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The electron distribution function is calculated for a many-valley semiconductor in an intense electric 
field for the case of anisotropic scattering by acoustical phonons at low temperatures. 

I. INTRODUCTION 

IN this paper we shall consider the low-temperature 
galvanomagnetic properties of a semiconductor in 

an intense electric field. In order to calculate the low-
temperature anisotropic transport properties of semi
conductors such as ^-type germanium and silicon, it is 
necessary to abandon both the simple picture of 
spherical constant energy surfaces and the assumption 
of phonon equipartition. 

Zylberstejn and Conwell1 have studied the deviations 
of the phonon distribution from equilibrium in a semi
conductor in an intense electric field at low tempera
tures. They show that the deviation is small for a sample 
of small dimensions and small carrier concentration. We 
shall treat this latter case and assume that the phonon 
distribution remains in equilibrium. 

The predominant electron scattering mechanism in a 
pure semiconductor at low temperatures is by acoustical 
phonons and the equilibrium number of such phonons 
of crystal momentum q is given by 

Nq=l/(e*''kT-l), (1) 

where s is the velocity of sound, k is Boltzmann's 
constant, and T is the absolute temperature. The 
conservation of energy and crystal momentum require 
that the acoustical phonons with which an electron of 
energy e can interact have a maximum energy of the 
order of 2(ems2)112 where m is the effective electron mass. 
At high temperatures the average electron energy €, 
even in an intense electric field, is such that 

2(ems2)lf2<KkT and therefore qsNq~kT. (2) 

This is the case of equipartition of energy. 
At low temperatures, on the other hand, an intense 

electric field may result in the average electron energy 
e being sufficiently large such that 

/2{lms2)li\ 
2{lms2)ll2>kT and iV^exp- f . 

\ kT / 
(3) 

Since the probability of phonon emission and absorption 
are proportional to 1+Nq and Nq, respectively, we 
may in this case neglect Nq compared to one and 
consider only acoustical phonon emission; this is the 
case of zero-point scattering. 

* Present address: Xerox Corporation, Rochester, New York. 
1 A. Zylberstejn and E. Conwell, Phys. Rev. Letters 11, 417 

(1963). 

Stratton2 has calculated the electron distribution 
function in the limit of zero-point scattering for the 
case of spherical constant energy surfaces and isotropic 
scattering, while Paranjape3 has calculated the electron 
temperature for a Boltzmann distribution for the same 
case. Koenig, Brown, and Schillinger (K.B.S.)4 have 
recently applied Shibuya's5 theory of hot electrons in 
order to describe hot electron phenomena in n-type 
germanium at low temperatures. Shibuya's treatment is 
based on the assumption of phonon equipartition and is 
therefore not applicable under the condition for which 
K.B.S. have used it. We see in fact from Table II 
of their paper that the electron temperatures, or the 
corresponding mean electron energies, do not satisfy 
the equipartition condition (2). 

Stratton's zero-point distribution function and 
Paranjape's calculation predict an electron mobility 
/z^£-°-8, where E is the electric field. This is in agree
ment with the low-temperature conductivity measure
ments of Bray and Brown.6 

In this paper we shall extend the previous calcula
tions2'3 by considering a many-valley semiconductor 
with ellipsoidal constant energy surfaces in an intense 
electric field and a magnetic field. We treat the case of 
acoustical phonon scattering in the zero-point limit, and 
allow for anisotropic scattering in our calculation. 

In Sec. II of this paper we set up the Boltzmann 
equation for a many-valley semiconductor, and in 
Sec. I l l we derive expressions for the energy and 
momentum relaxation in the case of anisotropic zero-
point scattering. We solve the Boltzmann equation for 
the distribution function in Sec. IV. 

II. BASIC EQUATIONS 

In a previous publication,7 the author has shown 
that the Boltzmann equation for the case of ellipsoidal 
constant energy surfaces can be expressed as two 
coupled equations for S and A, the isotropic and aniso-

2 R. Stratton, Proc. Roy. Soc. (London) 242, 355 (1957). 
3 B . V. Paranjape, Proc. Phys. Soc. (London) B70, 628 (1959). 
4 S . Koenig, R. Brown, and W. Schillinger, Phys. Rev. 128, 

1668 (1962). 
5 M. Shibuya, Phys. Rev. 99, 1189 (1955). 
6 R. Bray, D. Brown, Proceedings of the International Conference 

on Semiconductor Physics, Prague, 1960 (Czechoslovakian 
Academy of Sciences, Prague, 1961). 

