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Experiments by Hobart and Franken in 1961 demonstrated a shift in the free-electron spin-resonance 
frequency due to collisions with sodium atoms whose electron spins were polarized. The results have been 
interpreted on the assumptions that the S-wave phase shifts were proportional to the wave number k and 
that higher partial waves were not important. The triplet and singlet electron-sodium scattering lengths 
of Salmona and Seaton were used, but no check on the calculation was made since the sodium polarization 
was not known. Recently Balling, Hanson, and Pipkin have measured the shift for collisions with highly 
polarized rubidium atoms. They have also derived complete formulas for the frequency shift and line broad
ening in terms of the phase shifts with all partial waves included. In the present paper, an alternate deriva
tion of the frequency shift and line broadening formulas is given and the experimental results are discussed 
on the basis of the phase-shift information that is available for hydrogen, sodium, and cesium. The small 
size of the observed ratio of frequency shift to line broadening for rubidium appears somewhat surprising in 
view of the larger ratios calculated for other alkalis. 

1. INTRODUCTION 

A MEASUREMENT of the free-electron g factor 
has been reported by Dehmelt.1 His method 

involves polarization of the electrons by exchange 
collisions with sodium atoms which in turn have been 
polarized by optical pumping.2'3 An exchange broaden
ing cross section of 2607rao2 or larger at 400°K was also 
measured. Salmona and Seaton4 discussed this result 
on the basis of their calculated 5-wave scattering 
lengths and found that the zero-energy-exchange cross 
section is large because the triplet and singlet scattering 
lengths are of opposite sign and are both large. 

Hobart and Franken have repeated the electron 
g-factor experiment using a more homogeneous mag
netic field.5'6 During the experiment, they discovered 
a shift in the electron-spin-resonance frequency with the 
sodium polarization and density. The sample tempera
ture was about 410°K and the magnetic field about 
3.7 G. The pulsed discharge which produced the elec
trons was short and uncorrelated with the modulation 
frequency used to observe the electron resonance. An 
argon buffer gas at pressures of between a few Torr 
and about 50 Torr was present, so the electrons were 
presumably thermal. The frequency shift was in
terpreted as due to phase shifts in the off-diagonal 
elements of the electron-spin density matrix introduced 
by the electron-sodium exchange collisions. Maximum 
shifts of about 100 cps were observed under conditions 
where the electron resonance broadening by electron-
sodium exchange collisions was about 2000 cps (half-
width at half-maximum).7 

The expected ratio of frequency shift to line broaden-
1 H. G. Dehmelt, Phys. Rev. 109, 381 (1958). 
2 A. Kastler, J. Phys. Radium 11, 255 (1950). 
3 H . G. Dehmelt, Phys. Rev. 105, 1487 (1957). 
4 A. Salmona and M. J. Seaton, Proc. Phys. Soc. (London) 77, 

617 (1961). 
6 J. Hobart and P. Franken, International Conference on 

Optical Pumping, Heidelberg University, April, 1962 (unpublished 
abstract). 

6 J. L. Hobart, thesis, University of Michigan, 1962 (un
published). 

7 P. Franken (private communication). 

ing for the conditions of the Hobart and Franken 
experiment has been estimated8 using Salmona and 
Seaton's triplet and singlet 5-wave scattering lengths. 
The formula obtained, including only the 5-wave 
contribution to the shift and broadening, was 

(<*'/«/) = -PNa{ (sin2Ao))av/((l-cos2Ao))a (1) 

Here d' and w' are the frequency shift and half-width, 
Pjv« is the sodium electron polarization, Ao=5o(l) — 5o(0) 
is the difference of the triplet and singlet 5-wave 
phase shifts, and the average is over the thermal 
distribution of electron energies. If the scattering 
length approximation for the 5-wave phase shifts is 
adequate and higher partial waves are not important, 
the observed ratio of shift to broadening requires a 
sodium polarization of about 10%. However, since the 
sodium polarization was not measured, the obser
vations do not provide a check on the correctness of 
Eq. (1) or of the assumptions which were made. 

