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This paper is concerned with the extension of some recently reported results, especially those of Bourret 
(1960), relating to coherence properties of blackbody radiation. An explicit expression for the complex elec
tric correlation tensor &ij(ttr) of blackbody radiation is derived, and on the basis of it spatial coherence 
( T = 0 ) is discussed in detail. The behavior of diagonal as well as nondiagonal components is illustrated by 
contour diagrams. In particular, it is found that the nondiagonal components of the correlation tensor, even 
though being zero for zero-space separation (r=0), acquire, in general, nonvanishing values when r^O. 
The magnetic and mixed correlation tensors are also discussed. 

1. INTRODUCTION 

IT is a common notion that the most incoherent 
radiation is blackbody radiation in an equilibrium 

enclosure. Recent researches1-4 have shown that even 
in this type of radiation there is coherence in a suffi
ciently small space-time region. Bourret1 has derived 
expressions for the second-order electric correlation 
tensor of blackbody radiation, using techniques analo
gous to those employed in the theory of isotropic 
turbulence of an incompressible fluid. Such a correlation 
tensor describes the correlation between the Cartesian 
components (denoted by subscripts i, j) of the electric 
field E(r)(r,0 at two space-time points ri and r2, at 
time instants h and /2, 

<Sii(r)(ri,r2,/i^2) = (£i(r)(riA)^(r)(r2,/2)}, (1.1) 

where sharp brackets denote the time average: 

<£<<'Wi)£/r)(n,<»)> 

: lim 
T-+oo 

1 [T 

2TJ-T 
ti-\-t)EjV(T2,h+t)dt. (1.2) 

Sarfatt3 rederived some of Bourret's results using 
quantum mechanical density matrix techniques. 

The components of the correlation tensors discussed 
by Bourret and Sarfatt are real functions of space and 
time. However, numerous recent researches on co
herence properties of light have shown that an appro
priate measure of coherence is provided by certain 
complex rather than real correlation functions (cf. Ref. 
5), and this is also supported by recent investigations 
of Glauber6 based on quantum field theoretical calcula-
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Al 

tions. (See also Sudarshan,7a-b Wolf,8 Mandel, Sudar-
shan and Wolf,9 Mandel.10) The appropriate complex 
electric correlation tensor Sij(rhr 2^1,12) may be derived 
from the real correlation tensor defined by (1.1), by 
using the concept of an analytic signal.11,5 Assuming the 
field to be stationary in time, so that §»/r) depends on 
h and fa only through the time difference 7—fa—fa, the 
complex correlation tensor is given by12 

.««(ri,r1,T)=2i«yW(r1,r1,r)+i&/«(r1,r8,r)]> (1.3) 

where 
1 r ««(r)(ri,r,,T/) 

««w>(r1,r,,r) = - P / dr' (1.4) 

is the Hilbert transform of <S^(r)(ri,r2,r) and P denotes 
the Cauchy principal value at T'—T. 

Bourret and Sarfatt have restricted their discussion 
of the tensor to certain special cases only, namely, 
to those characterizing temporal correlation (ri=r2) 
and lateral and longitudinal spatial correlation (r=0). 
Their results do not provide information about the non-
diagonal components of the correlation tensor, though, 
in principle such information could be obtained with the 
help of their formulas. 

7 E. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963); 
(b) in Proceedings of the Symposium on Optical Masers (Polytech
nic Press, Brooklyn, New York and J. Wiley & Sons, Inc., New 
York, 1963), p. 45. 

8 E. Wolf, in Proceedings of the Symposium on Optical Masers 
(Polytechnic Press, Brooklyn, New York, and John Wiley & 
Sons Inc., New York, 1963), p. 29. 

