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The wave-packet nature of an experimental beam is discussed. The theory of wave-packet scattering is 
applied to wave packets with exponential time dependence scattered from resonances in both the isolated-
resonance and overlapping-resonance regions. It is shown how a sequential description of scattering de
pends on some of the resonance parameters in the scattering amplitude. The meaning and usefulness of 
some experimentally possible wave-packet experiments is discussed. 

1. INTRODUCTION 

SCATTERING of a particle from a many-body 
system can be divided into two types with respect 

to a time interval r and a corresponding energy interval 
b{^h/r)} If the scattering amplitude as a function of 
energy varies rapidly over the energy interval 8, the 
scattering is said to be compound scattering; if the 
amplitude varies slowly over this interval, we have 
direct scattering, r is several orders of magnitude 
greater than the time it takes the incident particle to 
traverse a distance the size of the scatterer in free 
space. 

In most actual scattering experiments time is not 
resolved. The incident beam has an energy spread. The 
cross section can be regarded as the weighted sum of 
cross sections for independent experiments, each with 
definite incident energy. This will be discussed in Sec. 2. 
I t is still possible to define a time delay At according to 
the definition of Wigner,2 

At=-ih(d/dE)lihS(E), (1) 

where S(E) is the S-matrix element for the scattering; 
problem. This time delay may be thought of as the 
time it takes for the phase of one incident wave to 
catch up with that of another whose energy differs from 
it by an infinitesimal amount, and whose phase shift 
in the scatterer is therefore infinitesimally different. 

If the S-matrix element is divided according to some 
physical prescription into a rapidly and a slowly 
varying component, this definition is difficult to apply 
and it certainly does not tell us anything about each 
component separately. The rapidly varying component 
corresponds to a large At, that is, to particles that spend 
a long time on the average in the scatterer, and the 
slowly varying component corresponds to a small A/, 

* Supported in part by the U. S. Atomic Energy Commission 
and the Australian Commonwealth Scientific and Industrial 
Research Organization. 

1 For example H. Feshbach, C. E. Porter, and V. F. Weisskopf, 
Phys. Rev. 96, 448 (1954). 

2 E. P. Wigner, Phys. Rev. 98, 145 (1955). 
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that is to particles that pass rapidly over the scatterer 
without significant time delay. 

An experiment which measures the relative amount 
of direct and compound scattering has been suggested 
by Eisberg, Yennie, and Wilkinson.3 The experiment 
also defines an energy interval which is the reciprocal 
of the time delay. The information is obtained from 
the energy spectrum of bremsstrahlung from elastic 
scattering of charged particles. 

One would like to make a classical picture in which 
particles are described as being in the scatterer for 
varying times. To do this one must make a wave-packet 
argument. I t will be shown in Sec. 2 that the physical 
situation corresponding to a meaningful wave-packet 
argument is necessarily a time-dependent scattering 
experiment. 

Wave-packet arguments are made for example by 
Friedman and Weisskopf4 for the case of shape-elastic 
and compound-elastic scattering. They show that for 
nonoverlapping levels (resonances) of the compound 
system the time delay is the average over the beam 
energy spread of the time delays for the individual 
levels. If time delay is defined according to Wigner's 
definition, this result is obtained at once. I t has been 
done explicitly for example by Goldberger and Watson.6 

If, however, time delay is defined as the average 
time delay in the emerging of a wave packet in a 
hypothetical time-dependent experiment complemen
tary to the usual energy-dependent experiment, then 
the result is not so clear. The delayed wave packet 
would be expected to interfere with the immediately 
scattered wave packet from the shape elastic scattering. 
I t is commonly stated that if the two wave packets are 
sufficiently short in time they will not interfere.6 This 

3 R. M. Eisberg, D. R. Yennie, and D. H. Wilkinson, Nucl. 
Phys. 18, 338 (1960). 

4 F. L. Friedman and V. F. Weisskopf, Niels Bohr and the 
Development of Physics (Pergamon Press, Ltd., London, 1955). 

* M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 2284 
(1962). 