Recently Balling, Hanson, and Pipkin9 have measured 
shifts in the free-electron spin-resonance frequency due 
to collisions with polarized rubidium atoms. In this 
work the rubidium polarization was 90% or higher and 
the electrons were believed to be well thermalized. 
They also derived complete theoretical formulas for 
the shift and broadening of the electron spin resonance 
due to electron-atom exchange collisions in terms of 
the differences between the triplet and singlet scattering 
phase shifts for all partial waves. Their interpretation 
of the observed ratio of shift to half-width of —0.05 
±0.01 was that the 5-wave phase-shift difference was 
near some multiple of (TT/2) for electrons of the average 
energy, with (T/2) itself most likely, and that higher 
partial waves were probably not important. 

In Sec. 2 of the present paper an alternate derivation 
of the frequency shift and line broadening formulas for 
electron-atom exchange collisions is given. This deri-

8 P. L. Bender, International Conference on Optical Pumping, 
Heidelberg University, April, 1962 (unpublished abstract). 

9 L. C. Balling, R. J. Hanson, and F. M. Pipkin, Phys. Rev. 
133, A607 (1964). 
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vation is based on the expressions one would obtain 
from Baranger's general impact theory10 if the triplet 
and singlet states were energy eigenstates during the 
time between collisions. The proof that the resulting 
formulas hold for arbitrary alkali nuclear spin is given 
in the Appendix. 

In Sec. 3 the available theoretical information on 
phase shifts for electron-alkali scattering is reviewed. 
The modified effective range theory expansions of the 
S-wave phase shifts in terms of the wave number k 
appear useful for hydrogen and sodium but break down 
for cesium in the temperature range of interest. Phase-
shift calculations as a function of energy for hydrogen 
and cesium and the scattering lengths for sodium are 
used in discussing the frequency-shift ratio for rubidium. 
The experimentally observed result is not easy to 
understand in this way, and thus more extensive 
phase-shift calculations as well as further frequency-
shift experiments with cesium and sodium appear to 
be desirable. 

2. ALTERNATE DERIVATION OF ELECTRON SPIN 
RESONANCE FREQUENCY SHIFT 

For the experimental conditions of Hobart and 
Franken5 and of Balling, Hanson, and Pipkin,9 the 
alkali and buffer gas densities are low enough so that 
the impact approximation is very good. The number of 
electrons is much less than the number of alkali atoms, 
and we thus consider only electron-alkali collisions. 
Magnetic interaction energies are small enough to be 
neglected during collisions. We take the axis of quanti
zation as along the magnetic-field direction. The 
components of the free-electron spin and the valence-
electron spin along the axis are labeled as me and mj, 
respectively, while the total electron spin and its 
component along the axis are S and m&. We assume 
that the alkali nuclear spin is zero for simplicity and 
show in the Appendix that the result is independent 
of the nuclear spin. However, we do require that the 
off-diagonal elements of the alkali atom density matrix 
in the energy (i.e., F, MF) representation between 
collisions be negligible. 

If the triplet and singlet states of the coupled free 
electron and alkali-valence electron were nondegenerate 
energy eigenstates between collisions, we could use the 
general impact theory results of Baranger10 to obtain 
the shift and broadening of the transition between these 
levels in terms of the scattering phase shifts 5z(l) and 
di(0) for the triplet and singlet states, respectively. 
The subscript refers to the Zth partial wave. Taking 
the triplet as the higher level, the half-width and the 
shift are given, respectively, in angular frequency by 

W=(-nv fdtilMty-foityl2} , (2) 

10 M. Baranger, Phys. Rev. I l l , 481 (1958). 

d = (-(2irnv/k)RUi(0)-fo(0)2 

+4»w7dS2[ /o*(0) / i (0) - /o (0) / i* (0) ]> . (3) 
J ' av 

Here / i(0) and /o(&) are the triplet and singlet elastic 
scattering amplitudes as a function of direction, R 
means the real part, n is the number of scatterers per 
ao3, v is the electron velocity in #o/sec, flo is the Bohr 
radius for hydrogen, and k2 is the electron energy in 
units of 13.6 eV. The average is over the electron-
velocity distribution, which is assumed to be Max-
wellian. Since 

fs(d) = (2ik)~l E (2/+1) (e2i8^- l)P*(cos0), (4) 
i 

where S— 1 and 0 correspond to the triplet and singlet 
amplitudes, we find 

w = {{mv/WYE (21+1) [1 - cos2Az])av, (5) 
i 

^ = ( - ( 7 r ^ A 2 ) L ( 2 / + l ) [ s i n 2 A z ] ) a v , (6) 
i 

where Ai=5i(l) — 8i(0). Converting n and v to cgs units 
and labeling the most probable electron velocity as vm 

and the corresponding value of k as km, we have 

W=( )E(2 /+ l )<( l -COS2Az) / (wAm))av , (7) 