• L. Mandel, E. C. G. Sudarshan, and E. Wolf (to be published). 
10 L. Mandel, Phys. Letters 7, 117 (1963). 
11 D. Gabor, J. Inst. Electr. Engrs. 93, Part III, 429 (1946). 
12 An alternative, but equivalent, definition of the complex cor

relation tensor, which will be needed later is as follows: With the 
real field E(r)(r,/) we associate the complex analytic signal E(r,0, 

E(r,/)=EW(r,/)+*EW(r,/), 

where E ( i ) is the Hilbert transform of E ( r ) . Then the complex cor
relation tensor 8,7 may be expressed in the form 

8t7(n,r2,r) = (Ei(rut+T)Ei*(r2,t)). (1.3a) 

The equivalence of the definitions (1.3) and (1.3a) is shown in 
Ref. 17, pp. 464-466, where also a certain mathematical refinement 
connected with questions of convergence is discussed. 
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In this paper an explicit expression for the complete 
second-order complex electric correlation tensor of 
blackbody radiation is derived and a number of 
diagrams are obtained, which show the behavior of the 
elements of this tensor. The magnetic and the mixed 
second-order complex correlation tensors are also 
discussed. 

In paper I I (Ref. 13) the electromagnetic correlation 
tensors defined on the basis of quantum field theory will 
be evaluated for blackbody radiation and will be com
pared with the corresponding tensors defined in the 
present paper on the basis of semiclassical theory. 
Higher order correlation tensors will also be considered 
in paper I I . 

2. EXPLICIT EXPRESSION FOR THE SECOND-ORDER 
COMPLEX ELECTRIC CORRELATION TENSOR 

OF BLACKBODY RADIATION 

In this section a new expression for the normalized 
complex electric correlation tensor 7#(r,r) of blackbody 
radiation will be derived. For any stationary field, the 
normalized correlation tensor is defined by the formula 

Equation (2.2) may be written as 

Tw(ri,r2,r) = 
8ij(rht2,T) 

LSii(rhT1fi)J'^Sjj(r2yr2j0)']m 
, (2.1) 

where Sij is the correlation function (1.3). The normali
zation ensures5 that 0 < | Y # | < 1 . In the case of black-
body radiation in a cavity whose linear dimensions are 
large compared with the mean wavelength of the radia
tion, the field is isotropic and Sa and y# depend effec
tively on ri and r2 through the difference r = ri— r2 only. 

An integral expression for 7#(r,r) for blackbody 
radiation has been obtained by Kano and Wolf.2 They 
showed that 

A*,T)--
45a 4 

8TT5 / 

where 

K O-lj K%Kj 

k{exp(ak) — l} 

Xexp{i(k«r~ 

a=hc/KT, 

•kcT)}d*k, (2.2) 

(2.3) 

c being the vacuum velocity of light, n the Planck's 
constant divided by 2ir, K the Boltzmann constant and 
T the absolute temperature. The integration in (2.2) is 
taken over the whole k space. The normalization con
stant in (2.1) has the value 

lSii{Thrlm
ij\^n,r2m

m^ ««(0,0,0) 

(no summation) 

64 7r6i£4r4 

(2.4) 
45 (he)* 

13 C. L. Mehta and E. Wolf, following paper, Phys. Rev. 134, 
A1149 (1964). 

45a 4 

7ij(r,T) = (didj—dijV2) 
8TT5 

/ 

exp{i(k«r—kcr)} 

k(eak-l) 
d*k, (2.5) 

where dt==d/dr*. Using spherical polar coordinates for 
k, with the polar axis along the direction of r, we obtain 

45a4 

7 * ( r , r ) = - (did j - 8 ^ ) 
8TT5 

/ kdk / eikr coaB sinddS d<j> 

J0 eak-lJ0 Jo 
45a 4 1 r00 sinkr e~ikcT 

= (didj-dijV2)- / dk. (2.6) 
2TT4 rj0 eak-l 

The last integral can be written as 

oo 1 r00 

y" / (gik(r-cT) e~ik^r~^CT^\e~nakdk 
«=i 2i J o 

1 1 1 

2i n=i [na—i(r—CT) na-{-i(r+CT)) 

so that yij may be expressed in the form 

45a4 oo 1 

27r4 n=i (na+icT)2-\-r2 

Carrying out the differentiation on the right-hand side, 
we finally obtain the following expression for the normal
ized complex electric correlation tensor of blackbody 
radiation: 

90a4 
*i: 

7r4 «=i I {(na-\-icr)2Jrr2}2 

+2-
{(na-\-icr)2Jrr2}z 

, (2.7) 

where r^ r3- are the components of the vector r with 
respect to i and j axes, respectively. 

