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Optical Harmonic Generation in Single Crystal BaTi03 
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Second-harmonic generation (SHG) of the Nd-doped CaWCU optical maser beam in ferroelectric BaTi03 
has been investigated. Each of the three nonlinear coefficients which determine the magnitude of the SHG 
have been measured from room temperature to near the Curie temperature. It is found that all three co
efficients have the same temperature dependence as the spontaneous ferroelectric polarization. The sym
metry of the nonlinear coefficients required for a dispersionless, lossless SHG mechanism, namely, dn — dn 
for BaTiC>3, applies over the entire measured temperature range. The effects on SHG due to antiparallel ferro
electric domains are described. The circumstances under which random as well as special antiparallel do
main arrays can produce either an enhancement or a degradation of the second-harmonic intensity are dis
cussed. Because of the dependence of SHG on the domain structure, the determination of the nonlinear 
coefficients requires single-domain crystals. A method for preparing suitable BaTi03 single-domain crystals 
is described. These crystals are also useful for investigations of the characteristics of ferroelectric domain 
growth. 

INTRODUCTION 

QUANTITATIVE studies of the second-harmonic 
generation1 (SHG) of optical maser beams in 

ferroelectric crystals are interesting for several reasons. 
All ferroelectric crystals2 have optical, electrical, and 
other properties that undergo large changes with tem
perature so that one might also expect the efficiency 
of SHG in these crystals to vary with temperature in 
some pronounced manner. In addition, ferroelectric 
crystals have a domain structure that can be in
fluenced with an external electric field; and, as will be 
discussed, the ferroelectric domain structure can have a 
maked effect on the production of the second har
monic.3-7 Neither the domain effects nor the marked 
temperature dependence of SHG will occur with the 
usual nonferroelectric piezoelectric crystal. Ferro
electric barium titanate is, in many respects, a good 
choice as a material for an investigation of these 
nonlinear effects. For example, suitable crystals are 
readily available, the point group (CAV) is simple, it is 
among the most efficient nonlinear materials known,6 

the Curie temperature (120°C) is easily attained, its 
optical properties are well suited to SHG with at least 
one of the commonly used optical masers, and its 
domain dynamics are quite well understood.2 

From the point group of BaTiOs, it can be shown 

that the second-order polarization P^ has the form,1*6 

1 For a review on the subject of SHG, see P. A. Franken and 
J. F. Ward, Rev. Mod. Phys. 35, 23 (1963). 

2 For a general review of the properties of BaTi03 and other 
ferroelectric crystals, the reader is referred to F. Jona and G. 
Shirane, Ferroelectric Crystals (The Macmillan Company, New 
York, 1962). 

3 R. C. Miller, quoted in Ref. 1. 
4 F. Brown, Bull. Am. Phys. Soc. 8, 62 (1963). 
6 J. van der Ziel and N. Bloembergen, Bull. Am. Phys. Soc. 8, 

380 (1963), and N. Bloembergen, Proceedings of the International 
School of Physics "Enrico Fermi," Varenna, Como, Italy, 1963 
(to be published). 

6 R. C. Miller, D. A. Kleinman, and A. Savage, Phys. Rev. 
Letters 11, 146 (1963). 

7 R. L. Himbarger and J. L. Bjorkstam, Appl. Phys. Letters 3, 
109 (1963). 
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In this equation, P2a> is the dielectric polarization at 
twice the maser frequency 00, dij are the nonlinear 
coefficients, and Ei are the optical electric fields in the 
medium. Inspection of Eq. (1) readily shows that 
c-domain ferroelectric plates, i.e., plates with the 
ferroelectric direction (z axis) normal to the major sur
faces, are not very useful for a study of SHG. One would 
like to use ^-domain plates, i.e., samples with the 
ferroelectric direction in the plane of the major sur
faces of the plate, so that with appropriate use polarizers 
and analyzers, one can determine each of the three non
linear coefficients. There is some indication in the 
literature that a-domain samples are difficult to prepare; 
and, furthermore, that they may be unstable.8 In 
addition, since SHG is influenced by antiparallel fer
roelectric domains,6 one must prepare ^-domain samples 
which are free of antiparallel domains, i.e., they must 
be single domain crystals. A method for preparing 
samples suitable for these SHG studies will be described. 

