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The migration energies and atomic configurations for mono- and di-interstitials and mono- and di-
vacancies in a iron have been calculated using a classical model. About 530 atoms surrounding the defect 
were treated as individual particles, each with three degrees of freedom, while the remainder of the crystal 
was treated as an elastic continuum with atoms imbedded in it. A two-body central force was devised which 
matched the elastic moduli, was sharply repulsive at close separation, and which went to zero midway be
tween the second and third neighboring atoms. Configurations were found by choosing a starting configura
tion roughly approximating the situation under consideration and successively adjusting the value of each 
variable occurring in the energy equation so that the magnitude of the generalized force associated with it 
was zero until equilibrium was reached. The energy calculations include changes in bond energy in the dis
crete region, energy in the elastic field, and work done against cohesive forces, but neglect changes due to the 
redistribution of electrons. Calculated activation energies for motion of mono- and di-interstitials and 
mono- and di-vacancies were 0.33,0.18,0.68, and 0.66 eV, respectively, and binding energies of di-interstitials 
and di-vacancies were 1.08 and 0.20 eV, respectively. The stable interstitial was a "split" configuration in 
which two atoms were symmetrically split in a (110) direction about a vacant normal lattice site, and the 
stable di-interstitial consisted of two parallel split interstitials at nearest-neighbor lattice sites with their 
axes perpendicular to the line joining their centers. In the vacancy configuration an atom was missing from 
a normal lattice site, and the divacancy consisted of two vacancies at second-nearest-neighbor lattice sites. 

INTRODUCTION 

DETAILED and extensive lattice calculations for 
copper have been carried out for the dynamics of 

radiation damage events near the threshold energy for 
damage,1 and for the atomic configuration1"3 and the 
energy of motion2,3 of point defects. These studies have 
used a similar approach to lattice calculations: The 
forces between atoms within a crystallite of anywhere 
from 50 to 1000 atoms are treated explicitly, and 
boundary conditions are applied to the crystallite to 
simulate the remainder of the lattice. The development 
of this method of calculation may be traced to 
Huntington4 and Tewordt,5 and a number of less ex
tensive calculations using similar models have been 
performed.6 Copper was chosen for investigation 
primarily because there were sufficient experimental 
data available, because it was felt that an appropriate 
and more reliable potential was available for copper 
than for other metals, and because the face-centered 
cubic structure is amenable to calculation. 

The dynamic calculations1 have recently been ex
tended to a iron,7 and the present research was under
taken in conjunction with that investigation. Iron was 
selected as the metal of greatest interest with a body-

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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6 L. Tewordt, Phys. Rev. 109, 61 (1958). 
6 See, for example: L. A. Girifalco and V. G. Weizer, Phys. 

Chem. Solids 12, 260 (1960). K. H. Bennemann, Phys. Rev. 124, 
669 (1961). P. Hoekstra and D. R. Behrendt, Phys. Rev. 128, 560 
(1962). 

7 C. Erginsoy, G. H. Vineyard, and A. Englert, Phys. Rev. 133, 
A595 (1964). 

centered cubic structure. Pertinent experimental data 
are lacking for all body-centered cubic metals, but the 
threshold energy for radiation damage for a iron is 
known.8 

Since the present calculation is similar to that 
previously used for copper by Johnson and Brown,2 

the rationale for this method will not be repeated here. 
In the present calculation the atoms near the defect 
are treated as classical particles interacting by means of 
a potential which applies between the first and second 
neighboring atoms in the lattice and which is matched 
to the elastic moduli. 

Atomic configurations are found by choosing a 
starting configuration roughly approximating the situ
ation under consideration, and then successively ad
justing the value of each variable occurring in the 
equation for energy such that the magnitude of the 
generalized force associated with it is zero, and iterating 
this process many times. The energy in the lattice 
above that for a perfect lattice normally converges in 
the above process. Convergence is not ensured, but no 
difficulties have been encountered in this respect. The 
numerical calculations have been performed by using 
an IBM 7094 computer. 