3. TEMPORAL COHERENCE 

Restricting ourselves first to the case r = 0 , Eq. (2.7) 
gives the following expression for the normalized tensor 
that characterizes temporal coherence: 

Ytf(0,r)= (90A4)f (4, l+icT/a)8i,; (3.1) 

where f (s,a) is the generalized Riemann zeta function14 

14 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1958), p. 265; 
(also Dover Publications, Inc., New York, 1962), p. 265. 
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defined by Equation (4.7) is valid for all r' but is not suitable for 
00 1 computing 7#(r') when r' is small. For small r', however, 

H 'W— 1^ ~ • w-2) w e directly obtain from (4.1), on expanding in powers 

I t should be noted that the tensor yij(0,r) is diagonal. r 8 3 n 
The expression (3.1) for the temporal degree of co- 7f--(r')

5E7*,(rO) = $ J 1 r'2-\ r 'H 
herence of blackbody radiation is identical with the ' L 21 35 J 
expression derived by Kano and Wolf2 and discussed in 
detail by them [cf. Eq. (11) of their paper]. In particu- ^ T 4 ^ 2

 rn . 1 (r'<T\ (4 9) 
lar they gave diagrams showing the behavior of the r'2 L21 35 J * ' 
modulus and the argument of 7«(0,r) as function of r. 

If we set i=j—x in (4.7) and (4.9) and take r' in the 
4, SPATIAL COHERENCE direction of the x axis, we obtain the following expres-

Setting r = 0 in Eq. (2.7) we obtain the following s i o n s f o r t h e longitudinal coherence function 7**long: 
expression for the normalized tensor that characterizes *c 
spatial coherence-. 7*slong(r') = (r' cq thr '+r ' 2 c s c h V - 2 ) 

, nv
 9 0 * j *J* , - 2 rjrj-8^ J " ( ^ o o ) , (4.10a) 

7<y(r,0) = — E 7 — I — — f . (4.1) 
7T4 n-i I (n2+r2/a2)2 a2 (n2+r2/a2Y\ 4 1 

= 1 r ' 2 + — r ' 4 + • • • ( /<* • ) , (4.10b) 
I t is seen from this expression that 7#(r,0) is real. 21 35 
The series on the right-hand side of (4.1) may easily be 
summed with the help of the result15 where r' = x' = irx/a. 

On the other hand, if r7 is chosen perpendicular to the 
00 1 7r x axis, then we obtain from (4.7) the following expres-

^ ~7~, ~=~L\jra) > (4-2) sion for lateral coherence function 7 x x
l a t : 

n=i n2~\-a2 2a 
45 

where L(x) is the Langevin function 7xxlat(r/) = [ 4 - V cotYir'—r'2 cschV 
L{x) = cothx— 1/x. (4.3) 

Successive term by term differentiation of (4.2) gives 

4 / 4 

•2 / 8 cothr' c s c h V ] , (/< 00), (4.11a) 

8 3 
« 1 l d \ * T , J ,AA, " = 1 r " + - r ' 4 + " - ( r '< i r ) , (4.11b) 

E 7 - 7 — 7 7 = - 7 - —1 —L(*a) r> (4-4) 21 35 

where r ' = (y ,2+s ,2)1/2=7r(y2+s2)1/2/o:. 
n-i (w2+a2)2 2a da 12a 

£ * = _ ! _ _ i ( H n j L ( 7 r a ) l l . (45) Expressions ' f o r ' y y v ^ y y J * \ 7 > n g , and 7**lat are, 
n=i(n2+a2)* 16ada\adaLa J J ' o f course, strictly similar. The expressions (4.10a)-