The ^-domain samples prepared for the SHG studies 
are also useful for another type of investigation. With 
electrodes along two opposite edges so that electric 
fields can be applied along the crystal z axis, one can 
study the domain dynamics of polarization reversal, 
i.e., the nucleation and growth of the antiparallel 
domains. In recent years, studies2 of domain dynamics 
through the direct observation of the domains have been 
largely restricted to investigations of the sidewise 
motion of the 180° domain walls—the boundaries be
tween antiparallel domains. With the a-domain sam-

8 P. H. Fang and W. S. Brower, J. Appl. Phys. 34, 1516 (1963). 
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pies, one can for the first time observe in detail directly 
with a microscope the forward growth (growth in the 
direction of the spontaneous polarization) of the anti-
parallel domains under nearly ideal conditions. These 
phenomena, however, will not be described in this 
paper. 

This paper discusses an analysis of some of the 
effects of antiparallel ferroelectric domains on SHG, the 
preparation of single crystals of BaTi03 suitable for 
studies of SHG and the forward growth of antiparallel 
domains, the determination of all the nonlinear coeffici
ents as a function of temperature, and a brief discussion 
of these and other related experimental results. 

EFFECTS OF FERROELECTRIC DOMAINS ON SHG 

The effects which will be considered are those due to 
antiparallel domains. Effects which arise with twinned 
crystals due to mixed a- and c-domain configurations 
will not be discussed. Barium titanate will be treated 
in some detail, however, the phenomena to be described 
are not specific to BaTi03—they will occur with all 
ferroelectric crystals. 

Consider what happens when an optical maser beam 
is at normal incidence on a BaTiOs crystal platelet. 
The maser beam fundamental produces a second har-
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monic forced wave9,10 in the crystal as indicated in 
Fig. 1. This wave, which will be expressed as 

Eikia ^ expt {2k\X— 2(at) (2) 

is tied to the fundamental maser light wave, 
expi(kix—a)t). In these expressions, o> is the frequency 
of the fundamental light wave, and h the propagation 
constant in the medium. The quantity lc is the coherence 
length,1 which will be described in more detail in the 
next paragraph. The plane of polarization of the forced 
wave is determined by the nonlinear coefficient in
volved in the SHG process. For ease of presentation, 
the phenomenon to be described will be illustrated with 
the nonlinear coefficient ^33 so that all polarizations, 
including the ferroelectric polarization, are in the same 
plane. 

Boundary conditions imposed by Maxwell's equa
tions, namely, the tangential components of E and H, 
must be continuous across the surface of the crystal, 
require that a free second-harmonic wave9'10 also be 
present in the crystal. This wave, which is produced 
at the surface, is expressed by 

FIG. 1. Illustration of the enhancement of SHG due to anti-
parallel ferroelectric domains, one coherence length, lc, thick. 
The forced and free second-harmonic waves are shown at the top 
of the figure and the resultant second-harmonic intensity at the 
bottom of the figure. At each domain wall the forced wave changes 
phase by x, and the free wave increases in amplitude by an amount 
equal to twice that of the forced wave. The dotted, dashed, and 
solid curves at the bottom of the figure show the effect on the 
second-harmonic intensity of zero, one, and two 180° domain 
walls. 

Ek2
cc —lc expi(k2x—2o)t), 

n2+2 
(3) 

where k2 is the propagation constant in the medium 
appropriate to the second-harmonic frequency. The 
quantities n\ and n2 are the indices of refraction at the 
fundamental- and second-harmonic frequencies, re
spectively. A reflected second-harmonic wave of small 
amplitude is also generated but will not be discussed 
further.9-10 Since dispersion between the fundamental-
and second-harmonic frequencies is usually present, 
2&i will not in general be equal to k2 so that the forced 
and free waves, which are initially out of phase by 
7r at x=Q, travel with different velocities. The second 
harmonic intensity I2 in the crystal is the result of the 
interference between these two waves, and can be 
approximated by 

l2«\E2kl+Ek2\*. (4) 