Iron interstitial atoms, di-interstitial pairs, vacancies, 
and divacancies have been studied, and the activation 
energy for motion as well as the atomic mechanisms of 
migration, as predicted by this model, have been deter
mined for these defects. By the application of appro
priate boundary conditions, the associated activation 
volumes for motion have also been found. Some pre
liminary results have been reported previously.9 

Calculations are also being carried out for interstitial 

8 P. G. Lucasson and R. M. Walker, Phys. Rev. 127, 485 (1962). 
9 R. A. Johnson and A. C. Damask, Acta Met. 12, 443 (1964). 
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impurities in a iron and these results will be reported E—Eo, where EQ is the perfect lattice energy; 
elsewhere. 

THEORY 

Model 

In the present calculation each atom within a 
spherical crystallite containing 531 atoms was treated 
as an independent particle. In the perfect lattice an 
atom was located at the center of the crystallite and 
the surrounding 530 atoms comprised 25 shells of sym
metrically equivalent atoms. 

The atoms outside the crystallite were treated as 
though they were imbedded in an elastic continuum. 
The displacement field u used in the present calculation 
for the elastic continuum is given by 

u = - C v ( l A ) = C(r/V3), (1) 

where C is the so-called "strength" of the displacement 
field. The displacement for a given atom i is given by 

n*=C[roV(fo*)8], 

where the subscript means that the term is to be 
evaluated at the perfect lattice position. Thus, C was 
used as the variable determining the displacement of 
all atoms outside the crystallite. Equation (1) gives 
rise to a spherically symmetric displacement field, for 
which the origin was taken as the center of the crystallite. 
The choice of the displacement field given by Eq. (1) 
is discussed in detail by Johnson and Brown.2 This 
particular u is just one of an infinite number of solutions 
of the static, isotropic, elastic equation, but activation 
energies and atomic configurations near defects were 
found to be insensitive to other solutions. The effect of 
the displacement field given by Eq. (1) on the energies 
and configurations is relatively minor and this term 
could be eliminated from the calculation (i.e., the atoms 
outside the crystallite frozen at their perfect lattice 
positions) without introducing any serious changes in 
the results, but it was retained because it can be used 
to find activation volumes. 

The energy of the crystallite is given by 

£= 4 L E. **+E E <Pik+aC+bC2, (2) 

£o=lEI^+ZE^*. 

The derivation of the coefficients a and b will be given 
after the discussion of the potential. 

The force on an atom i due to an atom j is given by 

where <pi3' is the interaction potential between atoms 
i and j , the i summation is over all atoms within the 
crystallite, the j summation is over all atoms within 
the crystallite which interact with the ith atom, and 
the k summation is over all atoms outside the crystallite 
which interact with the ith atom. The term aC accounts 
for the work done against the forces required to hold 
the perfect lattice in equilibrium, and the term bC2 

accounts for the energy stored within the elastic field. 
The energy for a particular configuration is given by 

F*/= (d<pii/drii)(rii/ri1'), (3) 

where xij'—xJ'— xl (the vector from i to j). The total 
force on an atom i is then 

F*= - (dE/dr*) 

= EF*+£F<*, (4) 

where the summation indices have the same meaning 
as in Eq. (2). The generalized force on the crystallite 
arising for the elastic variable C is given by 

Fc=-(dE/dC) 

= - E E F**- (dik/dC)-a-2bC. (5) 
i k 

The process for finding energy minima and saddle 
points was as follows: Initial vector positions of each 
atom within the crystallite were chosen to approximate 
the configuration of interest. Each coordinate of each 
atom within the crystallite was varied in turn until 
the corresponding force component became zero, and 
then the value of C was adjusted so that Fc was zero. 
Usually 10 to 20 such iterations were required for the 
energy and the configuration to converge sufficiently. 
The force on a given atom and the generalized elastic 
force are very nearly linear with displacement for small 
displacements. Thus, it was possible to find the force 
for a given variable at two values of the variable and 
use linear extrapolation to the value where the force is 
zero. 

