of the wave equation), 
and the conservation of current yield the relations 
SS*—I, and qSi2 = kS2i, where / is the identity matrix.32 

Using these properties, and the relation, b(k—kf) 
=z(k/q)5(q-~q'), we have: 

(Al) 

(A2) 

(A3) 

= i r(SS*) u«(g-V) = 0 , 

which is the desired result. Similarly, we obtain: 

(u(q)\u(q')) = 2ir(k/q)8(q-q'), 

(v(q)\v(q')) = 2T8(q-q'). 
31 The averaging procedure can be used to eliminate a boundary 

condition in problems of higher dimensionality. In three dimen
sions we can write the Green's function G(r,0) for a point source 
at the origin as 

ix sin& (r—a)/ (Aacr sinka), or & cos& (r—a)/ (4rr coska) 
with G satisfying obvious boundary conditions on the surface 
of the sphere r—a. Letting a—> <*> and using (4.8) we obtain 
(sin& (r—a)/sinka) — (—cos& (r—a)/coska) = — eikr which is the free 
space function, and we have (G(rfl))=—/j, o,xp(ikr)/(A:irr). 

32 When a—k (finite potential) S^=S* and S is unitary. If in 
addition V(x) = V(-x), Sn = S22. 

The method of the variation of constants, as used by 
Mitchell14 and others, is essentially equivalent to 
expanding Green's function in eigenfunctions of the 
electron Hamiltonian He. The perturbation is turned 
on adiabatically at time t —•> — <*>, and the amplitudes 
of the eigenfunctions are examined at / = 0 . We have 
for the usual time integral the relation, 

G 
i \ /•« 

e-HE-He)tihdt= (E_Ht+ieyi=Gi ( A 4 ) 

Expanding G in eigenfunctions of He using (A2) and 
(A3), we have the asymptotic relation, 

H lq ru(q',x)u*{q',y) 
G{x,y) / dq' 

2irikJo qt-q't+ie 

rv(q',x)v*(q',y) 1 

Jo (?2-o'2+ie q 1 " 
(A5) 

However, for large x, only the outgoing waves in 
u(q',%) and v(q',x) survive, for using (A4) we have 

r° 
eiq'*(#2_ ^ ' 2 _ j _ ^ ^ - l = __l I e-i(q2-q'*) (t+xlq>)+i(cPlq')xdl 

e-i(q2-q'2)Z(^zei(q2/q')x 

and 

= -27ri5(g2-g , 2)e^a ; 

r-*«'*(g2-g , 2+ie)-1~0. (A6) 

Using (A6) and the definition of u and v in (A5) 
we find 

G(x,y)^(ji/2iq)ei^{_(q/k)Sliu*{q,y)+SnV*{q,y)'}. (A7) 

The function inside the bracket in (A7) can be identified 
as v(q,y) using the properties of S. We conclude that, 

G ( ^ ) ~ ( M / 2 i 9 ) e i « ^ ( y ) , 

which is Eq. (2.14). 

(A8) 