7 H. Budd, Phys. Rev. 131, 1520 (1963). 
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tropic parts of the distribution function, respectively, 

eW • VP,S+An{eW • VP*A } + — p ' * B' • V p ^ = G'A , 

with p ' = a p , E'=aE, B ' = i?B, e=p,2/2mQj 

'm0 

Ts{eW-Vp,A} = G'S, (4) 

0 0 
Wa; 

0 
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u= 
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0 0 
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1 0 0 m J 
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Wo 

(mxmymz)
1/2 

(5) 

where E and B are the electric and magnetic field vectors, a and p are the electron energy and momentum and 
mx, my, mz are the electron masses corresponding to the three principal axes of the ellipsoid. 

An{x} and Is{x} represent the anisotropic and isotropic parts of x respectively, and €' represents the collision 
operator in p ' space. 

Assuming that C'A can be described by an energy-dependent tensor whose principal axes coincide with those of 
the ellipsoid: 

rr,(e) 0 0 I 
0 r„(e) 0 , (6) 
0 0 r2(«)J 

and neglecting the An{eE'-¥p'A} term (see Appendix I I ) , we obtain straightforwardly: 

A = 
dS r T(eE'+TeE'XeB7w0)+(e2 /wo2)B'(B'-eE')f3 dS r 

V -
de L de L l+(e>/«„»)T«[(5«7r , )+(VA»)+(B.7r . ) ] -

2 dfdS / e 2E'TE'+f 8(e 2E'-B7w 0) 2 2 drds / 
cs= — M 

3«o«1/2^L^e \l+(r ( f V / W ^ O V y r . H (By'*/Ty)+ (£/2/ r,)3 'Vr,)l/J' 

(7) 

(8) 

where V '= (p'/wo) and f3=7V7yrz. 
We shall consider the solution of this equation after having calculated the energy relaxation term C'S, and the 

relaxation time tensor r. 

III. CALCULATION OF ENERGY RELAXATION TERM AND RELAXATION TIME TENSOR 

In this section we shall derive expressions for r and C'S for a many-valley semiconductor with anisotropic 
scattering by the zero-point acoustical phonons. Denoting by ML2, CL and Mr2, CT, the matrix elements and elastic 
constants corresponding to the longitudinal and transverse modes respectively, we obtain 

<?/(p) = — ^ - 1 ^q[ / (p+q) ( l+^) - / (p )7Vj [X L +Z r ]+ ^ q [ / ( p - q ) ^ - / l p ) ( l + ^ ) ] [ 7 L + F r ] l ; (9) 
hil-Khfy] J i 

where 

XL>T=(qsL,T/2cLtT)ML,T2d(e(p+q) — e(p) — QSL.T), 

YL,T=(qsL,T/2cL,T)ML,T28(e(p-q)-€(v)+qsL,T), 

ps^^ciy PST2=CT and where p is the density. The matrix elements have been calculated by Herring and Vogt,8 

and we see from Table V of their paper that ML2 and MT2 are simple polynomials in cos20, where 6 is the angle 
between the principal axis of the ellipsoid and q. 

Transforming the elliposidal constant energy surfaces to spheres (5) in both the electron and phonon space, 

8 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 
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we obtain 

2TrmTmL
112 { r 

C7~ >VI J / ^q'[/(p'+q,)(i+Ar«.)-/(p')^]CXi.'+xr'] 
«(2ir»)3mo' U 

+ /^q'C/(p'-q')iVfl*-/(p')(l+iV3»)][FL'+Fr']J , (10) 

where and carrying out the required integrations we obtain 

X 5 ( e ( p ' + q ' ) - e ( p ' ) - e * ^ , r ) , \2A*p«1/J ^ L \ 5 <*«/J ' 
(14) 

YL,T'= (q*SL,T/2cL,T)ML,rK™&e*) where 
5 ( e ( p ' - q ' ) - e ( p ' ) + ^ L , r ) . ^ f1 r , /Kx\ (Kx* r1 r /Kx\ /KxK-i 

The principal axis of the ellipsoid has been taken as 
the polar axis in q' space; and MT and TUL are the rl r /Kx2\ /Kx2\~\ / 
transverse and longitudinal masses, respectively; V*= I Rz\sLML

2t )+STMT21—-) \dx /22*, 

3* = (f» r/f»o)1 /YCl+ ( * ~ 1 ) cos2*?']1/2, a n d 

c o s ^ ~ ~T 2 _ > ^— > A relaxation time does not generally exist when the 
L "r t — ) cos 0 J my matrix elements are angularly dependent; we follow 