Since (fii+l)/(n2+l) is nearly unity, I2 at x=0 is 
essentially zero compared to the maximum value of 
I2 which first occurs at x equal to one coherence length 
lc where the two waves are in phase; and then provided 
no domain walls are present, at successive odd mul
tiples of lc. The minima occur at even multiples of lc. 
This oscillating phenomenon is illustrated near the 
bottom of Fig. 1. The coherence length lc is given by 

/ C = T T / ( * 2 — 2 £ 1 ) = X/4(»2—»i) , (5) 

where X is the free-space wavelength of the fundamental. 
Now, consider what happens to these two second-

harmonic waves when they traverse a 180° domain wall 
9 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. 

Pershan, Phys. Rev. 127, 1918 (1962). 
10 D. A. Kleinman, Phys. Rev. 128, 1761 (1962). 
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where the normal to the wall is in the beam propagation 
direction. Since the z axes in two antiparallel domains 
are in opposite directions, Eq. (1) says that the phase 
of the second-order polarization wave P2(a, and hence 
that of Euv will change by -K on traversing the wall. 
The effect of the wall on the free wave is determined by 
the requirement that the tangential components of the 
E and H fields at frequency 2co be continuous across the 
domain wall. For a wall at x=xo, the free-wave changes 
from the form given in Eq. (3) to 

f O i + l ) (ni+n2) "| 
— lc\ expi(2ki~k2)xo 

L(n2+1) n2 J 
X exp^ (k2x— 2o)t) , (6) 

for X>XQ. Thus, in the case of the free wave, the domain 
wall in general introduces a change in amplitude as well 
as a change in phase. A reflected second-harmonic 
wave is also produced at the wall; however, since its 
amplitude is down from that of the transmitted second-
harmonic wave by more than three orders of magnitude, 
the reflected wave will not be considered further. Assume 
as shown in Fig. 1, that a wall is at XQ=IC, in which case 
the maximum increase in Ek2, and hence I2 is obtained. 
Setting ni^n2, i.e., small dispersion, one sees from 
Eq. (6) that the amplitude of the free wave increases by 
a factor of 3. Therefore, the maxima of the total second-
harmonic intensity increase by a factor of 4 due to the 
first "properly" placed domain wall. In addition, the 
minima are no longer zero, but are equal to the maxima 
obtained in the absence of the 180° wall. Each properly 
placed 180° wall results in an increase of the amplitude 
of the free wave by (ni+n2)/n2~2 times the amplitude 
of the forced wave. With N properly placed walls, the 
part of 12 which does not average to zero with 
x can be shown to increase by a factor equal 
[ l + ( l + 2 A r ) 2 ] / 2 . The largest enhancement one can 
obtain from this process occurs when the 180° walls 
are present at x=lc, 21 c, 3/c, etc., up to the crystal 
thickness /. The effect is then to increase the coherence 
length from lc to the crystal thickness /. With the Nd 
maser and BaTi03 , ZC=2,1X10~4 cm for d33

6 so that for 
a crystal of typical thickness, 2X10~2 cm, and with 
domain walls spaced lc apart, one has Nmax= 102 or a 
SHG enhancement of 2X104, a very large effect. 

For an array of N 180° domain walls situated ran
domly in the crystal, the resultant second-harmonic 
electric field is given by 

E<xlcl(-l)xe
i2klx-eik**(l-2exp(-i7rx1/lc) 

+ 2 exp(—i7rX2/lc) — 2 exp(—iwxz/lc)^ 

+ 2 ( - l ) * e x p ( - i W * c ) ) ] , (7) 

where the walls are placed at x—xh x=x2j etc., and it is 
assumed that n\~n2 except in lc. Then, for 2NIC<1} 

Eq. (7) gives a second-harmonic intensity enhancement 
proportional to (1+2N), where again only the part of 

12 that does not average to zero with x is considered. 
The restriction that 2NIC<1 is required so that in 
averaging the product of Eq. (7) and its complex con
jugate one can permit each phase irXi/lc to vary from 
0 to 2TT. Thus, even a random array of antiparallel 
domains can produce a substantial enhancement of the 
second harmonic in a ferroelectric crystal. 