6 For example, H. G. Preston, Physics of the Nucleus (Addison 
Wesley Publishing Co., Inc., Reading, Massachusetts, 1962). 
R. K. Adair, S. E. Darden, and R. E. Fields, Phys. Rev. 96, 503 
(1954). 
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situation is now extreme hypothetical. I t requires very 
good time definition in the experiment. In an actual 
experimental situation, time is undefined and the 
wave packets interfere completely. I t may also be asked 
whether the scattering amplitude, and hence, for ex
ample, the angular distribution will not be dependent on 
the width of the incident wave packet, since, for short 
wave packets (in time), we might not expect such 
complete interference as for long wave packets.7 

The question of what actually happens to a scattered 
wave packet has been investigated by Sasakawa.8 He 
shows that for the scattering of a wave packet from an 
isolated resonance, the variation of the cross section 
with energy is characterized not by the width of the 
resonance but, in addition, by the width of the wave 
packet. In Sec. 3 we will re-derive this result using a 
different mathematical technique and Lorentzian wave 
packets. The Lorentzian shape is one shape for the 
energy spectrum that can be realized experimentally. 

In Sec. 4 we will consider the scattering of wave 
packets from a system in which the compound levels 
overlap. This gives new insight into the optical model, 
which is defined for this purpose as the model for which 
the time delay in the complementary time-dependent 
experiment would be small. Our treatment is more 
general than Sasakawa's treatment of the same situa
tion in a special case. 

The usual definition of the optical-model scattering 
amplitude9 is that it is the average of the actual scatter
ing amplitude over an energy interval 5. In the actual 
situation, amplitudes for different energies are in
dependent and it is the cross sections that are experi
mentally averaged. The meaning of the energy averaging 
process will be discussed. 

In Sec. 5 we will discuss the possibility of performing 
scattering experiments with time definition which are 
complementary to the usual ones in which energy but 
not time is resolved. One such experiment has been 
suggested by the present authors.10 

2. DEPENDENCE OF THE SCATTERING CROSS 
SECTION ON THE INITIAL BEAM 

CHARACTERISTICS 

A beam consists of particles whose energy is defined 
within certain limits. The time of arrival of particles 
at a specific point may also be defined within limits by 
modulating the amplitude of the beam. In general the 
limits on the time and energy resolution of the beam 
are wider than those imposed by the uncertainty 
principle. For example some particles may be moving 

7 1 . E. McCarthy, Proceedings of the International Symposium on 
Direct Interactions and Nuclear Reaction Mechanisms, Padua, 1962 
(Gordon and Breach Publishers, Inc., New York, 1963). 

8 T. Sasakawa, Progr. Theoret. Phys. Suppl. 11, 69 (1959). 
9 For example G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). 
10 L. R. Dodd and I. E. McCarthy, Phys. Rev. Letters 12, 136 

(1964). 

faster than others because they were accelerated a little 
more in the accelerator. The fast and slow beams could 
in principle be separated by a magnetic spectrometer. 
This type of energy uncertainty will be called classical 
uncertainty. On the other hand, if the time of arrival of a 
particle at a point is defined within a time interval r, 
we cannot in principle measure its energy with a 
definition better than 8 = h/r. This type of uncertainty 
will be called quantal uncertainty. 

A beam with both classical and quantal uncertainty 
is described by a collection of wave packets with 
different mean wave numbers ky whose position at time 
t is measured with respect to different initial position 
vectors r,-. The value of rt- specifies the starting time 
of the wave packet at the source. One such wave 
packet may be written 

bA*,t)= (2*)-* Ufa,*] k) expftk- (r-r<)]d»*. (2) 

Suppose that the number of packets of type j is 
given by n where 

n=$jN. (3) 

N is the total number of wave packets. 
We wish to know the cross section for a scattering 

experiment with an incident beam which can be 
described in this way. For simplicity we will consider 
only one spin state. We must be careful to distinguish 
two cases. 