(4.11b) are in agreement with those derived by Bourret.1 

If we set Next we will examine the three-dimensional distribu-
r=(a / i r ) r ' , (4.6) tion of 7#(r ') . First, let us consider a particular non-

diagonal component, say the xy component. From 
so that r' represents the separation of points in the u y\ a n ( j u g\ w e 0^>tain 
cavity in units of <X/T, (4.1) gives, with the help of 
(4.4), (4.5), and (4.3), 4 5 * y 

Y*v(f') = l > ' cothr'-f3r'2 cschV 
45 r n'r/-\ 4r'6 

•7tf(r /)=7«(r,0) = 4 ( r ' ) M - £ ( r ' ) , (4.7) 
4r'4[_ r '

2 J + 2 r ' 3 c s c h V c o t h r ' - 8 ] ( r ' < c o ) , (4.12a) 
where 

4 
4( r ' ) = - / c o t h r ' - r ' 2 cschV <—-VyH ( r ' O ) • (4.12b) 

- 2 r ' 3 c s c h V c o t h r ' + 4 , 1 2 1 

J5(r/) = 3 r / c o t h / + 3 / 2 c s c h V r (4.8) In Fig. 1, the a?y section of the surface of constant 
+ 2 / 3 cschVcothr '—8.J Y*v(r0 is shown. 7*2,(0 is positive in the I and I I I 

quadrants and negative in I I and IV quadrants, attain-
» L . B. W. Jolley, Summation of Series (Dover Publications, k g peak values a t four points , deno ted b y le t ters ,41, A*, 

New York, 1961), p. 22, Series number 124, B\, B% in t h e figure, a t dis tances r=ar/w~2.3a/Tr from 
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FIG. 1. Contours of yxy(t') in the xy plane. yXy(t')=yxy(tfi) 
= (1/N) S.„(r,0); N= S*,(0,0) = (64/45) (i,*/hc)*K*T*; r^caf/v; 
a^ftc/KT. 

the origin, this distance being of the order of half the 
mean wavelength of the radiation.4 The variation of 
yxy{t') along the line x—y, 2=0 , is shown in Fig. 2. 
In Fig. 3, the contours of the surfaces yxv(t') in the plane 
x=y are shown. 

We see that the surfaces, yXy{*') = constant, are 
closed surfaces, having the lines x==by, 2 = 0 as axes 
of symmetry. (Thus, any plane section through one of 
these lines will be symmetrical about that line.) Near 
the origin these surfaces are more or less hyperbolic 
cylinders as seen from Eq. (4.12b). The surfaces for 
peak values | yXy(r') | ̂ 0 . 1 4 3 , shrink to the four points 
Ah A 2, Bh B2. The behavior of the other nondiagonal 
components, such as yyz(r

;) or yZx(rf) is, of course, 
strictly similar. 

For diagonal components of the correlation tensor, it 
is again sufficient to consider one of them, e.g., that 

corresponding to i=j=z. We have from (4.7) and (4.9) 

45 
yzz(rf)= {(—*' cothr'—r'2 cschV 

z'2 

- 2 r ' 3 cothr' cschV+4)H (3/ cothr' 
rn 

+3r ' 2 c s c h V + 2 / 3 cothr' c s c h V - 8 ) } , 

( / < « > ) , (4.13a) 

1 r/2+— z'2+-
21 21 

( / < * • ) . (4.13b) 

Eq. (4.13b) shows that for small spatial separation 
rf of the two points, the surfaces yzz{t') = constant are 
the ellipsoids 

2(x2+y2)+z2= constant. 