For l^>l, i.e., when the free and forced waves pro
pagate at very nearly the same velocity, Eq. (7) can 
be used to show that the intensity of the resultant SHG 
is proportional to the square of the difference between 
the total thickness of domains of one sign minus that for 
domains of the opposite sign. Since SHG for ES>lc in 
the absence of domains1 is proportional to Z2, antiparallel 
domains will have a serious degrading effect on SHG 
under "velocity matched" conditions. 

In the case just treated, the crystal was assumed to 
consist of slabs of antiparallel domains with the normals 
to the walls parallel to the beam direction. If the wall 
normals are perpendicular to the beam direction the 
analysis given above does not apply. In the latter situa
tion, one has second-harmonic coherent light beams 
emerging from the crystal with the phase of all the 
beams coming from domains polarized in one direction 
out of phase by ir with those beams coming from do
mains polarized in the opposite direction. In an un
focused beam experiment with a few antiparallel 
domains present so that the cross sections of the radiat
ing volumes are much larger than a wavelength, the 
emerging beams will be nearly parallel and will not 
interfere with each other and reduce the second-
harmonic intensity below that which one would ob
serve with a single-domain crystal. However, when 
diffraction effects become large, that is, when the cross 
sections of the radiating areas are comparable to a 
wavelength, the emergent beams are no longer nearly 
parallel to that they can interfere destructively with 
each other and reduce the second-harmonic output be
low that which one would observe with one or a few 
domains. 

The optimum domain array for SHG is one where the 
crystal consists of sheets of antiparallel domains, each 
lc thick, with the wall normals parallel to the beam direc
tion. The question arises as to how one can produce 
such domain arrays. One possible method that would 
apply to crystals which undergo second or higher order 
ferroelectric phase transitions,2 such as potassium 
dihydrogen phosphate (KDP), Rochelle salt, and 
triglycine sulfate (TGS), involves the formation of a 
domain pattern, as the crystal goes from the para-
electric to the ferroelectric phase, which is determined 
by the minimum free energy.2 In the case of Rochelle 
salt, theory and experiment give a domain spacing ob
tained in this manner which is proportional to the 
square root of crystal thickness.11 (This crystal thick
ness refers to the direction of the ferroelectric polariza-

11T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953). 
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tion.) Thus, one may be able to produce a suitable array 
using this technique. This method will not work for 
crystals such as BaTiOs which undergo first-order phase 
transitions since the domain pattern formed on cooling 
through the phase transition is in this case determined 
by independent nuclei and not by the minimum free 
energy.2 

It may be possible to produce desired domain arrays 
with electric fields. There is some evidence that the 
number of domains per unit area is determined by the 
magnitude of the field producing them,12 so that with a 
suitable choice of the magnitude and the duration of 
the field, one may be able to produce useful domain 
patterns. A combination of electrical and thermal treat
ment may also be found useful. 

Order of magnitude enhancements of the second-
harmonic have been observed with both BaTiOs and 
TGS when antiparallel domains were known to be 
present. In these experiments, the ferroelectric domains 
had probably either circular, or approximately square, 
cross sections in the BaTiOs; and probably lenticular, 
or circular, cross sections in TGS.2 Thus, in neither case 
did the antiparallel domain configuration approximate 
the ideal slab structure. However, in no case was a 
decrease of the second harmonic observed when anti-
parallel domains were known to be present which shows 
that the enhancement effects of the 180° walls are 
larger than the degrading effects such as those due to 
small radiating areas. 

A somewhat similar arrangement for enhancing SHG 
in quartz where lc<l was described earlier1,9 and con
sists of stacking crystal plates in such a way so as to 
produce the effects shown in Fig. 1 and described in the 
text. 