Case A. If the r» are such that the wave packets do 
not overlap both before and after scattering, the 
scattering of each wave packet may be considered as 
an individual event. The total cross section is the sum 
of the cross sections for the scattering of each wave 
packet. 

Case B. The u are such that the wave packets 
overlap. In this case different wave packets will 
interfere and the cross sections for individual wave 
packets do not add incoherently. 

The mathematical description of these cases is as 
follows. For case A we will consider wave packets with 
the same value r0 of r* and describe the beam by means 
of a density matrix. The density matrix at time t is 

p(r,rV) = E i ^ o i ( r , 0 ? o / ( r ' , / ) . (4) 

According to the standard theory of wave-packet 
scattering,11 £oy is given in the case where the space 
occupied by the wave packet is large compared to the 
size of the scatterer but small compared to the distance 
of the detector by 

$w(r,0 = (2ir)-» Ufafi; k) exp(-ik-r0-iEt/fi) 

X [exp (ikr)/r]f(k,G)(Pk. (5) 
11 See, for example, E. Merzbacher, Quantum Mechanics (John 

Wiley & Sons, Inc., New York, 1961). A review of general wave-
packet scattering with applications to nuclear reactions has been 
given by N. Austern in Selected Topics in Nuclear Theory (Inter
national Atomic Energy Agency, Vienna, 1963). 
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f(k£l) is the scattering amplitude for scattering of 
particles into a detector whose angular position is 12. 
A(ky,5; k) is a weight function which confines the wave 
packet to a volume in momentum space centered at 
ky and of width 8. 8 is the quantal uncertainty. 

We will not be interested in the angular uncertainty 
in the wave packet, so we will write 

8 (Ok—Oo)d((f)k—<£o) 
A(M;k) = : A(kj,S;k), (6) 

2irk2 smdk 

where {dk,<t>k), (0o,0o) are, respectively, the angular 
coordinates of k and ky, the beam direction. 

The probability Py(/) of detecting a particle at time 
/ at the detector whose position is r^ is, for the wave 
packet j , 

Py(0 = ^i | foy(W)|Vd
2(«2. (7) 

This defines the normalization Nj of £oy. The differ
ential cross section is 

/.00 

(da/dQ) (ky,5) = voNpf / | &>y ( W ) j Ht, (8) 

where VQ is the group velocity of the wave packet. 
We may write the differential cross section for the 

beam described by the density matrix (4) as 

da I dQ, = VoNjfd2 • p(td,U,t)dt. 
J —oo 

(9) 

Substituting from (4) and interchanging the order of 
summation and integration we have 

d*/d£L=YLd®P*N. 

= Zy$A(M)/<^. 

jTd2 Uoy(rd, 
J —00 

t)\Ht 

(10) 

This is the result stated above for case A. Since we 
are only interested in the differences of the peak 
energies Ej for different wave packets j , we may 
replace the sum in (10) by an energy integral. 

do do-da r da 
— = \^{E,)—{Ef,b)dEf. (11) 
dn J da 

The cross section is the energy average of the cross 
sections for individual wave packets with different 
peak energies. In particular, for beams with negligible 
quantal uncertainty the cross section is the energy 
average of the cross sections for scattering events with 
plane wave and outgoing spherical wave boundary 
conditions. For this reason we will call <£, the width of 
the weight function $CE), the classical uncertainty. 

We will now consider the more general case B and 
see under what circumstances the distinction between 
classical and quantal uncertainty can be maintained. 

In terms of plane-wave states ??(k), the most general 
density matrix is 

p(r,r',0= f j'a(k,k')ri[kVv(k)d*kd*k'. (12) 

We wish to write (12) in diagonal form in terms of 
wave-packet states £t-y. 

p( r / ,0 = £<y$/&y&A (13) 

We must know if this diagonalization is unique. If 
so, we can assign a definite classical weight factor <£ 
with uncertainty 0 and a definite quantal weight 
factor A with uncertainty 5. If not, the distinction is 
meaningless. 