/7rao2nvm\ 
d=-( )Z(2l+l)((sm2Al)/(v/vm)U. (8) 

\ km
2 / l 

This is equivalent to the following collisional rates of 
change of the density matrix elements co-# in the 
electron-spin-coupled representation: 

{dc<Tij/dt)co\= - (w-id)caij (9) 

for i corresponding to a singlet state and j to a triplet 
state, and 

( d W « ) c o i . = 0 (10) 

for i and j both corresponding to singlet or both to 
triplet states. 

In reality, the states between which transitions are 
observed are the free-electron spin states. We will let p 
be the free-electron spin density matrix in the usual 
representation. Ignoring the off-diagonal elements for 
the alkali spin density matrix u and also ignoring 
correlations between the free-electron and alkali-
electron density matrices, we can write the total spin 
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density matrix <r=pXu as 
\Me, , 

Me, Mj\ 
1 1 
2> 2 

1 1 
2? 2 

cr = 

2> 2 

1 1 
2> 2 

W j 

p . 

1 1 
2> 2 

-4pn 

Ap2l 

0 

0 

L . B E N D E R 

i i 
2> 2 

^ P l 2 

^ P 2 2 

0 

0 

1 1 
2 j 2 

0 

0 

Bpu 

Bp21 

1 1 
2> 2 

0 

0 

Bpu 

Bp22 

Transforming to the electron-spin-coupled representation by the transformation 
ccr=T<rT', 

where \M*9 Mj 
i i 
2 , 2 

1 1 
2 , 2 

1 1 
2 ) 2 

r= 
1,0 

i, - i 

0,0 

1,1 

l 

l/v2 

- l / \ 5 

1,0 

1/V2 

l/v2 

1, - 1 0,0 
gives 

1,1 

1,0 

1, - 1 

0,0 

The other elements are not necessarily zero but are not needed. From Eq. (9), setting p = %(w—id), 

KS,Ms 

. . . 

-(And/yG (Pu-A)/2 (2?Pl2)M 

-{APll)W 

(pu-A)/2 

(Bp21)/rf 

(deff/dt) Coi.= 

S,M& 

1,1 

1,0 

1 , - 1 

0,0 

1,1 1,0 1 , - 1 0,0 

1 o 
0 

0 

yl2pAp2i 

0 

0 

0 

-p(pn-A) 

0 

0 

0 

-y/2pBPl2 

rfp*Apl2 

-p*(pn-A) 

-^p*BP2i 

0 

Returning to the uncoupled representation by the transformation 

(da/dt)coi. = T' (dca/dt)coi X 
gives \Me, Mj 

ida/di) coi. = 

Me, MjS 

2> 2 

\2> 2 

JL 1 
2> 2 

1 1 
' 2> 2 

1 1 
2> 2 

1 1 
" 2> 2 

1 _ 1 
2> 2 

1 __! 
" 2> 2 

0 

—pAp2i 

pAp2\ 

0 

-£*<4p12 

( V 2 ) ( P H - ^ ) 

i ( ^ / 2 ) ' ( p i i - ^ ) 

P*BP21 

p*Apl2 

-i(d/2)(Pll-A) 

-(w/2)(Pll-A) 

-p*BP2i 

0 

pBpu 

— pBpu 

0 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Finally, by contracting we obtain 

(dp/dt) coi. = 
-iw(pu-A) 

-[_\w-\id{A — J5)]p2i 

•Ciw+i«( i4-5) ]p i2 

^w (fill—A) 
(18) 

The above collisional rates of change for the off-
diagonal elements of p correspond to the following 
half-width and frequency shift for the free-electron spin 
resonance: 

(19) 

(20) d' = iPAd, 

where PA=A — B is the alkali electron spin polarization. 
These formulas are the same as those obtained by 
Balling, Hanson, and Pipkin9 by essentially repeating 
Baranger's calculation for the case of electron exchange 
collisions. They have been rederived here mainly for 
pedagogic reasons. The ratio of shift to broadening 
for the case where only 5-wave collisions are important 
agrees with our earlier estimated value except that the 
velocity averaging procedure is now specified. 