PREPARATION 

Since no method of preparing samples suitable for 
the present experiments has been given in the literature, 
the techniques employed to produce the crystals will be 
described in some detail. Clear, undoped crystal plates 
of the order of 2 X 10~2 cm thick (grown by the Remeika 
method13) with clean smooth surfaces were selected and 
then etched in concentrated H3P04 at 155 °C sufficiently 
long to reduce the sample thickness by at least 5 X 10~3 

cm. The samples were then rinsed in water, alcohol, and 
dc poled in distilled water with platinum electrodes. 
After poling, the specimens were examined with a 
polarizing microscope and only those samples which 
had large, unstrained c-domain areas were selected. Of 
these crystals, only those which had areas a millimeter 
or so on a side that were sufficiently plane parallel to 
give a few interference fringes with visible monochro
matic light were used. These selected crystals were then 
cleaved, or broken, with a razor blade such that with 
much patience and some luck one obtained a ^-domain 

12 H. L. Stadler and P. J. Zachmanidis, J. Appl. Phys. 34, 3255 
(1963). 

13 J. P. Remeika, J. Am. Chem. Soc. 76? 940 (1954). 

sample, rectangular in shape, several millimeters on a 
side, with the sides parallel to the a axes. Then air-
drying silver-paste electrodes were painted on the more 
perfect two opposite edges and dc fields of a few kV/cm 
were applied to pole the sample a domain. The poling 
process was monitored with a polarizing microscope 
and the process usually hastened by heating the sample 
with a focused light beam to a temperature below but 
near the Curie temperature. When the poling process 
was complete, the light and field were removed and the 
resultant a-domain sample examined. At this point, the 
samples would in most cases be without antiparallel 
domains. If a few antiparallel domains did appear, 
they were usually readily eliminated with fields of a few 
hundred volts per centimeter. In the studies of SHG, a 
field of this magnitude was always kept on the sample 
while under investigation to insure that no antiparallel 
domains were present. However, even under these condi
tions, both twinning and antiparallel domains usually 
occur at temperatures above approximately 110°C. For 
this reason, coupled with the fact that going through 
the Curie temperature is frequently a destructive opera
tion, almost all the studies were made at temperatures 
less than about 110°C. There was no indication that 
these a-domain samples were unstable, i.e., over periods 
of months, no changes in the domain structure were 
observed. 

SHG STUDIES 

Figure 2 shows a schematic drawing of the essential 
components of the experimental arrangement for 
studying SHG in BaTiOs. For ease of analysis of the 
data, a careful alignment was made so that the polariza
tion of the laser beam was in the xz plane of the crystal 
and at 45° to the x and z crystalline axes. Table I gives 
the nonlinear coefficients d# involved in SHG as deter
mined from Eq. (1) for various orientations of the 
polarizer and analyzer with respect to the crystal z axis. 
As seen in the table, special orientations of the polariz
ing elements enable one to observe separately SHG from 
each of the three nonlinear coefficients. The polarizing 
elements in Fig. 2 are set to observe SHG due to du. 

To make quantitative comparisons between nonlinear 

E2a)t f2d1 5EyEz / 

E 2 a > d2d 1 5 EyE z 

FIG. 2. Schematic drawing showing the orientation of the BaTiOs 
sample with respect to the maser beam. The polarizing elements 
are set to measure the second harmonic due to du- The electric 
fteld is applied to insure that the sample remains single domain, 
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coefficients, it is necessary to consider the interference 
effects that occur between the second-harmonic forced 
wave produced by the maser beam, and the free second-
harmonic light wave produced at the surface of the 
crystal. As mentioned in an earlier section, this inter
ference effect, which was first demonstrated in quartz,14 

produces a second-harmonic wave whose amplitude 
varies in a periodic manner along the beam direction 
from essentially zero to some maximum value. For 
3̂3 in BaTiOs and a crystal of thickness /, the second-

harmonic intensity, 733 generated by the fundamental 
intensity I\ is given by 

In « /i2/W^332/33
2 sin2(^/2/33), (8) 

where f(n) is a function of the indices of refraction, and 
lu is the coherence length. The function f(n) is given by 

TABLE II . Room temperature BaTiOs nonlinear 
coefficients and coherence lengths. 

/ (»)= 
« 2 

Oi+1)3 («2+1)3 Oi+no) 
(9) 

In Eq. (8), the intensities are those measured outside of 
the crystal. Sufficient data on the indices of refraction 
of BaTiOs are not available to calculate the coherence 
length from Eq. (5) so that it must be determined ex
perimentally from the data. The second-harmonic in
tensity is observed as the crystal is rotated about the 
z axis and then plotted as a function of angle. This 
rotation changes the path length of the beam in the 
crystal so that the periodic variation of the second 
harmonic is observed. These data on the angular de
pendence of Iij are then used to determine Ujy and are 
extrapolated to normal incidence to obtain relative 
values of dij. Room temperature determinations of dy 
and Uj were given earlier,6 but are also given here in 
Table II. 

