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Under the expectation that experiments will soon give values for the fine structure intervals of the 23P 
state of helium to an accuracy of 1/106, we have undertaken a program of calculations which, it is hoped, 
will lead to a new determination of the fine-structure constant a. This paper gives a brief survey of the 
over-all program, and a detailed report of the successful completion of the^first task: The construction of 
approximate solutions to the Schrodinger equation which lead to average values of the leading fine structure 
operators accurate to about one part per million. 

I. INTRODUCTION 

THE early studies of the fine structure of the 
helium atom by Breit1 provided very important 

confirmation of the newly developing theory of the 
quantum interactions of electrons and the electro
magnetic field. Over the intervening years there have 
been several efforts to increase the accuracy of this 
analysis, chiefly by the construction of successively 
more complicated approximations to the nonrelativistic 
2-electron wave function. Breit,1 with a 2-term trial 
function got values of the fine-structure intervals v 
(see Fig. 1) accurate to several percent. Araki2 and 
co-workers with 8 terms came within about 1%, and 
also considered two small corrections to the first-order 
theory. Traub and Foley,3 with an 18-parameter 
function reduced the error to about one part in 103; 
and most recently Pekeris, Schiff, and Lifson,4 with up 
to 220 terms in the trial function, came within one part 
in 104 of the final results we have attained. (These 
numbers refer to the larger interval z>oi. In the calcula
tion of the small interval vn there is a cancellation 
between separate terms amounting to a full order of 
magnitude, and a corresponding loss of accuracy 
results.) 

While these studies have been chiefly aimed at check
ing the theory, we here take another position: Assuming 
the current theory of quantum electrodynamics, one 
can combine the calculated and measured fine-structure 
intervals of helium in order to determine the value of 
the fine-structure constant a. At present, the best value 
of a comes from the work of Dayhoff, Triebwasser, and 
Lamb5 on the fine structure (2Pi/2— 2P3/2) of hydrogen. 

* This work was supported in part by the U. S. Atomic Energy 
Commission and the U. S. Air Force under Grant AF-AFOSR 
130-63, and in part by the Advanced Research Projects Admin
istration through the U. S. Office of Naval Research. 

f A preliminary report of this work was presented at the 1963 
Annual Meeting of the American Physical Society, Bull. Am. 
Phys. Soc. 8, 20 (1963). 

1 G. Breit, Phys. Rev. 36, 383 (1930). References to other early 
studies may be found in this reference. 

2 G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959), 
and several earlier papers referred to therein. 

3 J. Traub and H. M. Foley, Phys. Rev. 116, 914 (1959). 
4 C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 

(1962). 
5 E. S. Davhoff, S. Triebwasser, and W. E. Lamb, Phys. Rev. 

89, 106 (1953). 

That value is uncertain to about one part in 105, due 
essentially to the short lifetime of the 2p state, and it 
has not appeared feasible to improve on those measure
ments. However, the lifetime of the 3P state of helium is 
about 2 orders of magnitude longer, and it is expected6 

that these fine structure intervals can be measured to 
an accuracy of one part in 106 or perhaps better.7 It 
then becomes necessary to calculate theoretical values 
for the helium fine structure to 1/106, and this is the 
task we here commence. It may be remarked that in 
the case of the hydrogen fine structure the theoretical 
formula8 is very simple; this is not the case for helium. 
However, we believe that those circumstances which 
made the hydrogen problem simple, will have the effect 
of reducing the helium calculation from "impossibly 
difficult" to merely "difficult." 

We should add that there is at present a specific 
need for a better value of a. Analysis9 of the hyperfine 
structure of hydrogen reveals effects due to the electro-

0.988 cm-1 = 29 619Mc 
FIG. 1. Energy levels 

of the U2pzP state of 
helium. 

J = 1 
J = 2 

: 0.076 cm- 1 = 2291 Mc 

6 V. W. Hughes (private communication). 
7 For the best measurements to date (accurate to about 0.5/104), 

see J. Lifsitz and R. H. Sands, Bull. Am. Phys. Soc. 6, 424 (1961), 
and earlier references given therein. 

