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Nonoscillatory Magnetic Susceptibility 
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The partition function is derived for a gas of electrons in the presence of a weak periodic potential and 
uniform magnetic field. From it the steady terms in the free energy and the zero-field-zero-temperature 
total electronic magnetic susceptibility are calculated. The results are applied to the alkali metals. The non-
additivity of the paramagnetic and diamagnetic susceptibilities and the inadequacy of the effective mass 
approximation are discussed. 

I. INTRODUCTION 

THE purpose of this note is to derive expressions 
for the nonoscillatory free energy and magnetic 

susceptibility of a degenerate, nearly free electron gas. 
That is, we consider a gas of noninteracting electrons 
in the presence of a weak potential, due to a lattice of 
positive charges, and a uniform magnetic field. The free 
energy of the system is evaluated to second order in the 
temperature and field parameters with both paramag
netic and diamagnetic terms in the Hamiltonian taken 
into account; however, only nonoscillatory behavior 
is considered. The effect of the lattice on the de Haas-
van Alphen oscillations will be the subject of a future 
report. 

The calculation was made with two ends in view. 
First, considering the success of the pseudopotential 
concept,1-3 it appears that the nearly free electron ap
proximation has computational value as well as being 
merely instructive. Second, we wish to go beyond the 
limitations of the effective mass approximation for 
describing lattice effects in the context of magnetic 
properties. A calculation is performed in Sec. I l l using 
available pseudopotential parameters for the alkali 
metals Li, Na, and K. There exists no completely 
satisfactory calculation of the role of correlation in 
metallic properties for the density range into which these 
metals fall and, since this topic is outside the scope of 
the present study, we shall only point out that correc
tions can be estimated by interpolation methods.4 

Quantitative accord with experiment thus can not be 
expected, but it is proposed that for metals with small 
energy gaps the effect of the lattice is qualitatively 
accounted for. The criterion suggested is that the ratio 
of the energy gaps to the Fermi level be much less than 
unity. 

II . CALCULATION 

We consider N noninteracting electrons moving in a 
weak periodic potential V(r), which occupies a very 
large volume £2, in the presence of a magnetic field 
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represented by the vector potential A= (—Hoy, 0,0). 
An electron will therefore be described by the 
Hamiltonian 

5C= ( l /2w)(P- (e/c)Ay+2fioHoSz+V(r) 
EEJC0+F(r). (1) 

As is well known,5 the eigenstates of 5Co are (apart from 
normalization) 

| kxnkz,<r) = e^<™)lHn(y-yo)ei<k*°+k")Xir, (2a) 

E9(n,k9) = 2wHo(n+ l/2)+h*k.*/2tn+pQHtfr, (2b) 

where ju0=Bohr magneton; Xff=spin state, cr=zbl; 
ri=(eH/hc)1/2y, 7]0=-(hc/eH)1/2kx; Hn=nth Hermite 
polynomial. 

The thermodynamic properties of the system can be 
studied conveniently by means of the partition function 

Z(T) = Tr{exp[- 7 (Xo+F)]} , y=\/kT. (3) 

Using the Schwinger trace formula6 (the variable of 
integration has been changed to u—ysi) 

Z(y)9*Tr{<r«fo} -y Tr{ F(r)r"*&} 

+*Y2Tr 
1./0 

duV(r)e-M^-u) 7(r)<r*tfeo< 

S Z O ( T ) - Z 1 ( T ) + Z 2 ( 7 ) . (4) 

|W I 

Since the Zeeman term commutes with the remainder 
of the Hamiltonian, the spin part of the trace is per
formed very simply to give 

Z(Y) = 2 cosh(fxoHoy)Zzo(y)-Zi(y)+z2(y)l. (5) 

Zo(y) is known from the work of Sondheimer and 

6 L. Landau and E. Lifshitz, Quantum Mechanics, (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1958), 
Sec. 125. 

6 A. Saenz and R. O'Rourke, Rev. Mod. Phys. 27, 381 (1955). 
There is a misprint in Eq. (1.2.8) which should read: 

Tr{Q(5)}=Tr{6-«a}-5Tr{6e-*a}+^S ( - l ) » / » 

XTrUe->af8 dst • • • V^ dsn-ib(Sl) • • 'b(sn^)\. 
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(6) 

Wilson7: 

Zo(y)^ilay~d/2(fxoIIoy) csch(juoZ7tfy), 

a = (m/2wh2y/2. 