The temperature variation of the nonlinear coeffici
ents is calculated from observations of the second har
monic intensity versus temperature. Figure 3 shows 
some of the data for the coefficient d$\. The oscillations 
present in the data occur due to changes in the magni
tude of hi through the temperature dependence of 
n<t—n\* Data on both the angular and temperature 
dependence of the second-harmonic intensity are re
quired to determine directly the direction in which Uj 

TABLE I. Orientations of polarizer and analyzer to determine 
nonlinear coefficients in BaTi03.ft 

Polarizer Analyzer Nonlinear coefficient 

0° 
90° 
90° 
45° 
45° 

0° 
0° 

90° 
0° 

90° 

^33 

^31 

none 
dn and dn 

* The angles are between the transmission direction of the electric field 
in the polarizing element and the z axis in the crystal. 

14 P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, 
Phys. Rev. Letters 8, 21 (1962). 

rl- a 
hi 

di5 = 35d=3 
^3i = 37±3 
<233 = 14±1 

1 . 5 7 ± 0 . 1 2 M 
2 .90±0 .14JU 
2 . 0 7 ± 0 . 0 4 M 

* The dij are relative to dzi for KDP where dn =1.00. 

changes with temperature. For example, in the case 
of ^15, it is found that dln/dd is negative when dln/dT 
is positive so that In must be increasing with tempera
ture. Similar considerations show that /31 and £33 
both decrease with temperature. These experimentally 
determined temperature dependences for Uj are in the 
direction one would predict from the limited data on 
the optical properties of the negative uniaxial BaTi03 
crystal. The published data2 show that the index of 
refraction for the ordinary ray is temperature-independ
ent while the index of refraction of the extraordinary 
ray increases with temperature and becomes equal to 
the ordinary index of refraction at the transition 
temperature. 

Since f(n) in Eq. (9) is very nearly temperature-
independent, the temperature variation of the amplitude 
of the maxima shown in Fig. 3 arises from changes in Z31 
and dzi. Since /31 is known from the room temperature 
data on the angular dependence of the second harmonic 
intensity, and each oscillation of the second harmonic 
shown in Fig. 3 represents the introduction of two 
additional coherence lengths, Z31 can be determined 
as a function of temperature. The temperature variation 
of dn can then be calculated from Eq. (8). Figure 4 
shows data obtained in the manner just described on the 
temperature variation of each of the nonlinear coeffici
ents for BaTi03. The relative values of dij were com
puted at the intensity maxima and are normalized so 

FIG. 3. Second harmonic intensity due to d3i as a function of 
temperature. The oscillations are due to changes in the indices of 
refraction with temperature. These data are used to calculate the 
temperature dependence of the nonlinear coefficient. 
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FIG. 4. The temperature dependence of the three nonlinear 
coefficients in BaTi03. All three have been normalized to 10 at 
20°C. Within the experimental uncertainties of the measurements, 
all three coefficients vary with temperature as the spontaneous 
polarization which is also plotted in the figure and normalized to 
10 at 20°C. The experimental points were calculated from the 
maxima of the second-harmonic intensity versus temperature 
data similar to that shown in Fig. 3. 

that they all equal 10 at room temperature. All three 
coefficients were measured as a function of temperature 
with a crystal 2.48 X10~2 cm thick, and in addition d3i 
was also measured with a second crystal 6.25 X10~3 cm 
thick. In the case of the coefficient du, the curve shown 
in Fig. 4 is an average of six temperature runs. Although 
not shown in Fig. 4, it has been found that the dy 
decrease to zero discontinuously at the temperature 
where the crystal goes through a first-order phase 
transition from a ferroelectric phase into a nonpiezo-
electric phase.2 The discontinuous decrease of the 
second-harmonic intensity a t the phase transition is 
consistent with the first-order phase transition. The 
temperature dependence of the spontaneous polariza
tion of BaTi0 3 (26 /xC/cm2 a t 300°K) normalized to 
10 at room temperature, is also shown in Fig. 4. Note 
that all dij vary with temperature within a few percent 
of each other and P8. The temperature dependence of 
the d's will be discussed in the next section. 