8 See, for example, H. A. Bethe and E. E. Salpeter, Quantum 
Mechanics of One- and Two-Electron Atoms (Academic Press Inc., 
New York, 1957), p. 105. 

9 C. K. Iddings and P. M. Platzman, Phys. Rev. 115, 919 
(1959); also see D. E. Zwanziger, Bull. Am. Phys. Soc. 6, 514 
1961). 
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magnetic structure of the proton, but a clear interpreta
tion of those results is spoiled by the present uncertainty 
in the value of a. 

II. PLAN OF THE CALCULATIONS 

We will now outline the several parts of the task of 
calculating the fine structure intervals in helium to an 
accuracy of about one part in 106. The zeroth-order 
problem is the nonrelativistic two-electron Hamiltonian 
in a fixed Coulomb field: 

Pi2 p2
2 Ze2 Ze2 e2 

H0 = —+ +— . (1) 
2m 2m r± r2 f\2 

The next terms in a nonrelativistic expansion are the 
well-known10 fine-structure terms which we shall denote 
as a2H2. [Our reference for energy is e2/ao=a2mc2, and 
we shall not note factors of Z ( = 2) as being pertinent 
to the classification of the expansion terms.] We thus 
expect an energy level formula something like 

Ej-Eo=a2(H2)j+a((Hi)j+/H2 # 2 V 1 

+ (terms of order a5 and smaller 

which we shall ignore), (2) 

where H* is some higher order operator which has not 
yet been worked out. 

There are still many terms not represented in this 
formula (2). The most apparent is the correction for the 
anomalous magnetic moment of the electron, of order 
a3. This is quite simple and has already been included 
by some authors.2,4 The reduced mass must be put in 
properly, and there is also the operator p r p 2 / M 
correcting for the motion of the nucleus; this is itself 
spin-independent but will contribute in a second-order 
calculation mixed with H2. There are then very many 
diagrams one could write down describing radiative 
corrections of many higher orders. 

The most extensive work on the fine structure and 
Lamb shift in hydrogen has produced terms up to, but 
not including, the order o^mc2,11 which is just to the 
same order that we now need. But the two-electron 
atom seems so much more complicated than the one-
electron atom that our project might appear too difficult 
to attempt. A thorough relativistic theory of the two-
electron atom has thus far been analyzed12 only as far 
as the leading Lamb-shift terms, a5mc2X (lna+const), 
and our goal is well beyond this. What encourages us 
to proceed is the expectation that most of the difficult 

10 See Ref. 8, p. 181. 
" A . J. Layzer, J. Math. Phys. 2, 308 (1961), has calculated 

terms of order mc2a7 ln2a and mc2a7 Ina. Only the latter contributes 
to the fine structure, and we hope it will not be difficult to include 
the term of this order in our problem. 

12 J. Sucher, Phys. Rev. 109, 1010 (1958). 

terms at these higher orders are spin-independent, and 
thus, while affecting the absolute energy level, do not 
contribute to the fine structure. 

As an example, consider the effect on the fine structure 
of some deviation from pure Coulomb potentials 
occurring at some small distance R. The integrals which 
occur are of the general form of the familiar ((1/r) 
X(dV/dr))^{l/rz), and are taken over radial wave 
functions for / > 0 orbitals. Thus the relative correction 
would appear to be of the order 

r2drr2i-z/ / r2<kr2l-*^{R/a)2l^(R/a)2. 

Thus the effect of finite nuclear size would seem to be 
completely negligible, and the effect of vacuum polar
ization would appear to be of order a(ce)2 = a3 on the 
fine structure intervals, again negligible. 

The entire project may be divided into three rather 
well-separated parts. First, is the task of constructing a 
sufficiently accurate eigenfunction of Ho so that the 
leading term in Eq. (2) can be determined to about 
1/106; this is mostly a computer problem. Second, is the 
task of carrying out a proper relativistic analysis and 
determining the operator H± and whatever else may 
appear to the required order; this will be a matter need
ing both formal technique and enlightened short-
cutting. The third job will be the evaluation of these 
smaller corrections to the fine structure, and this will 
require a combination of modest computer effort and 
much algebraic detail. 