3. LOW-ENERGY ELECTRON-ALKALI 
ELASTIC SCATTERING 

We are now ready to review the available information 
on low-energy electron-alkali elastic scattering phase 
shifts. The only calculations available which extend 
over the necessary energy range are for hydrogen and 
cesium. For sodium, only the 5-wave scattering lengths 
are available. 

We define 

Then, 

where 

5/^((sin2Az)/(^m))av, 
c /^((l-cos2A z)/(V<)>a 

R=(-d'/PAu/), 

%=(v/Vm)=(k/km). 

(21) 

(22) 

(23) 

(24) 

R = [ E (21+1) * / , ] / [£ (2/+1)«/,], (25) 
i i 

= (W' r 
ir) I x£si 

Jo 

:[sin2 A K*) >"**<&, (26) 

/*) f x\ 
Jo 

c / z=(4 /vV) / 4.1-cos2A*(£)>-*2^. (27) 

For hydrogen and cesium, we will use T,= 290°K, 
corresponding to the rubidium experiments of Balling, 
Hanson, and Pipkin,9 while for sodium we will also use 
T=410°K, corresponding roughly to the sodium 
experiments of Hobart and Franken5-6 and of Dehmelt.1 

We have &m(290°K) = 0.0429 and &m(410°K) = 0.0510. 
For the hydrogen S wave, we take the results of 

Schwartz.11 However, his lowest points are for &2 = 0.01 
and 0.02. We must therefore use an interpolation 
formula. O'Malley, Spruch, and Rosenberg12,13 have 
shown that the normal effective range theory expansion 
is not valid in the presence of a long-range potential 
such as the polarization potential V(r) = — a/rA. How
ever, a modified effective range theory expansion which 
is valid for atoms which have spherically symmetric 
ground states has been given by these authors. From 
Eq. (2.3) of O'Malley,14 we obtain 

Ao=[A(l)-A(0)> 
+ f [A(l) -A(0)](a/ao3)H^+0(^3) , (28) 

Ai=0(*»). (29) 

Here A(l) and A(0) are the triplet and singlet S-wave 
scattering lengths and a is the atomic polarizability. 
From Schwartz's paper [A(1)-A(0)] = 4.196. Using 
the hydrogen polarizability15 of 4.5a0

3 to calculate the 
coefficient of kHnk and including a ¥ term, we obtain 

Ao=4.196£+25.2H^+24&3, (30) 

where the coefficient of ¥ has been fit to Schwartz's 
value at & = 0.1. With this interpolation formula, 
*Jo=0.339 and CJ0=0.066. 

For the P wave we use the results of Burke and 
Schey.16 Including only a ¥ term and fitting to their 
lowest point, we find Ai=3.8&3, s7i=0.001, "J^O.OOO. 
Also from Burke and Schey, higher partial waves are 
negligible. Thus, RH(290°K) = 5.2. 

For cesium, the only calculated phase shifts which 
appear to be useful for the present problem are the very 
recent ones of Stone and Reitz.17 Values of A0, Ai, and 
A2 obtained from their results are given in Table I. 
It appears that the first three or four terms of the 
modified effective range theory expansion are not 
adequate to represent the results even at moderate 
values of k. This is not surprising in view of the high 

» C. Schwartz, Phys. Rev. 124, 1468 (1961). 
12 T. F. O'Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 

2, 491 (1961). 
13 T. F. O'Malley, L. Rosenberg, and L. Spruch, Phys. Rev. 