In mathematical terms the question is as follows. 
Can the Hermitian matrix p(r,r',/) in (12) be diagonal-
ized by more than one transformation of the type (2) 
of the basis vectors? A necessary condition for the 
diagonalization to be unique12 is that the states £*y must 
be orthogonal like the states 77. 

In fact we have 

[ti&>,-(Pr= (2*)-* f A(ky,a; k)A(ky,,5; k)* 

X e x p [ - i k - (ti-ti^yPk. (14) 

The overlap integral in (14) is approximately zero 
if the wave packets have sufficiently different starting 
times given by Xi and r^ because of the rapid oscillations 
of the integrand. 

In case A the wave packets have a definite physical 
significance. The quantal uncertainty leads to altera
tions in the usual cross sections, as will be shown in the 
succeeding sections. In case B the wave packets may 
be regarded as mathematical aids to the visualization 
of the scattering process. For example we can de
compose a plane wave into an infinite number of 
overlapping wave packets and then follow the propa
gation of one of these packets. Nevertheless, this would 
be without physical significance because the scattering 
amplitudes for all the packets must be recombined to 
obtain the cross section. 

The vital point is that the wave packets both before 
and after the scattering must be quite distinct in space 
and time for the quantal uncertainty to have any 
physical significance. 

3. SCATTERING OF A WAVE PACKET 
FROM A RESONANCE 

In the usual theory of scattering it is assumed that 
f(k,ti) in Eq. (5) varies much more slowly with energy 
than the wave packet amplitude factor A(ky,5; k); that 
is, that the quantal uncertainty 8 is negligible in com-

12 U. Fano, Rev. Mod. Phys. 29, 74 (1957). 
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parison with the width of the energy fluctuations of the 
scattering amplitude. 

We will consider the case where 8 is comparable with 
Ts, the width of the compound state \s) of the system 
comprising the incident particle and the scatterer 
whose energy es is near the central energy EQ of the 
wave packet. In the present section we will suppose that 
only one state | s) contributes to the scattering ampli
tude at the energies covered by the wave packet.12a 

We will be interested in only one wave packet 7 = 0. 
Since we are interested in the energy rather than the 

momentum of the wave packet, it will be convenient 
to transform the integral in (5) to an energy integral. 
The transformation is trivial when k is proportional to 
E as it is for photons (E=hck). 

For our discussion of hypothetical time-dependent 
experiments with finite-mass particles complementary 
to the usual energy-dependent experiments, we can make 
the assumption, following Friedman and Weisskopf,4 

that the source and detector are sufficiently close to 
the scatterer for wave packet spreading to be negligible. 
We will neglect the final term in the following expansion 
of E: 

E=— [ 2 k . k 0 - W + | k - k 0 | 2 ] . (15) 
2m 

Photon wave packets do not spread for practical 
purposes. 

We must now consider a particular form for the 
energy amplitude factor A(Eo,8;E) corresponding to 
A(ko,5;k). Wave packets made by electronic means 
(see Sec. 5) would have a rise and decay function in 
time that is something like an exponential. We will 
therefore consider a wave packet that has an ex
ponential rise and decay, with time constant h/8. We 
will assume that the beam is switched off as soon as it 
has attained full strength, so that there is no time for 
which the beam intensity is constant. The experimental 
difficulty is in fast switching on and off. Since we want 
as short a packet in time as possible, this is then the 
most realistic form. The energy amplitude factor for 
this form is 

5/2TT 
A(E 0 ,5 ;E)= . (16) 

( E - E 0 ) 2 + 5 2 / 4 

One shape of wave packet is already available in 
nature. This is the photon wave packet from the decay 
of a level \s) of a many-body system. I t has a half-
exponential time spectrum. If the moment of excitation 
of the level is taken as zero time, then the probability 
of emission of a photon decays exponentially with a 
time constant h/Ts. In this case we have 

A ( £ 0 , r s ; £ ) = 
i/2* 

E-EQ+iTs/2 
(17) 

"» Note added in proof. The decay of a single resonance has been 
investigated by R. G. Newton, Ann, Phys. (N. Y.) 14,333 (1961). 