The contours of yzz(r') in the xy plane are circles, 
shown in Fig. 4. Figure 5 shows the contours in the 

^—-x'=y' 

FIG. 2. Variation of yxv(t') with r', when r ' is in the 
direction x=y in the plane z = 0. 

FIG. 3. Contours of yxy{*f) in the plane x=y. 

yz plane. The actual surfaces 7^( r0 = constant are just 
the surfaces of revolution generated by rotating these 
contours (Fig. 5) about the z axis. 

For the sake of completeness the variation of yxz 

along the z axis (longitudinal coherence) and along the 
x axis (lateral coherence) are given in Figs. 6 and 7, 
respectively. These two curves are in agreement with 
Figs. 3 and 4 of Bourret.1 

In the present section we have discussed only the case 
of spatial coherence characterized by 7#(r0=7#(r ,0) . 
In the general case, when r is arbitrary, i.e., when the 
correlation is characterized by yij(r,r) rather than by 
7»/(r,0), the value of the correlation, for any particular 
separation r of the two points may, of course, become 
appreciably larger (or smaller), provided r is chosen 
appropriately. 

5. THE SECOND-ORDER COMPLEX MAGNETIC AND 
MIXED CORRELATION TENSORS OF 

BLACKBODY RADIATION 

Besides coherence effects associated with the electric 
field, coherence effects involving the magnetic field are 
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also of interest. Some of these effects are characterized 
by a magnetic correlation tensor 3C# and mixed correla
tion tensors gty and 8*;, introduced in earlier publica
tions.16a,b These tensors may be defined in a similar 
manner as the electric correlation tensor <§#. Assuming 
again that the field is stationary we have, in analogy 
with (1.3a), 

3e«(n,r,,T) = (Hifat+rWM), (5.1) 

8i,-(r1,ra,r) = (E^t+r)!!*^)), (5.2) 

8 i i(r1,r2,r) = <ff<(ri,«+r)£Ar«,0>, (5.3) 

where, as before E(r,2) denotes the complex analytic 
signal associated with the real electric field E ( r )(r ,0 and 
H(r ,0 denotes the complex analytic signal associated 
with the real magnetic field H ( r ) ( r ,0 . 

We note that the tensors Q and g a r e related as 
follows: 

§t-Xr1,r2,r) = 8it*(r2, th -r). (5.4) 

I t is known16a'17 that in vacuo each of these tensors 

FIG. 4. Contours of yzz{x') in the xy plane. 

satisfies two homogeneous wave equations. Also, that 
the tensors are not independent but satisfy differential 
equations of the form16b>17 

1 d„ 

c dr 

1 d 
€jkldk1(3lm-\ 3Cyw= 0 , 

c dr 

(5.5) 

(5.6) 

16 E. Wolf, (a) Nuovo Cimento 12,884 (1954); (b) in Proceedings 
f the Symposium on Astronomical Optics, edited by Z. Kopal 
North-Holland Publishing Company, Amsterdam 1956), p. 1/7. 

17 P. Roman and E. Wolf, Nuovo Cimento 17, 462 (1960). 

FIG. 5. Contours of yZz(i') in the yz plane. (Surfaces of constant 
y t e are the surfaces generated by rotation of these curves about 
the z axis). 

etc., where cV (k = x, y, z) are the components of the 
gradient, taken with respect to the coordinates of ri and 
€jki is the completely antisymmetric unit tensor of 
Levi-Civita. There is a similar set of differential equa
tions involving the components 6V of the gradient, 
taken with respect to the coordinates of r2. In the case 
of blackbody radiation, one has, on account of isotropy 
dk1==—dk2=d/drk where rk are components of the 
vector r=r i—rs . 