125, 1300 (1962). 
14 T. F. O'Malley, Phys. Rev. 130, 1020 (1963). 
16 N. F. Mott and I. N. Sneddon, Wave Mechanics and its 

Applications (Clarendon Press, Oxford, 1948). 
16 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 
17 P. M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963). 
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TABLE I. Triplet-singlet phase-shift differences A* for the S, 
P, and D partial-wave scattering of electrons from cesium.* 
The functions / 0 = (0.78) [ l - e x p ( - 3 6 & ) ] and / i = -(0.66i&) 
X[l—exp(—300k2)'] are chosen to approximate A0 and Ai in the 
energy range of interest. 

w-
0.001 
0.003 
0.005 
0.007 
0.010 
0.013 
0.020 

A0 
0.55 
0.65 
0.70 
0.74 
0.77 
0.79 
0.83 

Ai 

-0.05 
-0.21 
-0.37 
-0.49 
-0.64 
-0.75 
-0.93 

A2 
0.00 
0.01 
0.01 
0.00 
0.03 
0.04 
0.15 

/o 

0.53 
0.67 
0.72 
0.74 
0.76 
0.77 
0.77 

h 
-0.05 
-0.21 
-0.36 
-0.48 
-0.63 
-0.74 
-0.93 

» See Ref. 17. 

polarizability of cesium.18 Instead, we represent Ao and 
Ai by functions /o= (0.78)[1 — exp(—36k)2 and / i 
= —(Q.66)&[1 —exp(—300&2)[] which give adequate 
agreement with Ao and Ai over the range of interest 
and which have leading terms proportional to k and k3, 
respectively, near zero energy. These leading terms 
agree with the modified effective range theory. If one 
interprets the coefficient of the leading term in /o as a 
rough approximation to the triplet-singlet scattering-
length difference, this gives A(l)—A(0) = 28. Using / 0 

and / i , we find for cesium s70=0.94, c / 0 =0 .61 , sIi 
= —0.03, and all other contributions are 0.01 or less. 
Thus, we obtain i?Cs(290°K)~1.4. Since the contri
butions from P and higher partial waves are small for 
cesium as well as hydrogen, the S-wave approximation 
is presumably good for the other alkalis also. 

A possible difficulty with the interpretation given 
above appears when one looks at the calculated triplet 
S-wave phase shifts rather than just the phase-shift 
differences. The triplet phase shifts decrease fairly 
slowly, but the first one is 0.37 rad above 37r. Since the 
zero-energy limit must be a multiple of 7r, this raises 
the possibility that the zero-energy value consistent 
with the finite energy values is 47r. If so, all the values 
of Ao in Table I should be increased by IT. This would 
change only the way in which one extrapolates from 
the lowest calculated point to zero energy and would 
probably not change the value of R by more than 20%. 

Actually, a scattering length difference large enough 
to give such a steep initial slope for Ao as a function of 
k seems questionable. Some support for this view comes 
from the fact that the P-wave triplet phase shifts are 
also slowly decreasing and the lowest energy one is 
0.05 rad above 27r. Since a zero-energy limit of anything 
but 27r seems inconceivable, it appears that the low-
energy values for the 5-wave phase shifts may also be 
somewhat offset by the computational procedure used 
by Stone and Reitz. This makes the uncertainty in Ao 
appear to be of the order of 0.4 rad or larger and raises 
the possibility that Ao could approach or go through 
(TT/2) at thermal energies and give a very small value 
for i?Cs. 

18 G. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677 
(1963). 

In the case of sodium the main pieces of information 
available are the triplet and singlet 5-wave scattering 
lengths A(l) = 9 and A(0) = —12 calculated by Salmona 
and Seaton. If the scattering length approximation 
under which 50(1) = M(1) , 50(0) = M(0) were valid, 
we would have Ao=21&. Including only the S-wave 
contribution, this gives s / 0 =0.68 , CI0= 1.28, R^&=0.53, 
at'410°K while at 290°K */0=0.80, c / 0 = 1.10, i?N a=0.73. 
In the same approximation, defining 

Qex = ( W e x W ) ) a v / ® , (31 ) 

we find, 
Qe,=7rao2(V^cW^km

2). (32) 

At 410°K this gives Qex = 2207rao2. Dehmelt's experi
mental result,1 adjusted to correspond to v instead of 
*>rms, is (>ex^2807rao2. Salmona and Seaton's zero energy 
cross section is ()ex=4407rao2. 