We will use the form (16) for most of our discussion. 
For the scattering amplitude we will use the expan

sion of Siegert, Humblet, and Rosenfeld,13 

1 
/ [ > ( £ ) £ ] = - £ J ( 2 H - 1 ) P J ( C O S 0 ) 

2i 

x c*(£)+2> 
Ri 

E- «,»+i*T iVmX 
(18) 

The nonresonant term Ci(E) varies slowly with energy. 
The splitting off of this term is not unique and can be 
made according to some physical prescription. Equation 
(5) now becomes 

K 
f(r,0 = —Ei(2 /+l )Pz(cos0) 

2TT JO (E-E8)(E-E8) J o 

8 

Xexp(iEX)\ d(E)+Zn 
Rln 

E— ein+iTin/2 J 
"W (19) 

where 
X=l(r0+r)/v0-tyh, 

ES = EQ—18/2} 

KK= 1/8TT\ (20) 

We have dropped the subscripts on £(r>0 because we 
are now interested only in one particular wave packet. 

The integral in (19) is now in a convenient form for 
contour integration if we make the approximation of 
extending the lower limit to — °o y thus neglecting the 
contributions of bound states. 

We will first consider the scattering of the wave 
packet according to the nonresonant scattering ampli
tude Ci(E) whose variation with energy can be neglected 
over the energies of the wave packet. Performing the 
integration in Eq. (19) we find 

€(r,0 = ^E i (2 /+ l )P i ( cos^ )C i (E) exp(fBiX), X > 0 
= ££*(2Z+l)P,(cos0)C,(JE) 

Xexp(iE 8X), X<0. (21) 

The wave packet is centered at X = 0 , i.e., at 

t=(r0+r)/vo. (22) 

Hence, the nonresonant packet is propagated without 
time delay. The time spectrum of | £ (r,t) |2 is an ex
ponential rise and fall, exp(—bt/fi). 

The differential cross section is, according to Eq. (8), 

J o - / ^ = i | i ; z ( 2 / + l ) P i ( c o s ^ C z ( £ ) | 2 . (23) 

Thus, the differential cross section for nonresonant 
(potential) scattering is independent of the quantal 
uncertainty 8 and identical with that for a normal beam 
in which 8 is negligible. 

13 A. Siegert, Phys. Rev. 56, 750 (1939). J. Humblet and L. 
Rosenfeld, Nucl. Phys. 26, 529 (1961). 
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We will now consider the scattering from an isolated 
resonance state \s). Taking one term of the sum in (18) 
we have for the integral in (18) 

r S/2TT RS 

I = / exp (iEX)dE, (24) 
J^(E-Ed)(E-E5)E-Es 

where 
Es=es-iTs/2. (25) 

Integration round an infinite semicircle in the upper 
half plane gives 

Rs 
/ = _ _ expiiEiX), X>0. (26) 

E^—Es 

This means that the leading edge of the wave packet, 
that is, the part for times greater than (ro+r)/vo, is 
propagated with the same shape as it originally had, 
but, of course, with a different magnitude. The propa
gation of the trailing edge (the tail) of the wave packet 
is given by integration round a contour in the lower 
half plane 

Rs 

1= exp(iE8X) 
E$—Es 

Rs 
_ i g _ _ e x p ( i £ . X ) , X < 0 . (27) 

(E8—Es)(E8—E$) 

The coefficient of JID[R8C0(E)2 is of order 1/5 for 
large 8. Hence the interference term in the cross section 
does become smaller for larger 5, that is for better 
defined wave packets in time, but so also does the 
resonant scattering term, both being of order 1/8. The 
potential scattering term is not affected by 8. 