Now for blackbody radiation we have from (2.1)-(2.4) 

he r 

2W k{exp(ak) — l} 

Xexp{i(k-i-kcr)}d*k. (5.7) 

On substituting from (5.7) into (5.5) and solving the 
resulting equation for §, subject to the boundary condi-

r:r9<r') 

0.5 

FIG. 6. Longitudinal coherence. Variation of yzz
lonz(r')^yzz(T,0)f 

with r', when r' is along the z axis. 
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tion §jm(t, °°) = 0, we obtain, if we also use (5.4), 

he r kk 
§ym(r,r) = - g,'m(r,T) = ejmk / — — 

2TT3 J exp(ak)-l 

Xexp{i(k-r-kcr)}d3k. (5.8) 

From (5.8) and (5.6) we find on solving for 3Cjm subject 
to the boundary condition 3Cjm(r, oo) = 0, and on compar
ing the resulting expression with (5.7), 

3Cym(r,r)= 5y w(r,r) . (5.9) 

In deriving (5.9) use has been made of the identity18 

ejkiemk'j=famf>ik' — 8kk'8im- Relation (5.9) implies that the 
magnetic coherency tensor is identical with the electric 
coherency tensor, discussed in detail in the preceeding 
sections. 

Let us now consider the mixed tensors g and §. 
From (5.8) we may readily derive series expansions for 

i 
1.0 

0.5 

0 

-0.1 10 

FIG. 7. Lateral coherence. Variation of yzz
l&t(rf)=zyzz(T,0), with 

r', when r' is along the x axis. 

these tensors. For this purpose, we first rewrite (5.8) in 
the form 

he 
Sym(r,r) = — §ym(r,r) = ejmk(—idk) 

2TT3 

/ 

exp{i(k*r—kcr)} 

exp(ak) — l 
•d*k (5.10) 

and apply to the integral on the right-hand side of 
(5.10) a similar procedure as used in connection with 
Eq. (2.5). We then obtain 

16hc 
Sjm(r,T) = ~ S/m(r,r) = i €jmkrk 

7T2 

«» na~\-icr 

XE 
n=i \^(na+icT)2-\-r223 

(5.11) 

18 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics 
(Cambridge University Press, New York, 1950), 2nd ed., p. 73. 

FIG. 8. Contours of \<rxy(x
f) \ = \<rxv(r,0) \ in the yz plane. 

<rxl/(r')s^y(r,0) = (l/iV)9xtf(r,0); N = (64/45)(TT2 /^)3^4^. 

We see that the mixed tensors g/m and §ym are anti
symmetric and that 

&«(0,r) = Sy«(0,r) = 0 . (5.12) 

Equation (5.12) implies that at every point r, JE»-(r, t+r) 
and Hj*(t,i) [and also, of course Hi(r, t+r) andEy*(r,/)] 
are uncorrelated irrespective of the time delay r, i.e., 
there is no "temporal coherence" between the complex 
electric and the complex magnetic field. 

I t will be convenient to normalize the tensors 9 and 
§ in a similar manner as we normalized 8, i.e., we 
define normalized mixed correlation tensors a and a by 
the formulas 

1 1 
^•m(r,r) = —8ym(r,r), frym(r,r) = —gyTO(r,r) , (5.13) 

N N 

where [cf. (2.1), (2.4), and (5.9)] 

FIG. 9. Variation of \<rxy{tf) \ with / , 
when r' is along the z axis. 
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A - C ^ ( 0 , 0 ) ] i / 2 [ 5 C , , ( 0 , 0 ) ] i / 2 

AU49 

= 0yy(O,O) = 3^(0,0) = 
64 7T6i^4r4 

45 (hc)z 

From (5.15) we obtain in the special case r = 0 
(spatial coherence between the electric and magnetic 

^ ' fields), for typical nondiagonal elements of a and a, 

I t follows from (5.13), (5.14), and (5.11) that <r and 
a may be represented in series form as follows: 

180a4 

0"im(r,T) = —<X/m(r,T) = 1 Tk*jmk 

na-j-icr 
XL 

n- i [ ( w a + i c r ) 2 + r 2 ] 3 

H e r e the cons tan t a is given b y (2.3) as before. 