We will next calculate the modified effective range 
theory expansion for sodium. From Eq. (4.9) of 
O'Malley, Rosenberg, and Spruch13 we find 

Ao=tA(\)-A(0)~]k+AkHnk+Bk*+Ck*+ • • •. (33) 

Here, 

^ = t ( « A o 3 ) [ A ( l ) - A ( 0 ) ] , (34) 

B={AAri[\.22>{a/a<?)l/2~] 
+i7r (aAo 3 ) 1 / 2 [A 2 (0) -A 2 ( l ) ] - i [A 3 ( l ) -A 3 (0) ] 

+ | [A 2 (0 ) r p o s -A 2 ( l ) r p o T ] / ao} , (35) 

C=f7r(aAo3)[A2( l )-A2(0)] , (36) 

where rpoT and rpos are the triplet and singlet modified 
effective ranges and a is the polarizability. Using18 

a = 2 l X l O - 2 4 cm3, we calculate A = 3970, C = - 1 8 700, 
and B = 10 600+72(rp osAo)-40.5(rp o T /a0) . Transform
ing to the variable x= (k/km) 

Ao(410°K) = 1.07x-0.16x3 

+ [0.0095 (fpos/flo) - 0.0054 (rpoT A o ) > 3 

+0.52xHnx-OA27x*+ • • •. (37) 

We do not know the modified effective ranges, but at 
least one of them must be very large in order to make 
the coefficient of xz approach one. Since the other 
coefficients of xz and higher terms are fairly small, it 
appears that the modified range theory expansion may 
be useful for sodium at 410°K. The exchange cross 
section and the ratio of electron frequency shift to line 
broadening calculated in the scattering length approxi
mation thus may be fairly accurate. 

Another procedure is to approximate the sodium 
phase-shift differences by the same function of (k/ke^) 
as was used to fit the cesium results of Stone and Reitz. 
Here &ex

2 is the excitation energy for the atom in 
question. The reason for trying this is that the values 
of Ao for cesium derived from Stone and Reitz are 
rather similar to those for hydrogen if both are plotted 
as a function of (k/kex). At 410°K we obtain c /o^0.94, 
c/(p^0.60, 2?Na—1-6, and Qex—1007rao2. This procedure 
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gives poor agreement with Dehmelt's quoted lower 
limit for the experimental exchange cross section. While 
Dehmelt's number is not actually a lower limit, since 
no uncertainties are included, it would indicate a definite 
error in the experiment if the cross section were as low 
as 1007rao2. Thus, the somewhat similar behavior of the 
presently available phase-shift differences for cesium 
and hydrogen does not appear to be characteristic of 
sodium. 

One other possible source of information concerning 
the phase-shift difference for sodium comes from a rough 
estimate of the sodium polarization in Hobart's experi
ment based on a trace he gives6 of the sodium Zeeman 
resonances at 3.68 G. This trace (Fig. 3.10 of Ref. 6) 
indicates a ratio of roughly 2.8:1 for the strongest and 
weakest F = 2 Zeeman components. Assuming that the 
sublevel populations are independent of F and that 
sublevels differing in MF by 1 have a constant ratio of 
populations leads to an approximate sodium-electron 
polarization PA= — 0.17. These assumptions correspond 
to spin-exchange equilibrium between the sodium atoms. 
Actually, the small amplitude of the F=l resonances 
indicates that the magnitude of the polarization was 
probably higher. However, since we do not know 
precisely what correction to make, we will use the 
above number. Combining this with the value i?Na=0.53 
calculated on the scattering length approximation using 
the scattering lengths of Salmona and Seaton gives 
a ratio of shift to half-width of 0.09. While the maxi
mum ratio of shift to half-width observed was only 
0.05, it is not clear that the trace given by Hobart 
applies to the same experimental conditions. Thus, 
little can be said about the agreement of theory and 
experiment for sodium. However, it would not be 
surprising if the sodium phase-shift difference curve 
actually rose somewhat more rapidly than the scattering 
length approximation curve which we have used. 

4. DISCUSSION 

We are now ready to discuss the results of Balling, 
Hanson, and Pipkin.9 Their experimental value of 
#=0.05=1=0.01 for rubidium at about 290°K is more 
than an order of magnitude less than the corresponding 
value for cesium calculated from the phase shifts of 
Stone and Reitz.17 If the phase-shift difference curve 
for rubidium had the same shape as that calculated for 
cesium, it would have to have more than twice as high 
a maximum in order to agree with experiment. How
ever, it seems uncertain whether a calculation for 
rubidium done by a method similar to that of Stone 
and Reitz for cesium would give this much different a 
result. Also, it appears doubtful whether the rather 
high value for the cesium polarizability used by Stone 
and Reitz can account for the possible discrepancy. 