4. SCATTERING FROM MANY LEVELS 
AND THE OPTICAL MODEL 

We will now consider the energy region where, for a 
given channel, the resonances in the scattering ampli
tude are such that the average width is greater than the 
average spacing, so that many levels contribute at each 
energy over the energy spread of the wave packet. 

The time spectrum given by | / 1 2 is a decaying oscilla
tory function. In particular, if the time width of the 
wave packet is much less than the decay constant of 
the state | s), the time spectrum of the tail has the shape 
exp(—Tst/h). This corresponds to exciting the resonance 
suddenly and watching it decay with its natural time 
constant. 

The differential cross section is 

da i ? J s [ ( £ - 6 s ) 2 r s / 2 + ( r s + 5 ) 2 ( r s / 2 + 5 ) / 4 ] 
— = . (28) 
dil 2Tl(E-esy+(Ts+8Y/4:J 

This reduces to the Breit-Wigner form for very 
small quanta! uncertainty 8. The most significant thing 
is that the width of the energy spectrum is T s +5. Note 
also that the differential cross section for scattering from 
a single resonance is reduced in magnitude for large 
quantal uncertainty. For large 5, da/dQ, is of order 1/6. 

In view of the arguments often made about the 
noninterference of potential and resonance scattering 
for large 5, it is interesting to consider the interference 
term. Denote the additional cross section due to the 
interference of potential and resonant scattering by 
dai/dtt. I t arises from the last term in the splitting 
of the scattering into potential and resonant parts 

|{(r,0|2=|£p(r,0l2+|^(r,0l2 

+2Re!p(r ,0£f i ( r ,0 . (29) 

Taking only the s state for simplicity of notation, 

The levels in this region are defined by some plausible 
model such as has been discussed by Brown9 for nuclei. 
Their widths are of the order of 1 eV, so that the 
corresponding lifetime, 10~15 sec, is too short for a 
practical wave-packet experiment. However, it is 
interesting to consider a hypothetical wave-packet 
experiment in order to give a proper quantum mechani
cal sequential description of the passage of a particle 
through the scatterer, when we know the ^-matrix 
element for the scattering. 

This gives us another way of looking at the optical 
and direct interaction models. We will restrict ourselves 
to elastic scattering for simplicity. The optical model has 
been considered in two ways, each with a different 

den f _ (E-es)+i(Ts/2+8) 
— = £ RsCo(E) , (30) 
dQ I Z(E-es)+i(Ts+8y/4,Y 

(E- e.) ( £ - es)
2+ ( r s +5) ( r 8 +38) /4 

= i R e [ i « 7 o ( E ) ] -
[(£-es)

2+(rs+5)2/4]2 

( E - e s ) 2 r s / 2 + ( r s + 5 ) 2 ( r s + 2 5 ) / 8 
+ | MXCoOE)] . (31) 

(£-es)
2+(rs+s)2/4 
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starting point. The first way starts with a Schrodinger 
equation. The optical-model Hamiltonian is shown to be 
an approximation to the many-body Hamiltonian. The 
second way is independent of any Hamiltonian assump
tion and starts with the scattering amplitude. The 
average over some energy interval I of the scattering 
amplitude S is shown to be capable of being calculated 
from an optical-model Hamiltonian. The average cross 
section is split into two terms. 

(<T)=\(S)\*+(\S-(S)\*}. (32) 

The first term is the optical-model or shape elastic cross 
section. The second term is the fluctuation or compound 
elastic cross section. 

A third, classical, definition of the optical model is 
sometimes given. The optical-model cross section is the 
cross section for propagation without time delay while 
the compound elastic cross section is the remainder. 