The rest of this paper is concerned with the first of 
these tasks. 

III. THE SCHRODINGER WAVE FUNCTION: 
FIRST ATTEMPT 

We wish to construct a good approximation to the 
lowest %P eigenfunction of the equation 

Hrf=Etf. (3) 

This will be done by setting up a sequence of trial 
functions \[/, using the variational principle 

8(f\Ho-Eo\)l>) = 0 (4) 

and seeing how results of interest converge as we make 
the trial functions larger and larger. 

We started with the functions 

f = I J E Cimnrifimr2nri2l 

X^-(^/2)n^-(K/2)r2 ^ (5) 

where P\2 exchanges coordinated r\ and r2, and the P-
state character is represented by the vector sign. The 
unit of length is ao=fi2/me2; and the scale parameters K 
and a were taken, by extrapolation from the results of 
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TABLE I. Result of variational calculations of 2 3P with the 
standard Hylleraas basis (5). 

O) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Number 
of terms 

10 
20 
35 
56 
84 

120 
165 
220 
286 

Final result 
from Table I I 

Energy 
-E(e*/aQ) 

2.132678402 
2.133085039 
2.133140222 
2.133157595 
2.133162268 
2.133163594 
2.1331639812 
2.1331641067 
2.1331641530 

2.1331641908 

C(Jo*Ry) 

-0.07065132 
-0.06829756 
-0.06771029 
-0.06745614 
-0.06733560 
-0.06728399 
-0.06726722 
-0.06726320 
-0.06726453 

-0.06727529 

D(W^y) 

-0.05404532 
-0.05379667 
-0.05394716 
-0.05400336 
-0.05402833 
-0.05403823 
-0.05404284 
-0.05404503 
-0.05404627 

-0.05404839 

Traub and Foley,3 to be 4.62 and 0.29,13 respectively, 
and were not varied. The variation of the linear 
parameters Cimn leaves us then with the numerical 
problem of finding the eigenvalue and eigenvector of a 
symmetric matrix of degree 

iV(co) = | (co+l) ( W +2)(co+3) . (6) 

Some of the details of the construction of the matrix 
elements and the numerical methods used will be found 
in the Appendix. We give in Table I the resulting 
eigenvalues for the series of trial functions of degree 
co = 2, 3, •••, 10. This was done with 16-decimal 
arithmetic on an IBM-704 and consumed a total of 
some 20 h of machine time. 

This work very closely parallels that of Pekeris, 
Schifl, and Lifson,4 differing only in the specification of 
the exponential parameters, K and a. This makes a 
non-negligible difference: At 220 terms our eigenvalue 
is an order of magnitude better converged than theirs.14 

Our chief interest anyway is not the energy eigen
value, but the eigenvector, or more properly the average 
values of the two spin-dependent parts of H2. These 
are the well-known10 spin-orbit terms 

tf(s.o.) = ( ( 
XlmcJ \ 2 

\ r / r i x p ! r 2 xp 2 \ 

/ L \ n* r2
3 / 

3 ( r i - r 2 ) X ( p i - p 2 ) " l 

and the spin-spin term 

/ efiV 1 

fl2° 
, (7a) 

Y 1 / 3(FiTi2or2-ri2\ 
#(s.s.) = — ( * r a 2 . (7b) 

\2mc/ Tu3 

13 The precise values of K and a used were about 10~8 smaller 
than the figures given here, due to the decimal-to-binary conver
sion operation of the machine. 

14 For a discussion of relative convergence rates, see the article 
bv C. Schwartz in Methods in Computational Physics (Academic 
Press Inc., New York, 1963), Vol. 2, p. 241. 

[We have dropped here a term in H($.o.) which has 
only off-diagonal matrix elements.] The first-order fine-
structure levels are customarily given in terms of two 
constants C (from s.o.) and D (from s.s.): 

< # 2 ) ^ o = c o n s t - 2 C - (10/3)Z>, 

<ff2>j- i=const-C+ (5/3)Z>, 

<# 2 >/~2=cons t+C- (1/3)Z). 

