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From (5.15) we obtain in the special case r = 0 
(spatial coherence between the electric and magnetic 

^ ' fields), for typical nondiagonal elements of a and a, 

I t follows from (5.13), (5.14), and (5.11) that <r and 
a may be represented in series form as follows: 
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XL 
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H e r e the cons tan t a is given b y (2.3) as before. 
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<TXy(rfl)=-axv(rfl) = i z £ 

co-4 n=i (^2+r2/o:2)3 
(5.16) 

The diagonal elements are, of course, identically zero, 
since a is antisymmetric. 

We see from (5.16) that in the plane z=0 (xy plane) 
(5.IS) <Txy(t,0) is identically zero. In Fig. 8 the contours of 

|o\ci/(r,0)| in the yz plane are presented and in Fig. 9 
the variation of \axy(rfi) | along the z axis is shown. 
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Expressions are derived for the electromagnetic correlation tensors of blackbody radiation denned on the 
basis of the theory of the quantized field. Correlation functions of all order are considered, but second-order 
ones are discussed in detail; it is found that these are identical with those obtained on the basis of semi-
classical theory in part I of this investigation. This result illustrates a recent theorem of E.C.G. Sudarshan 
relating to the equivalence between semiclassical and quantum mechanical description of statistical light 
beams. 

1. INTRODUCTION 

IN part I of this investigation,1 expressions were 
derived for the complex second-order electromag

netic correlation tensors of blackbody radiation and 
their behavior was discussed in detail and illustrated 
by a number of diagrams. The statistical methods used 
were based entirely on classical concepts, though 
quantum mechanical features of the radiation were 
implicit in that treatment, since the spectrum of the 
radiation was taken to be given by Planck's law. 

In the present paper the second-order correlation 
tensors introduced recently by Glauber2 on the basis of 
the theory of the quantized field, are evaluated for 
blackbody radiation and are shown to be identical with 
those defined and evaluated on the basis of the semi-
classical theory. This result illustrates a recent theorem 
of Sudarshan,3 relating to the equivalence between 

* This research was supported by the U. S. Air Force Office of 
Scientific Research. 

i C . L . Mehta and E. Wolf, Phys. Rev. 134A, 1143 (1964), 
preceding paper. 

2 R. J. Glauber, (a) Electronique Quantique, 3eme Conference, 
edited by N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964), 
p. I l l ; (b) Phys. Rev. 130, 2529 (1963); (c) ibid. 131, 2766 
(1963). 

3 E . C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963). 
(b) in Proceedings of the Symposium on Optical Masers (Poly-
technique Press, Brooklyn, New York and John Wiley & Sons, 
Inc., New York, 1963), p. 45. 

semiclassical4-6 and quantum mechanical description of 
statistical light beams. 

In Sec. 4 higher-order correlation tensors of black-
body radiation are briefly discussed. 

2. THE SECOND-ORDER CORRELATION TENSORS OF 
THE QUANTIZED FIELD 

I t will be useful to begin with some results which will 
be needed later, relating to quantization of the electro
magnetic field and the definition of the correlation 
tensors of the quantized field. 

The electric-field operator, at the space-time point 
#== (r,ct), when expanded in a Fourier series is given 
by7 (with i= x, y, z) 

&(*)=&<+>(*)+&<->(*), (2.1) 

4 The term ''semiclassical" implies here that the distribution 
functions characterizing statistical properties of the beam are 
not necessarily non-negative and may therefore not be true 
probabilities. They are essentially Wigner distribution functions 
(see Refs. 5 and 6), called also "quasiprobabilities." However, in 
the present case (blackbody radiation) the distribution function 
turns out to be positive. [See Eq. (3.1).] 

5 E. P. Wigner, Phys. Rev. 40, 749 (1932). 
6 (a) J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949). 

(b) G. A. Baker, Jr., Phys. Rev. 109, 2198 (1958). (c) C. L. 
Mehta, J. Math. Phys. 5, 677 (1964). 