, n, . ^ , . , the procedure of Herring and Vogt and define two 
where 6 is the cone angle in q space. . . 7 , , • , • r n 

TTT r 1 , ^,<? , « . r • r principal relaxation times as follows: 
We first calculate C\>, where S is a function of energy 

only. If the scattering were isotropic the matrix elements +, _ _ C f , ,>v, / ,Q / f f, /2JQ 
would be angularly independent and G'S would depend J J ll p> / J J p'' 
only on energy. In our case, ML2 and MT2 are angularly (15) 
dependent and &S will therefore in general be a function C C f^f / / f f 
of the direction of p'. We shall calculate the average of 1/TL= - / / 0 / C V / ^ p ' / / / <l>i2dttP>, 
&S over all directions of p', i.e., .,, 

r r / r r 4>i\ =?'-*/p', <t>j! = v'*typr, 

\ /av— J J v 'J J J v' > \ ) w n e r e a a n c j b a r e u r i i t vectors parallel to the major 
and minor axes of the ellipsoid, respectively. We obtain 

where dQp, is the differential solid angle in p ' space. t h e following expressions for the two relaxation times: 
Assuming that : 1 48(27r)3 

,«N _ , . . , . , . - i i - = — tnTZI2mLll2eNutl, (16) 
(1) The distribution function varies slowly over an Tu 5/^ 

energy interval equal to the phonon energy: where 

dS (qs)2d2S Nn = Ti, • . # ! = • — - — , 
S(e+qs) = S(e)+qs—+- . (13a) , 2 

de 2 de2 a n d 

f1 FsL /Kx2\ sT / I A ] 

(2) The average electron energy e is sufficiently large r » = J d°°R^ U^L\~&)+7T
MT \"W J ' 

such that Nq is negligible compared to one: 
The matrix elements and average elastic constants are 

2{lms2)l,2>kT (13b) given in Table V of Herring and Vogt's paper: 

/Kx\ / Kx2W\T / l.SKx2 \.!SK*(xf\-\ 
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/Kx\ & ! s , ,¥ ! 

MA— = 
\ R?1 R2 ( ' - ~ ) ( 

KX2\ X. 
1+7T ); »T , 

R2/ 2d 

cL=ci2+2cu+0.6c*; 
1 

0.375 0.625 
f 

3 2 

T L = 

2c* 

3£L 

(111) valley 

— , (100) valley 
CL 

U44+IC* £44+^* 

7r = 

(±__L_). 
V44 £44+ \c*/ 

\6cT( ) , 
I \C44+ic* C44+|C*/ 

(111) valley 

(100) valley, 

(111) valley 

(100) valley, 

where 2d and 2^ are the deformation potential constants for dilation and uniaxial shear. Inserting these matrix 
elements in Eqs. (16) and (14) we obtain the relaxation time tensor and &S (see Appendix I). 

IV. THE DISTRIBUTION FUNCTION 

We shall now solve Eq. (8) for S, the isotopic part of the distribution function. Substituting Eq. (14) in Eq. (8), 
we obtain 

HeWe 
S=exp-

Jo 

where 
H\ 

e2E'TE'+[(e2M,)E'.B']2f3 

)+H 
'Vr.)V 3«o\l+ (6*T,/«o*)C(5«',/r.)+ (VA, )+ (5/*A.)3 

647r8»»rW222* _ 4rJ2 
H= ; H=—mT

ll2V*eH. 
^2hlp 5 

(17) 

We shall consider the case of a small magnetic field 
(co2r2<Cl) and we neglect the field-independent term in 
the denominator of the integrand of Eq. (17) (see 
Appendix II). We then obtain 

S = exp-(e/kTe)^, (18) 

with 

dS r / eB'\-\ 
A = V- rleW+erWX—) , (19) 

de L \ mo / J 
lElxaT*l2/sLJi*\ 

Te=X(y)G 

where 
\mTsL

2/kJib L1622*AW 

r 3S4 -1 

L1622*A^i,pJ 
(20) 

Ti 

X(7) = [l+72(— - l ) ] , K' = K-

rv2;r(27)(25) -|2/5 

L162(2+l/i02J ' 
and y is the direction cosine of E with respect to the 
longitudinal axis of the ellipsoid. na is the low-field 
mobility for acoustical phonon scattering and is related 
to the average deformation potential which appears in 
Herring\nd Vogt's paper [Eqs. (49) and (50)] 

When we consider the simple model of spherical con

stant energy surfaces, 2M=0 and neglect elastic aniso-
tropy (c*=0), the last factor in our expression for Te 

becomes equal to 1, as does X(y), and Eq. (18) becomes 
identical with the distribution function calculated by 
Stratton.2 Since the low-field mobility for acoustical 
phonon scattering varies as T~m, our expression Te is 
independent of temperature. 