The argument given by Balling, Hanson, and Pipkin 
that the Rb~ ion is just barely bound and that therefore 
5o(0) should be about ir/2 appears to be open to question. 
This argument, which was also used by Dehmelt1 for 
Na, is based on the result for a deep square-well 

potential19 and is only valid if the binding energy is 
small compared with the incident electron energy. 
The modified effective range theory expansion12-13 shows 
that the square well is not a good approximation at 
extremely low energies. Also, the binding energies of 
alkali negative ions are believed to be much higher than 
thermal energies.20 In particular, a calculation by 
Szasz21 gives binding energies of 0.43, 0.53, 0.49, 0.43, 
and 0.42 eV for Li, Na, K, Rb, and Cs. These results 
are not expected to be very accurate, as indicated by 
the value for Li of 0.62 eV obtained by Weiss in a much 
more thorough calculation.20 However, the relative 
values may be good and fairly strong binding for Rb~~ 
seems likely. 

In view of the possible discrepancy mentioned above, 
the assumptions made in the frequency-shift calculation 
were reviewed. The least certain ones appeared to be 
that the alkali matrix in the F, MF representation can 
be taken as diagonal and that direct interactions 
between the free electrons can be neglected. The first 
assumption is discussed briefly at the end of the 
Appendix and appears to hold for the rubidium experi
ments. The second assumption is more difficult to 
investigate because of the very long range of the 
electron-electron interaction. However, if such inter
actions were important one might expect that normal 
variations of the experimental conditions would have 
given erratic results. 

Assuming that the experimental results and their 
interpretation in terms of the scattering phase shifts 
are correct, we are left with two possible hypotheses. 
One is that the rubidium S-wave phase-shift difference 
Ao increases rapidly at very low energies and fortui
tously passes through or approaches (x/2) at the proper 
energy to make R small. This seems somewhat unlikely 
but cannot be ruled out. The other possibility is that 
Ao for the higher alkalis rises rapidly initially but for 
some reason flattens out near (w/2) at roughly thermal 
energies. This would require that the low-energy 
phase-shift differences for cesium taken from Stone and 
Reitz be off by approximately 1 rad. 

5. CONCLUSIONS 

In view of the large difference between the experi
mental ratio of shift to broadening for rubidium and 
the ratio calculated for cesium using the phase shifts 
of Stone and Reitz, the present situation appears to be 
somewhat unsatisfactory. The quickest approach to 
seeing if there is a real discrepancy between experiment 
and theory would be an experimental measurement 
on cesium.22 However, in view of the difficulty of calcu-

19 N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Clarendon Press, Oxford, 1949), 2nd ed. 

20 L. M. Branscomb, in Atomic and Molecular Processes, edited 
by D. R. Bates (Academic Press Inc., New York, 1962). 

21 L. Szasz, Acta Phys. Acad. Sci. Hung. 6, 307 (1956). 
22 Note added in proof. Recent results for the ratio of frequency 

shift to line broadening in cesium appear to be similar to those 
for rubidium: L. C. Balling and F. M. Pipkin, Bull. Am. Phys. 
Soc. 9, 91 (1964). There is thus a definite discrepancy with the 
cesium phase-shift calculation of Stone and Reitz. 
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lations on cesium, it also appears to be desirable to 
repeat the experiments for sodium or for hydrogen. 
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APPENDIX: DERIVATION OF ELECTRON SPIN 
RESONANCE FREQUENCY SHIFT FOR 

ARBITRARY NUCLEAR SPIN 

We will treat the case of electrons with an arbitrary 
2X2 spin-density matrix p colliding with alkali atoms 
having an electron spin of \ and a nuclear spin / . p is 
taken to be in the Me representation, where Me is the 
free-electron spin component along the axis and the two 
states are ordered according to decreasing M«. The 
alkali spin density matrix UF,MF in the F, MF represen
tation is assumed to be diagonal. The alkali sublevels 
are taken to be listed in order of decreasing MF and 
subordered according to decreasing F; i.e., the F, MF 
order of listing is [ ( / + £ , / + * ) , ( / + * , / - J ) , ( / - £ , 
^"~i)> CH"2> ^~~f)> *" ' ] • When UF is transformed to 
the Mi, MJ representation in which the states are 
ordered according to decreasing Mi and subordered 
according to decreasing Mj, the resulting matrix u will 
have off-diagonal elements connecting only the second 
and third, the fourth and fifth, etc., states. This is 
because there can be no off-diagonal elements connecting 
states with different values of (Mj+Mi). The diagonal 
elements can be labeled (Ai,Bi,Ai-.hBi„h • • •), where A 
corresponds to Mj^=\, B to M j= — J, and the subscript 
to Mi. Note that the expectation value of the electron 
polarization for the atom is given by 