I t is not clear that the last two definitions are 
equivalent. The splitting in Eq. (32) requires a definition 
of the averaging procedure. Some authors, for example 
Brown,9 have gone to much trouble to discuss the 
averaging procedure. Brown's argument is essentially 
a wave-packet argument since it uses an average of the 
scattering amplitude over an energy interval I. We 
have seen in Sec. 2 that for a beam without significant 
time resolution it is the cross sections, not the ampli
tudes, that are averaged. 

Another condition for the validity of this definition 
of the optical model is required. The average over 
amplitudes must be nearly equivalent to the average 
over cross sections. This means that the compound 
elastic cross section must be very small compared 
with the optical model cross section. 

A quantal statement of the third definition of the 
optical model must be given by a detailed wave-packet 
description. I t is quite conceivable that the scattering 
amplitudes for certain problems are such that a large 
proportion of the cross section is due to time-delayed 
wave packets. This question will be discussed in detail 
by one of us (LRD) in a subsequent publication. 

At present we will just consider the propagation of 
the wave packet in general and show how it leads to a 
large proportion of immediate propagation in the case 
r^>D where T is the average level width and D is the 
average spacing. 

Considering only the S wave for simplicity and 
omitting the potential scattering term, Eq. (19) gives 
for the time dependence of the trailing edge of the wave 
packet 

Rn f 
t(t,t) = K exp(iEX) E n exp(5X/2) 

E-en+i{Tn-8)/2l 

id exp(TnX/2) expi(en-E)X) 
^ i L_ 1 (33) 
E-en+i(Tn+5)/2 ) 

The second term in the bracket is the one containing 

th€ properties of the scattering amplitude rather than 
the wave packet. Each level n contributes an exponential 
tail to the amplitude with a time-delay constant 
h/Tn. However, this contribution is multiplied by a 
phase factor exp[i(en—E)X~] which gives a partial 
cancellation of the tails when the packets from different 
levels are superposed. 

If the level widths Tn are much greater than the 
average spacing D, the factor en—E can be large so 
that the phase factor oscillates rapidly. In this case 
the phases of the contributions from different levels 
tend to be random so the tails cancel out giving a large 
proportion of propagation without time delay. 

Thus the sequential description of scattering gives 
the same result as the usual energy description. The 
optical model is valid when T^>D. 

The dependence of (33) on the magnitude of the 
quantal uncertainty 8 is also interesting. As 8 is in
creased the magnitude of the contribution from each 
level to the scattered packet decreases. However more 
levels contribute significantly to the sum. If the phases 
of the residues Rn are random the magnitude of the 
scattered packet will decrease rapidly with increasing 8. 
If they are correlated, the magnitude will decrease 
less rapidly. The range of the correlations between 
levels can be determined in principle by varying 8. This 
will be discussed in detail in a subsequent publication. 

5. POSSIBLE WAVE-PACKET EXPERIMENTS 

The condition for a time-dependent scattering experi
ment is that the experimental definition of time must 
be accurate in comparison with the characteristic time 
of the scattering amplitude. That is, we must have 8 not 
much less than V. 

Experimental definition of time is at present possible 
for times as short as about 10~10 sec. Typical nuclear 
values for h/T are 10~~15 sec, so wave-packet experi
ments cannot be performed with nuclei except in special 
cases. These cases are metastable states which can have 
lifetimes as long as 10 - 7 sec. 