Using Eqs. (19) and (20) we obtain the following 
expressions for the mobility n and the low magnetic-
field Hall coefficient R. 

M = = P E - 0 . 8 . R = By 

where P and B are complicated functions of the 
orientation of the electric and magnetic fields with 
respect to the crystallographic axes but are independent 
of the magnitudes of the applied fields. The field depend
ence of the mobility is in agreement with the experi
mental results of Bray and Brown.6 A discussion of the 
orientation dependence will be considered in a future 
publication. 
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APPENDIX I 
We shall express all the required integrals of Sec. I l l in terms of the elementary integrals 

r1 xmdx 

Jo 

CT 

+T^C0.15(i,-l)-1.5ii:{l,l)+1.75Z243)+2ii:^(0.15(I,l)-1.5Jfi:(t3)+1.75^<| )5)) 
Ch 

(Al) 
o [ l + ( # - l ) * 2 > ' 2 

S2*=S/{f+K(l+^)2+7z,C01-0.45X+1.75if2(4,2)+2ZTr(0.05-1.5X(4,2)+1.75Z2<6)4}) 

+ (KWy(0A5^,2)-1.5K{6,4)+1.75KK8,6))2+yT(KWy((4:,2)-K(6m, (A2) 

V*=—{sL((0, -3)+2KW(2, -l)+KW*(4,l))+sTKW2((2, -1>-£<4,1» 

+7L*L[0.15<0, —3>—1.52S:<2, -l)+1.75#2<4,l)+2JOF (0.15(2, -l)~1.5i^<4,l)+1.75X2<6,3)) 

+ (XW0.15<4,1>-1.5#<6,3>+^^ , (A3) 

r 0 - Z / j - « 8 , - l )+2KW(l , l )+ (KWy(i,3))+s^KWK(lA)-K(i3)) 1
 UL 

+ (inm015<S,3)-1.5ir<t,5>+U \. (A4) 
CT J 

The integrals (tn,n) are all straightforward. For K=l9 (myn)=l/(m+l), and for KT^\ one can easily show that 

(m+2, n+2)= (m+l)(m,n) (AS) 
n(K-l)L K***J 

for n?*0. We have tabulated some of the integrals in Table I. The remaining ones are easily calculated by means 
of Eq. (AS). 

TABLE I. Integrals. 

# > 1 # = 1 K<\ 

( 0 , - 1 ) 

<2, - l> 

(4,2) 

+ 
2 2 (#-1)1/2 

^r. 
8(*-l)L 

# i / 2 ( 2 # - l ) -
s i n h " 1 ^ - ! ) 1 / 2 

( # - l)i /2 

:J 
(K 

1 rK-4 tenr^K-iyin 

-1)2L 3 (#-1)1/2 J 

#1/2 s m - i ( l - # ) i / 2 

-f 
2 2 ( l -# ) i / 2 

8(1 y- • # i / 2 ( 2 # - l ) + -
s in- i ( l -#) i -

( l - # ) i / 2 

1 T # - 4 tanh- i ( l -# ) i /2 -
• + • 

(1-#)2L 3 ( l - # ) l / 2 

APPENDIX II 
We see from Eq. (18) that e==kTe/T (0.6) ^^kTe and therefore using Eq. (3) the zero-point scattering condition 

is satisfied for electric fields large enough such that 
324 -jl/6 

V6(-y-J (X(T)G)^2-
V J a / T 3S4 

•,kJ'1Q L16S**Nx 
>T, (A6) 

I > I * L W 1 0 LlGL^NxSifiJ 

where m* is a complicated average of the longitudinal and transverse masses and is given approximately by 

W * « f W ! r ( j £ 3 / 2 _ \)/(K~ 1) 

and s* is the average sound velocity. 
For spherical constant energy surfaces and 2M=c*=0, Eq. (20) becomes approximately 

2A(ms2/k)^lEfiaT^/sJ^> T. 

The neglect of the field-independent term in the denominator of Eq. (17) is equivalent to neglecting ms2/kTe 

compared to one. It is easily seen that the An{eE'- VP>A} term is a correction to the distribution function due to 
neglecting higher order terms than the first-order spherical harmonics, i.e., terms of the form F2n(0,0), etc. 