PA= E (AMi-BMl). (38) 

We now form the density matrix a for the electron-
plus-atom system in the (Me,Mj,Mi) representation by 
taking the direct product of p and of u in the (MJ,MI) 
representation/The states of a are ordered according 
to decreasing Mi, first subordered according to de
creasing Mj, and second subordered according to 
decreasing M6. a can be thought of as made up of 
(21+1)2 4X4 submatrices. The 4X4 submatrices aMl 

along the diagonal of <r which correspond to different 
Mi are of the form given in Eq. (11) except that A and 
B are replaced by A MI and BMr 

The transformation of <r to the representation with 
the electron spins coupled and the states ordered by 
decreasing Mi, first subordered by decreasing values 
of the total electron spin S, and second subordered by 
decreasing values of Mj is given by the following 

transformation: 
e<r = Ti<rTi'. (39) 

Ti is made up of 2 7 + 1 identical 4X4 submatrices T 
along its diagonal, with T given by Eq. (13). We find 
then that the 2 7 + 1 4X4 submatrices along the diagonal 
of ac are given by 

caMl = TaMlT\ (40) 

We can now make use of the results for the case of 
zero nuclear spin. When we find (da/dt)coi. we will 
contract it to obtain (dp/dt)c0i. as was done in Sec. 2. 
The only parts of (d<r/dt)coi. which we will need are 
the 4X4 submatrices (dcrMJdf)co\.- However, since 

(daMjdtJcoi.^T'idoaMj/dthoi.T (41) 

and since ((LC<TM J dt) cQ\. is obtained from °<TMI in the 
same way that (dc<r/dt)coi. was obtained from V in 
Sec. 2, the contribution to (dp/dt)coi. from each <JMI is 
identical to that given in Eq. (18) except with A and B 
replaced by AMI and BMV Thus, (dp/dt)co\. is the 
same as for the case of zero nuclear spin except that 
A —» X)M7 A MJ and B-+Y*,MIBMV In particular, 
w1 = \w and d!-=\dPA-> which are identical to Eqs. (19) 
and (20) for the case of zero nuclear spin. 

In this calculation it was assumed that UF,MF was 
diagonal. However, UF,MF does have two off-diagonal 
elements which have approximately the same time 
dependence as the off-diagonal elements of p. While the 
rf field at the electron spin resonance frequency cannot 
directly produce finite values for these elements 
because the corresponding transition would require 
AMi=2I+l, these elements can still be produced by 
the electron-alkali collisions. Thus, in order to be sure 
that off-diagonal elements of UF,MF do not change the 
electron frequency shift and line broadening, we must 
show that these elements are much smaller than the 
off-diagonal elements of p. 

A direct calculation for arbitrary nuclear spin 
appears to be difficult. However, the calculation can 
be carried through for zero nuclear spin with the special 
condition that the rf field does not affect the alkali 
atom directly. In this case, it is found that the condi
tion for the off-diagonal elements of u to be much 
smaller than those of p is as follows: The ratio of alkali 
density to electron density must be large compared with 
the ratio of the width of the electron spin resonance 
due to alkali collisions compared with the reciprocal 
of the decay time for the alkali off-diagonal elements. 
If the decay times for the off-diagonal elements of 
both p and u were determined by electron-alkali 
exchange collisions, this condition would not hold. 
However, as long as the decay time for the alkali 
off-diagonal elements is determined mainly by some 
other cause such as light absorption rather than by 
electron-alkali exchange collisions, then the assumption 
that u is diagonal should be quite good. This condition 
was apparently satisfied in the experiments of Balling, 
Hanson, and Pipkin, and of Hobart and Franken, 