21(7) can be calculated directly if V(r) is represented as 
a Fourier series 

F(r) = E K F K r « ^ , (7) 

where the K's are reciprocal lattice vectors. Represent
ing the trace in the form 

IF'6 r r 
Tr{B}= / dkx / dk, E <Mfc,|£I*,»*,>, (8) 

(2TT)2 7 7 »-* 

and using the generating function for products of 
Hermite polynomials8 we obtain 

21(7) = 7 F O S 0 ( T ) , (9) 

where Fo is the average crystal potential. For simplicity 
it will be assumed that V has a center of symmetry. 

The evaluation of 22(7) is straightforward but tedious. 
We begin with the expression 

^ 4 / 3 - 1 . -

I du I dkxdkj I dkzdkj 
(2TTWO J J 

22 ( 7 ) = I T 2 - N 

(2TT)4 . /O 

X L \{h&kM\V(f)\kJn%')\* 
n,n' 

X e x p { - 7 £ ( < £ / ) ( l - ^ ) + £ M > } • (10) 

First the spatial integrals over r and r' in the matrix 
elements can be done, except for the y and y' integrals, 
making use of (8). The sums over n and n' are evaluated 
next using the generating function8 and the y and yf 

integrals then performed in terms of the variables 
yzby'. At this point the remaining integrals, except for 
the u integration, are done without difficulty leading 
to the result 

*2(7) = 4 T V Y ) E VK
2 

K 

*fM fie 'yfv 
KxV K „ V l - t t ) \du. (11) 

eH 2m 

Ki and K n are the components of K, perpendicular and 
parallel to the magnetic field, and 

fx~1 = coth(fxoHoyu)+coth[_jjLoHoy(l--u)']. (12) 

Combining (5)-(11) we have 

Z(y) = Z0(y){l-yVo+h2Vo2 

+h2Y,'G(K,y)VK
2}, (13) 

where G(K/y) is the integral in (11) and 

Z0(y) = 20a7"3/2(Mo£ro7) coih(tioHy) (14) 
7 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London) 

A210, 173 (1951). 
8 Eq. (A4) of Ref. 7. 

is the partition function for free electrons. For conveni
ence, the term 2£=0 has been separated from the sum 
and this is denoted by the prime. 

For comparison the partition function has also been 
calculated for the case where the diamagnetic terms in 
(1) are omitted. This can be carried out easily using 
plane-wave states; the result is 

Z'(y) = Zo'(y)\l-yVo+h*V<? 

+75/2i O r d*k 
E ' VK

2 / 
J (2TT 

-ye(k) 

where 
(2TT)3 e{k~K)-e(k). 

, (130 

Z0 ' (7) = 2OG7-3/2 cosh (MO#O7) , 

e(k) = h2k2/2m. 

I t follows from these expressions that to second order 
in the potential the paramagnetic and diamagnetic 
effects of the field are not simply additive. 

The free energy and other thermodynamic properties 
can now be calculated. Since we consider here only the 
steady susceptibility, we may simply disregard the 
poles of (13) lying off the real axis in the inverse 
temperature plane.9 I t is convenient at this point to 
separate Z(y) into field-dependent and independent 
parts retaining terms of no higher than second order in 
the field. Introducing the parameter fi=noHo we find 
M ^ 7 S [ 1 - H 0 Y ) 2 S ] w h e r e S=u(l-u) and G(K,y) 
= i / o [ i 7 € ( K ) ] + ^ 7 3 ( 6 ( ^ ) / 9 6 ) / 2 [ i 7 ^ K ) ] , where 