7 All operators are denoted by circumflex. 
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where 

/2whc\1/2 2 
&<+>(*) = *( ) E ( * ) i y 8 { E ^ A x ( k ) ^ } , (2.2) 

\ V / k X=l 

/27Tfe\1/2 

•8/->(*) = {£<<+>(*)>t=-tf—J EW1/2 

X { E ^ > 4 t ( k ) ^ - } . (2.3) 
x~i 

Here F represents the volume to which the field is 
confined and d\(k) and a\t(k) are the annihilation and 
creation operators, respectively, for a photon of 
momentum fik and polarization X; they satisfy the 
commutation relations 

[4(k),4't(kO] = SXv$kk', (2.4) 

[dx(k)A'* /)]=C«xt(k)A' t(k ,)]=0. (2.5) 

e(1) and e(2) are two unit vectors, such that e(1), e(2) 

and k/k (with k = | k |) form a right-handed orthogonal 
triad and KX represents the usual four-vector product 

KX = k'T— kd. (2.6) 

In writing down Eqs. (2.2) and (2.3), the modified 
Lorentz condition was used in the form introduced by 
Gupta and Bleuler,8 employing an indefinite metric: 
Allowable states | \p) are only those for which 

E l*>=o, (2.7) 

where A(+) is the positive frequency part of the potential 
of the field. This condition justifies our restriction to 
transverse photons (X= 1,2) as long as only expectation 
values of products of field operators are considered. 

The magnetic-field operator may be similarly written 
in the form 

#<(*)=#,<+> (*)+#,•<->(*), (2.8) 
where 

#<<+>(*)=«—J £(fc)1/2 

x 
2 ( k x e W ) i 

Z «x(k)e*' 
x-i k 

/2whc\1/2 

(2.9) 

#<<->(*) = {#,<+>(aO>t=-i( ) £(ft) 
\ F / k 

2 (kxeW), 
X 

X - l 
diSOOfr***} . (2.10) 

If p is the density operator of the field, the second-
8 See, for example, S. S. Schweber, An Introduction to Quantum 

Field Theory (Harper & Row, New York, 1961), p. 242. 

order correlation tensor of the electric field, introduced 
by Glauber2a'b may defined as 

fSiJ(xhx2) = Tv{^i^(x1)^^(x2)}, (2.11) 

where the indices i9 j specify Cartesian components of 
the tensor (i, j=x, y, z) and the prime on S is used to 
distinguish this tensor from the corresponding one 
defined in paper I in classical terms. In a similar way, 
one may define the second-order magnetic and mixed-
correlation tensors 
/je^(»i,^)==Tr{^W(a ; i)^y(+)(^)}, (2.12) 

/8tf(*i,*«) = ,Tr{jafi<W(*i)^/+>(^)}, (2.13) 
/§<y(«i,*2) = /Sy.-*(»2,^i) 

= Tr{/atf/->(*i)^/+>(^)}. (2.14) 

To evaluate the correlation tensors '§, '3C, 'g, and '§ 
for blackbody radiation, it will be useful first of all to 
express the density operator p in a representation in 
which the base vectors are the eigenvectors | {z}) of the 
annihilation operator &\(k): 

4(k)|{z}H*x(k)|{z}>. (2.15) 

Here {z} denotes the set of z\(k) for all A's and k's, 
so that 

i{S}>=nk(k)>. (2.i6) 
X,k 

Since the operator &\(k) is not Hermitian, its eigen
values £x(k) are in general complex, 

zx(k) = xx(k)+fyx(k), (2.17) 

(#x(k), y\(k) real) and the eigenvectors belonging to 
different eigenvalues are not orthogonal. However, they 
obey a closure relation (cf. Ref. 9). 

i/ni 
7T J X,k 

ax(k)X^(k)|*ax(k)=l, (2.18) 

where 1 is the identity operator if, as we shall assume, 
they are normalized so that 

(Zx(k)|Zx(k))=l. (2.19) 

The eigenstate |z\(k)) has the following expansion 
in the number representation9: 

{sx(k)}^(k) 

k(k)>= £ erp(-*lft(k)l») r hx(k)), 
nX(k)=0 [ ^ X (k ) ! ] 1 / 2 

(2.20) 

where the |^x(k)) form an orthonormal set of eigen
vectors of the number operator d\^(k)d\(k): 

dxt(k)ix(k)|nx(k)>=«x(k)|»x(k)>. (2.21) 

The eigenvectors of the annihilation operator have 
been found very useful in the analysis of problems 

9 J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960). 
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relating to the statistical behavior of radiation.2'3«10 that the "phase-space" distribution function </>({z}) for 
An important property of these eigenvectors is expressed blackbody radiation is given by 
by a theorem established recently by Sudarshan3 which < t / * \ 12. 
we shall employ. According to this theorem, any <t>({z}) = T[ expl [ (3.1) 
operator and in particular the density operator p may be x,k irnk I nk J 
expressed in the "diagonal" form 

where nk^Uk,\ (X=l,2) is the average number of 

/

photons with momentum k and polarization X, 
*(W)lwxwi*w- (2.22) p ; 