(8) 

[These values will subsequently be given in units of 
{eh/lmcfa^ = (a2/4) (e2/a0) = W R y ] . These results 
are also shown in Table I. The accuracy of our C and D 
values here is hardly better than that of Pekeris et al* 
(about 1/104) and far short of the desired 1/106. At the 
time when these results were obtained we attempted to 
extrapolate the apparent rate of convergence of the 
output numbers, and thus estimated that something 
approaching 2000 terms of the series (5) would be 
needed to obtain the required accuracy in C and D. I t 
seemed that, at best, this would be an extremely 
expensive venture; and we thus decided that this 
attack had failed. 

Two possible paths were then considered. We might 
start with the wave functions already constructed, and, 
by use of auxiliary variational calculations of modest 
size, attempt to increase the accuracy of the C and D 
integrals to something approaching that which is 
obtained directly for the energy eigenvalue.15 However, 
it appeared that, due to the rather singular nature of 
the operators H2, the auxiliary functions needed for 
this method would be of a complicated analytical 
nature; and so we did not make a serious attempt in 
this direction. 

Alternatively, we could seek a better set of basis 
functions for the calculation of \p. The most likely cause 
for the slow convergence noted above appeared to be 
the weak logarithmic singularity in the two-electron 
wave function studied by Fock..16'17 I t appeared, how
ever, that putting into xp the explicit logarithm term 
given by Fock would be a very messy job. Furthermore, 
it was felt that the reward would be rather slight if only 
the first term were accounted for; and the higher terms 
of Fock's expansion appear to be complicated beyond 
our ability to manage. We then sought, in a much more 
ad hoc manner to introduce just any covenient terms 
which would add flexibility to yp especially in the region 
(ri —* 0 and r2 —> 0). We thus chose to try the addition 
of the simple factor (ri+^2)1/2 to the series (5).18 The 
efficacy of this extension of the basis functions was first 
tested on the relatively simple calculation of the 

15 The method referred to is that described by C. Schwartz, 
Ann. Phys. (N.Y.) 6, 170 (1959). 

16 V. A. Fock, Izv. Akad. Nauk SSSR Ser. Fiz. 18, 161 (1954). 
17 See also the discussion and analysis in Ref. 14, p. 256. 
18 Half powers were earlier introduced into the Hylleraas 

expansion by H. M. Schwartz, Phys. Rev. 120, 483 (I960). 
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TABLE II . Results of variational calculations of 2 ZP 
with the extended basis (9). 

N u m b e r 
co of terms ~E(e2/ao) 

1 7 
2 19 
3 39 
4 69 
5 111 
6 167 
7 239 
8 329 
9 439 

Ex t rap 
olation 

2.132580318470 
2.133100285189 
2.133155369966 
2.133162942721 
2.133164012406 
2.133164164417 
2.133164186301 
2.133164189955 
2.133164190626 

2.13316419080 
±5 

Cz 

0.127974449 
0.136827714 
0.138223897 
0.138649978 
0.138640520 
0.138638567 
0.138635834 
0.138636386 
0.138636755 

In unite of ia2 Ry 
Ce D 

-0 .198448086 
-0 .203765520 
-0 .205167872 
-0 .205707289 
-0 .205858266 
-0 .205898542 
-0 .205908639 
-0 .205911292 
-0 .205911984 

C=Cz +Ce-+ -0 .067275287 
± 1 9 

-0 .053285232 
-0 .053888850 
-0 .053987664 
-0 .054026808 
-0 .054041649 
-0 .054046487 
-0 .054047869 
-0 .054048248 
-0 .054048351 

-0 .054048390 
± 1 3 

helium ground state ( l1^), and those very successful 
results have already been presented.19 

The calculations reported in this section are not a 
total loss, since we can expect to use these medium-
accuracy wave functions for the later calculation of the 
small correction terms schematically represented in 
Eq. (2). 