Thus, 

where 

Jo '0 (l-y)112 

Z(y) = Z^(y)+p2ZV(y), 

(15) 

Z<°> (7) = 2ttay-V2{l-yVo+h2V0
2 

+h2rVK
2hthe(K)l}, (16a) 

ZV(y) = 2ttay-V2{h2-hsVo 

+ i Y 4 F o 2 + A 7 4 L ' VK
2Ulh<K)-]} 

+ (1 /192)7 5 Z' V^ei^hlh^K)-]. (16b) 

The quantity ^=F—n£, in=N/ti), will now be calcu
lated using Eq. (14) of Ref. 9. Asymptotic expansions in 
powers of the degeneracy parameter (7$*) can be ob
tained for the contributions of the first three terms of 
(16a) and (16b) to obtain <£. For the remaining terms 
the procedure described in Ref. 9 would be permitted 
only if yt^lye(K); since this is not the case for the 
alkali metals, the relevant parameter for these terms 
i s a = 4 f / € ( £ ) . a 

The calculation as outlined gives 

$ = $ o ( 0 ) + 7 - 2 ^ i ( 0 ) + ^ o ( 1 ) + (/3/7)2$i(1), (17) 

9 M. L. Glasser, J. Math. Phys. (to be published). 
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where 

$o(0) = - (2/V*M (8/15)1-6 '2- fF 0 r 3 / 2 + Fo2f1/2 

+ I Z ' F K 2 [ e ( Z ) ] " 2 / ( a ) } 

$ 1 ( 0 ) = _ l T 2 ( 2 a / v / 7 r ) { r i / 2 _ l F o r i / 2 _ i F o 2 r 3 / 2 

+ £ ' Fx
2[e W]-3^(a)}; 

/ ( a ) = V a + ( a — 1) tanh~ 1 v ' 0 , 

g(0) = a - i / 2 ( l - a ) - ' ; (19) 

$o ( 1 ) =- (2a/V»){*i- l l t- l v Q r w - ^Fo 2 r 3 ' 2 

+ 1 Z ' FK
2(a(KI)/[e(iT)]«/2)A(a)} , (20a) 

$ 1 ( D = _ i 7 r 2 ( 2 a / v ' x ) { _ A r 3 / 2 _ i F o r 5 / 2 

- & n 2 r 7 / 2 + ( 1 6 / 3 ) Z ' Fx
2[e( i iC)]-"V'(a) 

+ t £ ' VKK<KL)/te{K)Ji>)h"(a)}, (20b) 

TABLE I. Pseudopotential and free electron 
parameters for the alkali metals. 

(18a) 

(18b) 

To (Ryd) 

Li 0.355 
Na 0.235 
K 0.155 

a ( X106 cgs vol. units). 

vKo (Ryd) 

0.112 
0.010 

-0.018 

X o f r e e * 

0.54 
0.43 
0.35 

x*a 

0.25 
0.20 
0.18 

and 

h (a) = | tanh-1\/ff-
2 ( 1 - a)2 

(21) 

In order to use these expressions, the chemical poten
tial must be known to second order in the various 
parameters. I t can be calculated by solving the equation 
(d$/df)o+w = 0. Except in rare cases, the temperature 
and field dependences of f are small enough to be 
neglected. Hence we need retain only <£o(0) in this equa
tion and solve for f to second order in the lattice poten
tial. This calculation is easily carried out and yields 

f = r o [ l + ( F o / f o ) - i f o 3 / 2 Z , M ^ W W W ] , (22) 

where f0=i(97r^2)1/3(2x^2/m) and ao=4?Q/e(K). 
The magnetic susceptibility can now be calculated. 

Putting (17) into the formula x=-(l/H)(dF/dH)\Q 

we find x= : -2 i uo 2 [^o ( 1 ) +(^r) 2 $i ( 1 ) ] . To second order, 
the temperature-independent susceptibility is 

X0= X 0
f r e e [ l - ( l /8f o2) E ' VJFfa)!, (23) 

where 

F(a0)=(a0)1 / 2 tanh-1(«o)1 / 2 

do 1 e(Kx) 
-ao3/2A(tfo), (24) 

1-ao 4 e(Z) 

and X0
free= /x0

2/f o is the susceptibility for free electrons. 
A similar formula can be obtained for the temperature-
dependent term. 