DISCUSSION 

Attempts to describe the temperature dependence of 
the di/s given in Fig. 4 in terms of Ps(T)n show that 
n=l results in the best over-all fit to the data. Empirical 
fits more "accurate" than that given by dij(T)^P8(T) 
can be obtained for dn and d33, however, these fits are 
in some cases not physically significant, e.g., dy does 
not go to zero as P» goes to zero, and furthermore com
plicated empirical fits would not seem justified at this 
stage since within the experimental uncertainties of 
the measurements dij{T) and P8(T) have the same 
temperature dependence. Therefore, the temperature 
dependence of each of the three nonlinear coefficients 
for BaTi0 3 from 20°C to about 105°C can be described 
by 

dum^atsP.lX) (10) 

in which P8(T) is the temperature-dependent spon
taneous polarization, and a# is independent of tempera
ture. The question arises as to the significance of Eq. 
(10). At first glance there may be some objection to 
trying to describe a purely optical property such as di5 

in terms of Ps which is a dc or a t most a low-frequency 
characteristic. However, there is at least one purely 
optical quantity whose temperature dependence is 
described by some power of P8. Namely, in BaTi0 3 the 
birefringence is proportional to P8

2.n Also in KDP, the 
temperature dependence of the change in birefringence 
consequent on passing through the ferroelectric phase 
transition is proportional to P8

2.16 Therefore, a t this 
point one can say that it may not be simply fortuitous 
that Eq. (10) describes the temperature dependence of 
t he dij. 

There are few other data with which one can compare 
the present results or test the general validity of Eq. 
(10). SHG studies of KDP both above and below the 
Curie temperature, 123°K, have been described in two 
recent publications.5'7 Since SHG occurs in KDP both 
above and below the Curie temperature (it is piezoelec
tric in both phases) the temperature dependence of 
SHG in KDP will be different from that of BaTi03 . 
The onset of ferroelectricity in KDP involves a phase 
change from the point symmetry D2d for the paraelectric 
form, to the point symmetry C2v for the ferroelectric 
phase. This lowering of the crystal symmetry results 
in the introduction of one nonlinear coefficient, J33, 
not present in the paraelectric phase. Therefore, the 
temperature dependence of d33 will be different from 
that of the coefficients which are also present in the high-
temperature phase. If it turns out that Eq. (10) does 
indeed have some general validity, it would be reason
able to propose that the temperature dependence of 
the nonlinear coefficients for a ferroelectric crystal which 
is piezoelectric in the paraelectric phase, such as KDP, 
is given by 

dijiT^diP+aifsiT), (U) 

where dy0 is a temperature-independent nonlinear coef
ficient characteristic of the paraelectric phase. The 
change in the nonlinear coefficient in going through the 
phase change is described by aijP8(T). For the new 
coefficient, d33, which appears when the crystals be
comes ferroelectric, d33°=0. 

Himbarger and Bjorkstam7 observe no significant 
change in the second-harmonic intensity from KDP in 
going from room temperature, through the phase transi
tion, to 80°K. The data, which were obtained with a 0° 
ruby rod and therefore not a highly polarized maser 
beam, indicate that any discontinuity in the coefficients 
at the transition temperature is small. In terms of Eq. 
(11), these data would imply that di?y>aijP8 except for 
dzz and also that d33<<C all other dij. The coefficient dn 

15 W. J. Merz, Phys. Rev. 76, 1221 (1949). D. Meyerhofer, 
Phys. Rev. 112, 413 (1963). 

16 B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944). 
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is reported by van der Ziel and Bloembergen5 to be at 
least an order of magnitude smaller than the coefficients 
in the paraelectric phase. However, in disagreement with 
the data of Himbarger and Bjorkstam, van der Ziel and 
Bloembergen find that the nonlinear coefficients which 
are present in both phases change by factors ranging 
from about 3 to 0.2 as the crystal symmetry is lowered. 
Furthermore, except for the change in these coefficients 
at the phase transition, they are temperature-independ
ent. The temperature dependence of d33 has not been 
determined. The discrepancy between the results of 
these two investigations on K D P could be due to 
effects arising from antiparallel ferroelectric domains; 
however, both groups were clearly aware of this com
plication. Discontinuities in the coefficients at the 
Curie temperature coupled with temperature-independ
ent coefficients in the ferroelectric phase as reported 
by van der Ziel and Bloemberger are not consistent with 
Eq. (11). 