^ = 1 / ( ^ - 1 ) , (3.2) 
with 

Using this representation of the density operator, it then a==hc/KT (3 3) 
follows from (2.2), (2.3), (2.11), (2.22) and (2.15) and 
its Hermitian adjoint that the second-order correlation That the "phase-space" distribution <j>({z}) given by 
tensor of the electric field may be expressed in the form (3.1) does indeed lead to the well-known expression for 

the density operator p of a radiation field in thermal 
f&ij(xhx2) equilibrium at temperature T is verified directly in 

the Appendix to the present paper (see also Mandel10). 
= /"*({*})<{«} \£i<-K*iW+Hx2)\{z))d*{z} I f w e substitute from (3.1) into (2.24), and also use 

J the relation 

- g r ^ w ^ . ^ f k j , , ^ ) , „ /'2x.,(t>)Kt„)ni_(!xp(_|a(k)!,/#i)(j!a(l) 
J X.kTT^ 

where 
1 r 

$x\'(k,k'; xhx2) = {2irhc/V){kkf)112 exp(-iKXi+iKX2) = 5x,x„5k,k„ / \z\>(k')\2 

irnw J 

XJ<KWK*(kV(kVW. (2.24) Xexp(-|2v(k)|V«*0^(k') 

The corresponding expressions for the second order = ^'0x'X"0k'k", (3.4) 
magnetic and mixed correlation tensors defined by where 8 is the Kronecker symbol, we find that 
(2.12)-(2.14) can also readily be written down. We only 
need to use the expressions (2.9) and (2.10) in place of $*.*'(k>k 5 ^1^2) 
(2.2) and (2.3) where appropriate. We then obtain in 2whc 
place of (2.23) the following expressions for the other = - ~ W x x ' S k k ' exp{-iK(xi-x2)} • (3.5) 
second-order correlation tensors of the quantized field: 

ir (X) ir' (X') Next we assume that the linear dimensions of the 
'3C •( ) = Y Y ( 1 / \ enclosure are large compared with the mean wavelength 

13 h 2 x.k'X'.k'y k ) \ kf / • °^ t n e radiation. Summation over k may then be 
replaced by integration over the whole k space, if use 

X$xx' (k,k'; xhx2), (2.25) is made of the usual rules11 

/k 'xe<x '>\ 1 1 r 
%j(xhx2) = j : E ^ ( k ) — ) E / ( k ) ^ _ _ / # 4 / ( k ) , (3.6) 

x.kx',k' \ k' Ji (V)l/2 k (2TT) 3 / 27 
X*xv(k ,k ' ; * i , * 2 ) , (2.26) S k k , ->S(k -k ' ) , (3.7) 

'§*(*i,*2)=£ E ( U*'>(k': 
X.kX'.k'V k 'i 

_ i f _ 1 ̂  (X')z'lr^ where / is an arbitrary function and 6(k—-k') is the 
three-dimensional Dirac delta function. One then 
obtains from (3.5) and (2.23), the following expression 

X$xx'(k,k ;; xi,x2). (2.27) for the correlation tensor 'S: 

3. THE SECOND-ORDER CORRELATION TENSORS OF he f 
BLACKBODY RADIATION /5<y(r»i,«2) = / knk exp{in(x2—Xi)} 

4TT2 J 
We will now evaluate the correlation tensors '&, '3C, 2 

' 8 and ' § for the case of blackbody radiation. I t would X £ ^(X) (k)e/x> (k)d*k. (3.8) 
appear from a discussion of Glauber [Ref. 2c, Eq. x==nl 

(10.23)], based essentially on the central limit theorem, n j . M. Jauch and F. Rohrlich, The Theory of Photons and 
Electrons (Addison Wesley Publishing Co., Cambridge, 1955), 

10 L. Mandel, Phys. Letters 7, 117 (1963). p. 38. 
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Next we substitute for nk from (3.2) and also use the 
relation 

E ^ ( k ) 6 i ^ ( k ) = 8 < / - — , (3.9) 
x-i k2 

which follows from the fact that e(1), e(2), and k/k form 
a triad of mutually orthogonal unit vectors. We thus 
finally obtain the following expression for the second-
order electric correlation tensor' & of the quantized field: 

he r k28ij—k{kj nc r 
'8ij(xhx2) = — / 

4TT 2 7 k(e«k-l) 

Xexp{^(^2—xi)}dzk. (3.10) 

For the magnetic second-order correlation tensor, we 
obtain in a strictly similar manner from (2.25) 

fie r 
'3Cij(xhX2)=:— / knkexp{iK(x2—Xi)} 

AT2 J 

2 / k x e ( x ) \ /kx£<x>\ 
X I ) ( )d»*. (3.11) 