One experiment has actually been done using the 
Mossbauer effect with the 14-keV y ray from Fe67, 
which has a decay constant of 10~7 sec, by Holland, 
Lynch, Perlow, and Hanna.14 The time spectrum of the 
incident wave packet was defined by using as zero time 
the time of formation of the 14-keV state, which was 
defined by the time of emission of the 128-keV 7 ray 
(a fast decay) from the next highest state in the 7-ray 
cascade from the decay of Co57. The wave packet has 
an exponential time spectrum with 8=h/10~7 sec. This 
wave packet was scattered resonantly from an Fe57 

target. The time spectrum of the final state and the 
increased width of the absorption line were both 

14 R. E. Holland, F. J. Lynch, G. J. Perlow, and S. S. Hanna, 
Phys. Rev. Letters 4, 181 (1960); F. J. Lynch, R. E. Holland, and 
M. Hamermesh, Phys. Rev. 120, 513 (1960). 
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observed. In this case d=Ts. The width of the wave 
packet in this experiment is of course fixed. By looking 
at the scattering at times less than 10~7 sec, Holland 
et al. were able to observe greater widths, but for these 
cases the shape of the incident packet was not defined. 
The spectrum of total elapsed time gives only an upper 
limit to the time width of the incident wave packet 
because it is not known if the delay occurred in the 
source or the scatterer. 

The Mossbauer effect is, of course, a wave-packet 
scattering experiment in which the absorption cross 
section is measured. If we do not define time but 
merely observe the cross section we lose the wave-packet 
property, that is the quantal uncertainty. The cross 
section is obtained using Eq. (17) to define the energy 
amplitude factor of the wave packet. 

da Rs
2 1 

—= . (34) 
dCl 2Vs(E0~Esy+Tji 

Thus, we have the well-known result that the line-
width in the Mossbauer effect is twice the width of the 
level, assuming all the nuclei in the target are capable 
of absorbing resonantly. 

Defining the starting time of the excitation of the 
metastable state puts a quantal uncertainty into the 
beam equal to Ts. The method of Holland et al. defines 
the starting time with a minimum tolerance equal to the 
lifetime of the next highest state in the 7-ray cascade. 
This is shorter than the experimental time resolution, 
which is itself much shorter than h/Ts. 

One way of varying the time width of the wave 
packet would be to vary the resolution with which the 
starting time is measured. It is possible by this method 
to decrease 8, but not to increase it. 

A better experimental way of varying the wave-
packet width in the Mossbauer effect has been sug
gested by the present authors. A third resonant absorber 
is introduced between the source and the target. This 
absorber is accelerated in a very short time (10~9 sec) 
to a speed sufficient to shift the resonance so that the 
incident beam is no longer absorbed and can hit the 
target. It is then slowed down again quickly so that the 

time duration of the pulse is of the order of 10~9 sec. 
This method would produce approximately the ex
ponential wave packet [Eq. (16)] that we have used in 
the calculations of Sees. 3 and 4. It is experimentally 
just possible to achieve the requisite acceleration by 
using a very thin foil of Fe57 as one plate of a parallel 
plate condenser in a vacuum which is charged first 
with one sign and then with the opposite sign by an rf 
pulse. However, the acceleration may be achieved more 
easily using a piezo-electric crystal. Another possibility 
is to use the Stark effect to shift the resonance. This 
requires a tightly bound dielectric crystal containing 
nuclei with a metastable state. 

Wave-packet experiments in the atomic energy 
region may be interesting. An absorber of laser material 
placed in a laser beam and moved for a short time as 
suggested above would produce wave packets of laser 
intensity. The quantal uncertainty would be much 
greater than that of a beam from a pulsed laser, whose 
quantal uncertainty can be no greater than the width 
of the laser state. 

All such experiments observe only the scattering 
of a wave packet from a single resonance with a trivial 
angular distribution. Overlapping resonances, even in 
atoms, would probably have widths of the order of a 
few tenths of an electron volt. Wave-packet experi
ments in this region with 8^T would require time 
lengths of 10~15 sec which seems impossible at present. 
The possibility of doing time-dependent electron-
scattering experiments from atoms is not experimentally 
remote and would be interesting. 

Using laser wave packets, it may be possible to 
observe the changes in angular distribution due to the 
interference of potential and resonant scattering as the 
quantal uncertainty is changed. The potential scattering 
could be obtained by diffraction of laser light round a 
small crystal of laser material. 
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