IV. THE WAVE FUNCTION: SECOND ATTEMPT 

The expanded basis now looks like the expression (5) 
with the replacement 

Cimn—> Cimn+Dimn(r1+r2)
112; (9) 

and the single term Z>ooo is omitted. The scale parameter 
a was left fixed as before at 0.29,13 but after a short 
search we changed the value of K to 4.0 (exactly). The 
matrix elements of Ho and H2 are more complicated 
with the half-power terms, but once we had learned 
to evaluate the integrals C and D even with the old 
basis, the new techniques were not very difficult (see 
Appendix). The results converged much more rapidly, 
than before, but it was found, as might be expected 
that as one approached more closely to the exact fitting 
of the function numerical accuracy became more and 
more critical at an alarming rate. We found it necessary 
to construct special programs to do all our arithmetic 
to an accuracy of 30, and then 52 decimals; the resulting 
cost in machine time was very great. The total labor 
took some 30 h on an IBM-7090. 

In Table I I are presented our results with the half-
power functions up to the ninth order. We show here 
separately the contributions from the two parts of (7a): 

C = Cz+Ce. (10) 

V. RESULTS 

From the numbers in Table I I we now must give our 
best values for the fine-structure intervals along with an 
estimate of their probable uncertainty. This we do by 
attempting to extrapolate the results shown to co —» oo ; 
the smoothness of the sequence of computed numbers 

19 C. Schwartz, Phys. Rev. 128, 1146 (1962). 

TABLE III . Extrapolation of the calculated interval v\2 
(in units of %a2 Ry). 

Ratios of 
Number 
of terms 

7 

19 

39 

69 

111 

167 

239 

329 

439 

Calculated 
2D-2C 

0.0343768105 

0.0260979112 

0.0259126200 

0.0260610066 

0.0263521949 

0.0264269761 

0.0264498718 

0.0264533164 

0.0264537543 

Successive 
differences 

-0.008279 

-0.00018529 

0.0001483866 

0.0002911883 

0.0000747812 

0.0000228957 

0.0000034446 

0.0000004379 

successive 
differences 

0.022 

-0.800 

1.962 

0.257 

0.306 

0.151 

0.127 

Projected increment = 0.000000064 
± 2 1 

Extrapolation = 0.026453818 
± 2 1 

will be used to indicate the reliability we may place 
on this extrapolation. 

Table I I I shows the details of such an extrapolation 
for the small interval 

v12=WRy(2D-2C). ( l i ) 

(It does make a helpful difference on the final error 
estimates that we extrapolate the combined integrals, 
rather than combine the extrapolated integrals.) The 
table shows values, differences, and ratios of successive 
differences ;• attempts to extrapolate must be based on 
the behavior of these ratios, especially at the bottom 
of the sequence. I t is clear from Table I I I that these 
ratios cannot be very well described in any simple 
analytical terms; but it is to our advantage that they 
are very small.20 After some playing with these numbers, 
attempting various analytical and graphical fits, it was 
decided that a reasonable procedure would be simply 
to extrapolate from the last step as if we had a geometric 
series, and assign as our uncertainty J of the added 
increment. That is, if A' is the last difference recorded 
and Rf is the last ratio, our final answer is gotten by 
adding to the last computed value the quantity 

A"=A'( : W * ) . (12) 
\l-R'/ 

20 By way of contrast one may note that the corresponding 
ratios in the work of Pekeris et at. (Ref. 4) are much smoother, 
but also quite a bit larger. One may also notice that while their 
value for p0i calculated with 220 terms is 0.011% larger than our 
final result, their extrapolated value is 0.009% too small. Their 
extrapolation here was thus in error by about 45%. (For vn their 
extrapolation erred by only about 16%) We point these numbers 
out intending not to chasten others, but to emphasize the need 
for a critical attitude toward any attempts at numerical extrapola
tion, and in particular our own. 
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We thus arrive at the following results for the intervals 
of the 23P state of helium, bare of any higher order 
corrections whatsoever. 

P01 = 

Rf~-

V\<L~-

B!--

^ 0 2 = 

K--

= |a2Ry[0.33751721(7)] 

= 0.210 

= i«2ky[0.02645382(2)] 

= 0.127 

= io;2Ry[0.36397101(9)] 

= 0.172. 