Now the three vectors k x c(1)/&, k x z{2)/k and k/k also 
form a triad of mutually orthogonal unit vectors, and 
hence a relation similar to (3.9) holds between them. In 
consequence, the right-hand side of (3.11) becomes 
identical with the right-hand side of (3.10) and hence 
we have 

'3Cij(Xi,X2) = '&ij(Xi,X2) . (3.12) 

For the mixed second-order correlation tensor 'g we 
obtain from (2.26) in a similar manner 

he r _ 
'Qij(xi,X2)=— / knk exp{iK(x2—xi)} 

4TT2 J 

where r=t\—h and r=ri—*2, it follows on comparing 
Eqs. (3.10), (3.12), and (3.15) with Eqs. (5.7), (5.9), 
and (5.8) of paper I that 

' 8ij(xhX2) = l8ij*(xhx2), 

f9ij(xi,x2) = iQif(xhx2), 

%j{xhX2)=-\§ij*{xh%2) . 

(3.17) 

The relations (3.17) show that the second-order 
electromagnetic correlation tensors of blackbody radia
tion defined for the quantized field by Eqs. (2.11), 
(2.12), (2.13), and (2.14) are proportional to the 
complex conjugates of the corresponding tensors defined 
for the classical field by Eqs. (1.3a), (5.1), (5.2), and 
(5.3) of paper I.12~14 

4. HIGHER ORDER CORRELATION TENSORS 

Up to now we have considered correlation tensors of 
second order only. For the sake of completeness, we 
will now briefly consider electromagnetic correlation 
tensors of higher orders for the case of blackbody 
radiation. Again these correlation tensors may be 
defined either as appropriate averages of products 
involving the field vectors of the complex classical field 
at a number of space-time points,15,16'17 or as quantum 
mechanical expectation values involving the corre
sponding field operators.2 Since the equivalence of these 
different definitions has been demonstrated by Sudar-
shan,3 Mandel10 and Mehta and Wolf,18 we may restrict 
our discussion to correlation tensors defined on the 
basis of the theory of the quantized field. The electric 
correlation tensor of order m-\-n is then defined by the 
equation 

®Ji,h>'"Jm+n\%h'^h' * '%m*> Xm+i,' • 'Xm+n) 

X£yTO+1<+> (*,»+!)• • •^ m + „ ( + >(^„)} , (4.1) 

It may readily be verified that 

/kX£<*> 

2 / k X £ ( A ) \ 
X x?i € i ( X ) ( ^ \ I ) d*k' ^3-13) where .£/<-> (a^ ^+){x\ are Cartesian components of 

3 the operators E{r'){x)y J§(+)(#) at the space-time point 

2 
.(X) 

/k x z™\ 
( k < — ) , = " " 

fo/k, (3.14) 

where e#j is the completely antisymmetric unit tensor 
of Levi Civita. Hence, if also (2.14) is used, (3.13) 
reduces to 

foe r ki 
'9ij(Xi,X2)= —'$ij(.Xi,X2) = €iji I 

4TT2 J eak-l 

Xexp{iK(x2— xi)}ddk. (3.15) 

Noting that K(X2—XI) is the four-vector product 
K(X2—Xi) = kcT—k*r, (3.16) 

12 The correlation tensors of the classical field could readily be 
redefined without any loss of generality, so as to lead to strict 
identities /S»7=S»/, etc. In particular, the factor J could be 
suppressed by employing a slightly different normalization in 
defining the analytic signal (Refs. 13 and 14) by means of which 
the complex fields are associated with the real fields. However, we 
preferred to retain the customary definitions throughout this 
investigation. 

13 M. Born and E. Wolf, Principles of Optics (Pergamon Press, 
London and New York, 1959), Chap. X. 

« D. Gabor, J. Inst. Elec. Engrs. 93, Part III, 429 (1946). 
15 L. Mandel, in Electronique Quantique 3eme Conference, edited 

by N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964), 
p. 101. 

16 E. Wolf in Electronique Quantique 3 erne Conference, edited by 
N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964), p. 13. 

17 E. Wolf, in Proceedings of the Symposium on Optical Masers 
(Polytechnique Press, Brooklyn, New York and John Wiley & 
Sons, Inc., New York,H963), p. 29. 