Kleinman17 has used a thermodynamic approach to 
show that if SHG arises from a nondispersive, nonlossy 
process, e.g., a high-frequency electronic mechanism, 
symmetry in addition to that required by the point 
group of the crystal will appear in the tensor which 
describes the second-order polarization coefficients. 
Data6,18,19 on the Kleinman symmetry condition in a 
wide variety of crystals show that the additional 
symmetry is indeed present in the second-order polariza
tion tensors. This symmetry condition requires for 
BaTiC>3 that dis=dn> As is evident in Table I, this 
condition is satisfied at room tempeiature within 
the approximately ± 1 0 % experimental uncertainties. 
The data shown in Fig. 4 demonstrate that the Klein
man symmetry condition is also satisfied over the 
entire measured temperature range. 

A phenomenological theory2 of ferroelectricity in 
which the Helmholtz free energy is expressed as a power 
series in the polarization has been quite successful, 
especially in the case of BaTiOs (Devonshire's theory), 
in explaining much experimental ferroelectric data. 
The validity of the Kleinman symmetry condition 
mentioned above, and the more general symmetry re
lations for nonlinear optical effects in lossless media 
derived using energy considerations by Pershan20 both 
suggest that it may prove fruitful to extend the ferro
electric thermodynamic approach into the optical 

17 D. A. Kleinman, Phys. Rev. 126, 1977 (1962). 
18 A. Savage and R. C. Miller, Appl. Opt. 1, 661 (1962). 
19 R. C. Miller, Phys. Rev. 131, 95 (1963). 
20 P. S. Pershan, Phys. Rev. 130, 919 (1963). 

0 be at region. This approach would give dij(T) expressed as a 
ificients power series in Ps with the coefficients of the various 
n twi th terms determined from the free-energy expression for 
'iel and the paraelectric phase. For BaTi0 3 only odd powers 
5 which of Ps will occur in d^, while d# for K D P will involve all 
ranging powers of P8. Therefore Eq. (10) includes only the 
)wered. first term for BaTiOg, and Eq. (11) the first two terms 
ficients for KDP. However, dispersion does occur between the 
lepend- present optical frequencies and the frequencies at 
)t been which the various coefficients in the free-energy expres-
ults of sion have been determined. Therefore, coefficients for 
due to the free-energy expression at optical frequencies as well 
>mains; as clarification of the KDP second harmonic data and/or 
LS com- additional SHG measurements with other ferroelectric 
at the crystals are required before the full significance of Eqs. 
lepend- (10) and (11) can be ascertained. 
jported Another phenomenon which will be discussed briefly 
at with is the possible effect on the SHG due to a temperature 

dependence of the absorption edge in the BaTiOs 
>ach to crystals. As the crystal is warmed, the absorption edge, 
Dnlossy about 4000 A at room temperature, shifts to slightly 
tanism, longer wavelengths.21 I t has been suggested22'23 that the 
i point efficiency of SHG should increase as the second-
which harmonic wavelength approaches that of the absorption 

icients. edge; however, to date, no data supporting this sug-
>n in a gestion have been presented. In fact, data6 on SHG in 
litional CdS show that d does not change significantly when the 
)lariza- absorption edge is moved thermally through the fre-
res for quency of the second harmonic. In any event, this edge 
I, this effect would if anything give an increasing d# with 
within temperature, which is opposite to what is observed. 
ainties. Therefore, if the proximity of the edge to the second-
Klein- harmonic frequency is affecting the temperature de
er the pendence of the present data, it is being dominated by a 

still larger effect which results in d^ which decrease with 
:ity in increasing temperature. 
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