The number in the inner parenthesis gives the un
certainty in the last figure quoted, arrived at according 
to (12). If our extrapolations are accepted, then we 
have achieved the desired goal of 1/106 accuracy. If it 
becomes necessary, we could, without too much expense, 
carry the numerical work one order further and thus 
increase the certainty of these numbers by about a 
factor of 5; but at present we feel this part of the 
program can rest, and wait for the experimental work 
and the analysis of higher-order corrections to catch up. 

VI. CONCLUSION 

The first major goal of the plan outlined in Sec. II 
has now apparently been achieved, and this encourages 
us to proceed with the other parts of the over-all 
program for the redetermination of a. There are two 
rather apparent cautions which we wish to make. First, 
regarding the extrapolation and error estimation, we 
have tried to be both clever and objective in pur 
analysis, but each reader will have to find his own 
measure of skepticism regarding the precise accuracy 
of our results. Secondly, while we have endeavored to 
check and recheck all our algebra and computer 
programs, the considerable complexity of the work 
reported here must leave open the possibility of some 
undiscovered error of importance. To this point we 
report the following experience. 

Six months after we had completed the last of our 
computations, there was discovered an error in our 
computer program for multiple precision division. I t 
turned out that the last ten decimals were sometimes 
treated incorrectly; but some conditions under which 
this error would not arise could also be precisely 
identified. A detailed scrutiny of all our programs then 
revealed the astonishing fact that this mistake did not 
have any effect at all on any of the matrix element 
computations. The error could work only in the process 
of solving for the eigenvectors of the matrices; but our 
method was, at the end, an iterative process, so that 
we suffered only a slower convergence (paid more 
dollars) as a result of the mistake, and all our final 
answers were unaffected. 

We hope that someone, working independently of us, 
will repeat and check all this work; this is the best 

insurance we can imagine for the reliability of these 
important results. 

One can ask for a comparison of the present best 
experimental and theoretical values for the fine-struc
ture intervals. Adding to our results (13) the simple 
correction for the anomalous magnetic moment of the 
electron2 (the only correction of relative order a) and 
using the value of the Rydberg for helium, 

\a2 Ry = 2.921374 cm"1, (14) 

we get 

^1 = 0.987837 cm"1, 

Vl2 = 0.0765302 cm"1, (15) 

j/02= 1.064367 cm-1. 

These may be compared with the experimental values 

,01=0.98791 (4) cm-1 , 

?i2=0.076423 (3) cm"1, 

j/02=1.06434(3) cm-1. 

[JSfote added in proof. The numbers quoted here have 
been corrected, relative to those published (Ref. 7), 
according to private communication from Dr. R. H. 
Sands. See also F. M. J. Pichanick, R. D. Swift, and 
V. W. Hughes, Bull. Am. Phys. Soc. 9, 90 (1964).] 
The differences are about 0.0001 cm -1, which is roughly 
what one would expect due to the neglected terms of 
relative order a2. Araki2 has considered one such higher-
order term, the mixing with the nearby 2XP s tate; 
Perkeris et al.A give for this effect a resulting downward 
shift of 0.000158 cm"1 to the 7 = 1 level. The addition 
of this correction appears to do little more than change 
the signs of the discrepancies for the 0-1 and 1-2 in
tervals; and this indicated that all the higher order 
terms of Eq. (2) will have to be treated together. 
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APPENDIX: NUMERICAL METHODS 

The many matrix elements of the operators Ho and 
H2 in the basis used were evaluated in terms of pre-
tabulated integrals of the following general type: 

7 l + 0-\MWV+(A/2) r JVl r JV2 

AA(LJM,N) = [ ) / — / —e-'ie-'*'" 
\2<r / J 4TT J 4TT 

Xri"-V2*-V1 2^YA(ri , f2) , (Al) 

BA(L,M,N) = same as (Al) but with a factor 

cos0i2 under the integral. (A2) 
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L, M, N are integers greater than zero; a(0<a<l) is a 
general parameter which is put=0.29 for the direct 
integrals and=l for the exchange integrals; and /A 
is a homogeneous function of degree JA in the two 
lengths r\ and r2. 