18 C. L. Mehta and E. Wolf (to be published). 
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APPENDIX 

A1153 

x, defined by Eqs. (2.2) and (2.3). I t follows from 
Sudarshan's discussion3 that the expectation value on the 
right of (4.1) may be expressed as a phase-space average 
of the products of the components of the complex classi
cal field, in the form 

*%m) # m + l ? * * '0Cmr\-nJ 

= J<Mz})Eh*(x1)EJ*(xiy • •£/„*(*«) 

XEjm+1(xm+l) ' ' -Ejm+n(XnH-n)d2{z} , ( 4 . 2 ) 

where <l>({z}) is the "phase space" distribution function 
associated with the density operator p [cf. (2.22)] and 

/ 2whc\m 

V / 
• EW 1 / 26i ( X ) (k) 2x(k)e^; (4.3) 

(j=x,y,z) is the eigenvalue of the operator J S / + ) ( X ) 
corresponding to the eigenstate \{z}). 

In the case of blackbody radiation, the phase-space 
distribution <£({z}) is given by (3.1), which is a multi
variate Gaussian distribution. Now since according to 
(4.3) the field components Ejjjc^, Ej*(xp) are linear 
combinations of the zx(k) and 2\*(k), they will, accord
ing to a well-known theorem on the Gaussian random 
process, be also distributed as Gaussian variates19 and 
hence all moments involving them may completely be 
expressed in terms of the second-order moments20 

as follows: 

If m=n 

( X l , # 2 , * 'Xm'y Xm+ly* * mXm+n) 

=z11*£h'w£xi'> xp)S
(1'1)(x2') xq)"-

X &3m,U\%'m > %$) • \4.4j 

If m^n 

'3m+n (xi,x2,- \Xm+iy'--Xm+n) = 0. (4.5) 

The second-order coherence tensor &}ll)l(xi; xp), etc. 
on the right of (4.4) is precisely the second order 
electric correlation tensors given by (3.10) and T 
denotes all permutations p, q, • • • s of the non-negative 
integers m + 1 , tn+2, • • -2m. 

Strictly similar expressions can readily be written 
down for the magnetic and mixed tensors of an arbitrary 
order. 

Finally, it should be mentioned that the expression 
(4.4) for the electric correlation tensor of blackbody 
radiation has also recently been derived by Glauber.20 

19 Proof of this result for a real Gaussian random process is 
given, for example, in Wang and Uhlenbeck, Rev. Mod. Phys. 17, 
323 (1945). Generalization to a complex Gaussian random process 
is straightforward. 

20 See, for example, I. S. Reed, Inst. Radio Engrs. Trans. Inform. 
Theory IT8, 194 (1962). 

In this Appendix we will verify that the phase-space 
distribution (3.1), namely, 

k(k)|*i 1 
<K{s})=Il — exp 

X.k TWjfc 

f izxwi2] 
I nk J 

(Al) 

corresponds to the density operator p for radiation 
field in thermal equilibrium at temperature T. 

On substituting from (Al) and (2.20) into (2.22), 
we obtain 

X,k n\(k)x=0 m\(k)=»0 
/ -

I nk i 

2 | 2 ^ 2 n \ ( k ) 3 * m x ( k ) 

I fik J(ffc(k)!«fc(k)!)1« 

Xexp{-|8|»}|«x(k)X«x(k)|^. (A2) 

Next we set z=rexp(id), d?z=rdrdd and note that the 
integration over 6 gives 2ir5„x(k),mx(k). We then obtain 

P = n L f - e x p ( - r * ( H — ) 
X , k n x ( k ) J 0 nk { \ nk/ 

|Wx(k))(Wx(k)| 
X ( r 2 ) " ^ ' d (V2) 

=n z — (1+-) 
X,k nx(k) Mj.+ 1 \ nk/ 

-«(k) 
«x(k)I 

|«x(k)X«x(k)| (A3) 

Next we substitute for nk from (3.2) and find that 

exp(a&— 1) 
P = I I Z exp{-%(k)a&} 

X,k exp(0!&) n\(k) 

where a is given by (33). But 

X|nx(k)X«x(k) | , (A4) 

X) exp{—nx (k)ak) \ nx (k))(»x (k) I 
nx(k) 

= exp{-«xt(k)tfx(k)aft} E |fix(k)>(nx(k)| (A5) 
nx(k) 

and we have also the completeness relation 

E k(k)>Mk)|=i. (A6) 
nx(k) 

Using (A5) and (A6) in (A4), we finally obtain the 
following expression for the density operator p corre
sponding to the phase-space distribution function (Al ) : 

p=n 
exp{-aM x t (k)&(k)} 

x.k exp(a£)/[exp(a£) — 1] 
(A7) 

This is precisely the density operator for a radiation 
field in thermal equilibrium at temperature 7\21 

21 A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc., 
New York, 1961), Vol. I, p. 448. 
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