180 
<TXy(rfl)=-axv(rfl) = i z £ 

co-4 n=i (^2+r2/o:2)3 
(5.16) 

The diagonal elements are, of course, identically zero, 
since a is antisymmetric. 

We see from (5.16) that in the plane z=0 (xy plane) 
(5.IS) <Txy(t,0) is identically zero. In Fig. 8 the contours of 

|o\ci/(r,0)| in the yz plane are presented and in Fig. 9 
the variation of \axy(rfi) | along the z axis is shown. 
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Coherence Properties of Blackbody Radiation.* II. Correlation 
Tensors of the Quantized Field 

C. L. MEHTA AND E. WOLF 

Department of Physics and Astronomy, University of Rochester, Rochester, New York 
(Received 9 December 1963) 

Expressions are derived for the electromagnetic correlation tensors of blackbody radiation denned on the 
basis of the theory of the quantized field. Correlation functions of all order are considered, but second-order 
ones are discussed in detail; it is found that these are identical with those obtained on the basis of semi-
classical theory in part I of this investigation. This result illustrates a recent theorem of E.C.G. Sudarshan 
relating to the equivalence between semiclassical and quantum mechanical description of statistical light 
beams. 

1. INTRODUCTION 

IN part I of this investigation,1 expressions were 
derived for the complex second-order electromag

netic correlation tensors of blackbody radiation and 
their behavior was discussed in detail and illustrated 
by a number of diagrams. The statistical methods used 
were based entirely on classical concepts, though 
quantum mechanical features of the radiation were 
implicit in that treatment, since the spectrum of the 
radiation was taken to be given by Planck's law. 

In the present paper the second-order correlation 
tensors introduced recently by Glauber2 on the basis of 
the theory of the quantized field, are evaluated for 
blackbody radiation and are shown to be identical with 
those defined and evaluated on the basis of the semi-
classical theory. This result illustrates a recent theorem 
of Sudarshan,3 relating to the equivalence between 

* This research was supported by the U. S. Air Force Office of 
Scientific Research. 

i C . L . Mehta and E. Wolf, Phys. Rev. 134A, 1143 (1964), 
preceding paper. 

2 R. J. Glauber, (a) Electronique Quantique, 3eme Conference, 
edited by N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964), 
p. I l l ; (b) Phys. Rev. 130, 2529 (1963); (c) ibid. 131, 2766 
(1963). 

3 E . C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963). 
(b) in Proceedings of the Symposium on Optical Masers (Poly-
technique Press, Brooklyn, New York and John Wiley & Sons, 
Inc., New York, 1963), p. 45. 

semiclassical4-6 and quantum mechanical description of 
statistical light beams. 

In Sec. 4 higher-order correlation tensors of black-
body radiation are briefly discussed. 

2. THE SECOND-ORDER CORRELATION TENSORS OF 
THE QUANTIZED FIELD 

I t will be useful to begin with some results which will 
be needed later, relating to quantization of the electro
magnetic field and the definition of the correlation 
tensors of the quantized field. 

The electric-field operator, at the space-time point 
#== (r,ct), when expanded in a Fourier series is given 
by7 (with i= x, y, z) 

&(*)=&<+>(*)+&<->(*), (2.1) 

4 The term ''semiclassical" implies here that the distribution 
functions characterizing statistical properties of the beam are 
not necessarily non-negative and may therefore not be true 
probabilities. They are essentially Wigner distribution functions 
(see Refs. 5 and 6), called also "quasiprobabilities." However, in 
the present case (blackbody radiation) the distribution function 
turns out to be positive. [See Eq. (3.1).] 

5 E. P. Wigner, Phys. Rev. 40, 749 (1932). 
6 (a) J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949). 

(b) G. A. Baker, Jr., Phys. Rev. 109, 2198 (1958). (c) C. L. 
Mehta, J. Math. Phys. 5, 677 (1964). 

7 All operators are denoted by circumflex. 