By use of the following identity referring to in
tegration over the angle 0i2 (signified by the angular 
brackets) 

(sin20i2ri2L) = ~ 2 / —< cos012-
( L + 2 ) \ rlf2 

rnL+\ 
(A3) 

one can easily establish the following recursion formulas: 

A (L,M,N) = A (L-2, M+2, N)+A (L-2, M, N+2) 

-2B(L-2,M+1,N+1), 

B{L,M,N) = [_(L-2)/{L+2)J_B{L-2, M+2, N) 

+B(L-2,M,N+2) 

-2A(L- 2, M +1, N+1)]. (A4) 

Our general method for building tables of integrals is 
by the use of such recursion formulas; but one must 
be careful that the particular recursive scheme chosen 
does not build by taking differences of nearly equal 
numbers (most obvious recursion schemes do suffer 
from this serious drawback.) For the above integrals—• 
for large values of L, M, N in particular—the main 
contribution comes from large values of r12; thus cos0i2 
is mostly negative, the integrals A and B have opposite 
signs, and the recursion schemes (A4) are safe. 

In order to start the recursion sequence we need to 
evaluate A and B for L= 1 and 2. The angular integrals 
are simple and we can express the results in terms of two 
families of two-dimensional integrals. (The subscript A 
is understood in what follows.) 

B(2,M,N) = 0, 

A(2,M,N) = F(M+1, N+l)+G(N+l, M+l), 

B{\,M,N) = \F(M+2,N-l)+\G{N+2,M-\), (A5) 

A (1,M,N) = F(M+1, N)+G(N+1, M), 

where 
/•OO 

F(M,N) = [(\+<r)/2<T~]M+N+an) / dre-*rM-1 

J o 
/•OO 

X / dse-s/<TsN~lf^(r,s) 
J r 

X / dx 
J0 l(l/<r)+xyt+1,+lAn> 

, (A6) 

and 

G(M 
• ]__|_0.\ M - N V - H A / Z ; r 

\ 2er / Jo 
dre-rfcrM-l 

1 X / dse-°sN-lfA(s,r) 

TIM+N+-) 

S^-VACI,*) 

= ( ™ ) 

Jo 
X / dx-

[i+(xA)]M + A r + ( A / 2 ) 

We shall again tabulate these two dimensional arrays, 
F and G, by recursion; but all the obvious formulas we 
have looked at (proceeding from small to large values 
of M and N) are badly behaved regarding loss of 
accuracy from subtractions. We thus use the backward 
iteration formulas 

2/(1+0-) 
F(M,N)= ,_ „ _ Z<rF(M+l, N)+F(M, A + l ) ] 

(M+N+iA) 
(A7) 

2/(l+<r) 
G(M,N) = ZG(M+1, N)+aG(M, A + l ) ] . 

(M+A+iA) 
These recursions start from the values of F and G along 
the line M+N=constant (about 30 in our work). 
We have found the following devious, but numerically 
safe, procedure for these evaluations. After Eq. (A6) 
make the change of variables 

1 — u 

iW 
implying 

A(*,i>= (l+u)-W»fA(l-u, 1+u), 

/ A ( 1 , ^ ) = ( 1 + ^ ) ^ A / 2 > / A ( 1 + ^ 1-U); 

(A8) 

(A8) 

then expand the resulting denominator of F in an 
infinite power series in 

H ( l - « r ) ( l - « ) ] , 

and the denominator of G in terms of {[(1 — (r)/(l+<r)2 
X u). Also make the binomial expansion of the resulting 
numerator factor (l+u)N'~1 according to the separation 

(l+u) = 2u+(l-u). 

The resulting expressions are 

F(M,N)) N (N-\)\2J-l(M+N-J-\)\ 

G{M,N) J ~ J-i (N-J) I2^+^+CA/*)-I 

><L h (A9) 
[Gj(M+N)\ 
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where 

CT)' 
X-

(K+lA-l+l 
k\(J-l)\(K-l-J)l 

-Fj'iKK), 

Gj(K)= £ 
\ i + f f / 

(A10) 

-G/(k,K), 
kl(J-l)l(K-l-J)\ 

and 

'(k,K)= j duMl-u^+uW-'il-u)*-1-^", 
Jo 

(AH) 

G/(k,K)= J duMl+u, \-u)uJ-l+k(\-u)K-l-J. 