An equation, resembling (23), for the paramagnetic 
susceptibility was published recently by Abe.10 His 
formula is derived along the lines of this calculation in 
the Appendix. 

III. DISCUSSION 

In this section the results of the preceding analysis 
are applied to the alkalis Li and Na, these being the 
only metals for which the spin susceptibility has been 

10 R. Abe, Progr. Theoret. Phys. (Kyoto) 29, 23 (1963). 

measured. We shall cast our analysis for these metals 
in the form of a one-parameter model in terms of the 
lowest nonzero Fourier coefficient of the crystal potential. 
This is determined by the energy gap at the zone sur
face and estimates from band calculations3-10 are listed 
in Table I. An estimate for sodium based on Callaway's11 

pseudopotential showed that the sum in (23) is given 
almost entirely by the contributions fron the reciprocal 
lattice vectors of shortest length. The results obtained 
by summing over only these vectors and using the Four
ier coefficients listed in Table I are shown in Table II . 
F (ao) is a universal function for a given lattice; for the 
bcc case F(ao) = — 6.33 for the vectors of type 27r/a 
(1, - 1 , 0) and - 4 . 2 9 for those of type 2ir/a (1,0,1) 
where a is the lattice constant. The calculation for Na 
carried out using Callaway's pseudopotential gave a 
result much larger than that listed in Table II . This is 
consistent with the observation that the energy gap 
(at the point N) found by Callaway is an order of mag
nitude larger than that found in most other calculations. 

Estimates of the correction to the susceptibility due 
to correlation have been made on the basis of Silver-
stein's4 work and are listed under x* in Table I. The 
entries in Table I I denoted by a star were obtained by 
including these adjustments. The starred values of the 
paramagnetic susceptibility are in close agreement with 
Abe's10 values, obtained by a Sampson-Seitz procedure. 
Considering that the sum in (23) has been underesti
mated and that correlation has been accounted for in a 
very crude fashion, agreement with experiment for Li 
and Na appears to be satisfactory. 

Also listed in Table I I are values for the "diamagnetic 
susceptibility" obtained by subtracting Xp (A5) from 

TABLE II. Experimental and calculated susceptibility 
(X106 cgs vol. units). 

Li Na K 

Xoa 

XoD ' 

x/ 

xP
h 

Xd(* 
Xdh 

1.20* 
0.95 
1.94=1=0.05 
1.33* 
1.08 
2.08=1=0.10 
•0.13 
•0.14=1=0.15 

0.64* 
0.44 
0.88±0.03 
0.84* 
0.66 
0.95=L0.10 

-0 .22 
-0.07=1=0.11 

0.56* 
0.38 

0.73* 
0.55 

-0 .17 

a From Eq. (23). 
b R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58 (1956). 
c The ionic diamagnetism has been subtracted. 
dFrom Eq. (A5). 

11 J. Callaway, Phys. Rev. 112, 322 (1958). 



M A G N E T I C P R O P E R T I E S O F N E A R L Y F R E E E L E C T R O N S A1299 

X0 (23). Because of the nonadditivity of diamagnetic 
and paramagnetic effects, discussed below in more 
detail, these values correspond only roughly to the 
Landau-Peierls diamagnetism. There is some evidence12 

that the diamagnetic susceptibility is only slightly af
fected by correlation; thus, much of the correlation con
tribution is subtracted off by this procedure. The close 
agreement between theory and experiment here is 
strong evidence in favor of a pseudopotential theory 
of these metals. 