For most of the integrals of interest the function 
/A(ri,r2) is (ri+f2)A/2 (A = 0, ± 1 , or 2); and so in the 
final expressions (All) the function/A is merely a con
stant and these integrals are trivial. However in treating 
H2 we also run into the spectral case of Eq. (A3) for 
L = — 2, and this leaves us with 

h(rhr2) = hi\ 
\ri—r2 

\ri+r2 

1 (ri+r2) A/2 (A12) 

in Eq. (A6); but this reduces to 2A'2 Inu in Eq. (Al l ) , 
and these final integrals are again easy. 

The infinite sums in Eq. (A 10) are rapidly converging 
for our values of a; and the entire procedure worked 
very well. 

Matrices of dimension 440 in sextuple precision 
require over half a million words of machine storage 
space (an order of magnitude more than what is 
available in the core) and so we made extensive use of 
magnetic tapes. The most time-consuming operation 
was the matrix inversion carried out at the start of the 
eigenvector calculation. For the largest, dimension 
438, this took 10 h of 7090 time—equivalent to about 
one billion simple 8-figure multiplications on this 
machine. 

We will now describe the method used for finding the 
eigenvector. Given two symmetric matrices H and N 
(N>0) of order n, we separate the problem 

£ (Hij-XNidx^O, i= 1, 2, • • . , n (A13) 

as follows: Set x\ = 1, and solve for Xi from 

E (Hy-XNidx^ - (HH-XNH) , f = 2 , 3, • • -, » (A14) 
/=2 

once X is known; but we can get a stationary estimation 
for X, once an approximate vector x is known, from the 
Rayleigh quotient, 

\=(x,Hx)/(x,Nx). (A15) 

In this work we always have a very good guess for X 
to start with, and the alternating iteration (A14), 
(A15) is very rapidly convergent. Most of the time 
goes into solving (A14); the process of solving n 
simultaneous linear equations 

Ax=b (A16) 

by the direct method of elimination takes \nz operations 
(for a symmetric matrix A). On the other hand, iterative 
attacks on the solution of (A 16) require only of the 
order of n2 operations per cycle, but many iteration 
schemes do not converge at all well. The general 
criterion is that one have some "good" approximation 
to the inverse of the matrix A ; then 

x(i+v = xw+A-(b-AxW), (A17) 

where A approximates A-1, can be expected to con
verge "rapidly." For our problem the matrix to be 
inverted (A 14) changes only very slightly, as our value 
of X is improved, so that it is necessary to calculate 
only once an inverse matrix (by the direct method21), 
and then we use this as the kernel of the iterations 
(A 17), until both eigenvalue and eigenvector are 
converged. 

This process works well, but as one goes to larger and 
larger matrices, loss of numerical accuracy becomes a 
serious problem at a rate much beyond any that could 
be attributed to statistical phenomena. Obviously, the 
full matrix (H—XN) in Eq. (A13) is singular—-for the 
correct X—but one would think that the remnant 
matrix in Eq. (A 14) is far from singular since the most 
important element of the basis has been removed. In 
actuality, however, the removal of a single trial function 
does not prevent the convergence of the variational 
sequence, it may merely slow it. Thus, as we go to larger 
and larger bases, the matrix in Eq. (A 14) does come 
closer and closer to being singular, and at a painfully 
fast rate. We handled this problem by the brute force 
method of using higher precision arithmetic, but the 
cost was quite great. (It may be that the problem would 
not have been quite as bad as it did appear to us, had 
we caught earlier the error mentioned in Sec. VI.) 

21 After completion of this work the following, possibly more 
efficient, method occurred to us. The new terms one is adding to 
the basis at each step in the sequence of variational calculations 
must be numerically of decreasing importance (if the entire 
process is converging at all well). Then it may be sufficient to get 
{A) by carrying out the direct calculation on only a small 
submatrix representing the dominant terms, and simply using the 
diagonal elements for the higher parts of the matrix. 