In the course of this calculation it was discovered that 
the same basic method has been applied by Samoilovich 
and Rabinovich13 to study the diamagnetism of nearly 
free electrons; where comparable, their results agree 
with this calculation. However, due to the nonadditivity 
of the susceptibilities, the result of adding their expres
sion to Abe's differs from (23); indeed 

A=[X,(SR) + Xp(Abe)-X0(23)]/X ( 
free 

1 6(K,) 
= - £ ' VK2 [ a 0 ( l - a o ) - 2 - i a o 3 ^ ( a 0 ) ] . 

16fo2 e(K) 

For lithium, A = 0.62, while for sodium, A = 0.012. 
Therefore care must be taken in separating the para
magnetic and diamagnetic susceptibilities for compari
son with experiment. Since the diamagnetic suscepti
bility is not directly measured, it is believed that the 
estimates in Table I I are more significant than those of 
Samoilovich and Rabinovich. The existence of this 
nonadditivity has been discussed in a general way by 
Blount.14 This feature would appear to be a source of 
considerable error in previous calculations of diamagnetic 
susceptibilities. 

In conclusion, a comparison can be made with the 
effective-mass approximation within the scope of the 
nearly free electron model. The susceptibility is given 
in terms of the effective mass ratio by7 

Xo/X0
free = f (w*/w) 3 / 2 -1 (m/m*} 1/2 (25) 

In the nearly free electron approximation fn*/?n, aver
aged over the Fermi surface, is 

m*/m= 1 + (l /4f o2) E ' VK
2M112 t a u t r 1 ^ ) 1 ' 2 . (26) 

Combining (25) and (26) gives 

Xo/X0
f ree=l+(5/8fo2) E ' VK2M112 tanh-Kao)1 '2, 

which differs significantly from (23). 
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APPENDIX 

Using (13') and proceeding as in the body of the text 
we find 

$' = $0'+$/+$2'+$2" 9 (Al) 
where 

$o' = -7r / T (w/27r^ T ) 3 / 2 [^5{T(r+Mo5 r ) } 

+£ 6 {7( r -Moff )>] , 

#i / = T7o(w/2irftV)8/2[^8{7(r+/*off)} 

$ / = _ 7 r 7 / 2Fo 2 (w /2x^7 ) 3 / 2 [ ^ i {T( f+Mo^)} 
+ Z M 7 ( r - M o # ) } ] , 

and 
1 /• c-Hoo 

B*(\) = —; / s~ffl2 cscTse^ds 
LTTt J c—i<x> 

is an integral discussed in another paper.9 I t is convenient 
to handle <f>2", corresponding to the last term in (13'), 
somewhat differently. We first calculate z"(E)} the 
inverse Laplace transform of the corresponding term in 
Z ' ( Y ) / Y 2 . Then we obtain 

3 > 2 " - E ' VK2 [ —{g(K,E+noH)+g(K,E-ti0H)}dE, 
Jo dE 

where /o is the Fermi function and 

g(K,\)= (2*)"* [ < ^ [ e ( k - K ) - e ( k ) ] - i . 

In the zero-temperature limit (Al) becomes 

- $ (T=0) = [ 1 / r ( I ) ] («/2***)»'J 

x{[(r+Moff)6/2+(r-Mo#)^] 
- | F o [ ( f O+MO#)3 '2+ (r-M<>ff)8/2] 

+ (15/8)Fo2[(f+Moff)1/2+ (f-Moff)1'2]} 
+ Z ' VK

2{g(K, r+M 0H)+g(^, f-Moff)} • (A2) 

This leads to 

4 / m \ 3 / 2 r 
= —Mo2(— H l -Fo / r - | (F 0 ; 

yV \2**V L 
/f)2 

2TT/ m \ Vk
2 

+-(—)E'-r \2wW # 2 - w ] (A3) 

where ko is the free electron Fermi momentum. The 
chemical potential is obtained as before. Inserting (22) 
into (A3) leads to Abe's10 expression 

X p / X ^ - = l + ( l / 8 f o 2 ) 

V 

xE 1- •ln 
u2—11 2u u—11 

where Xp
free=3juoV2ro, and u=K/2ko=l/\/^ 

, (A4) 