The volume expansion associated with a lattice con
figuration is easily calculated and is found to be linear 
with C, the elastic variable. Let AV be the volume 
expansion of a hypothetical sphere around the defect. 

4 F ' = / / " <zs 

-4rC. (6) 

AVr is seen to be independent of the radius of the 
sphere. For a finite lattice, Eshelby10 has shown that 
the boundary condition of zero stress at the surface 
of the lattice gives rise to an additional term in the 
volume expansion (the so-called "image force" cor
rection). This correction may be written as 

AV= AF ,{1+[4C440/(3C120+2C440)]}, (7) 
10 J. D. Eshelby, J. Appl. Phys. 25, 255 (1954). 
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where the superscript indicates that the effective 
isotropic elastic constants, as given by Leibfried,11 are 
to be used. 

Ci20=|(C1 1+4C1 2»2C44) 

Cu°=i(Cu—Ci2-{-SCu). 

Applying these to Eq. (7) leads to 

AF=AWI-
4(C1 1-C1 2)+12C44 

1SB ) -
(8) 

where B, the bulk modulus, is given by | ( C n + 2 C i 2 ) . 

Potential 

Experimental elastic-constant data were used as a 
basis for obtaining an interatomic potential for the 
present calculation. The elastic constants of a metal 
may be thought of as arising primarily from two con
tributions : long-range electronic interactions and short 
range ionic interactions. The short-range interactions 
predominate for transition metals, but corrections were 
included for the long-range terms. Analytic expressions 
for the electronic contribution to the elastic constants 
of body-centered cubic metals have been derived by 
Fuchs12 using the free-electron model. Since the long-
range contributions are small and since the free-electron 
model is expected to be a rough approximation, the 
calculated values were used only as a guide. The elastic 
moduli of iron13 and the long- and short-range contri
butions used in the present calculation, in units of 
eV/A3, are listed in Table I. 

The simplest type of potential that can be used in a 
lattice calculation is one which gives rise to central 
forces between pairs of atoms. The ranges of the 
potential must not be so large as to give rise to an 
interaction between distant pairs or the calculation 
becomes too time consuming. For the body-centered 
cubic lattice, it is natural to cut off the potential 
between the second and third nearest neighbors, since 
the ratio of distances to the nearest, second nearest, and 
third nearest neighbors is v3 : 2: 2V2, respectively. 
Thus, the first and second nearest neighbor distances 
are comparable, while the third nearest neighbors are 
considerably more distant. The body-centered cubic 

TABLE I. Elastic moduli of iron (units of eV/A3). 

C11—C12 B 

Electronic contribution 0.057 0.162 0.281 
Tonic contribution 0.600 0.600 0.800 
Experimental valuesa 0.657 0.762 1.081 

structure is not stable with just a nearest-neighbor 
central force interacting between the lattice atoms, so 
the potential cannot be cut off between the nearest 
and second nearest neighbors. Since the potential is 
meant to describe the short-range ionic interactions, 
the inclusion of only nearest and second nearest-
neighbor interactions is consistent with the division of 
the elastic-constant data into long-range and short-
range contributions. 

The conditions which a spherically symmetric 
potential <p(r) extending through second neighbors 
must fulfill to match the short-range elastic moduli are 

2 / 6 3 \ 
( C u - C i 2 ) . r = — ( - * i , + 3 * 2 " + - * 2 / ) , (9a) 

3 r 2 Vi r2 / 

2 / 2 3 \ 
(Cu)sr = — ( <Pl"+-<Pl+-<P2 ) , (9b) 

3r 2 \ fi r2 / 

* See Ref. 13. 

11 G. Leibfried, Z. Phys. 135, 23 (1953). 
12 K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936). 
13 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 122, 1714 

(1961). 

(B) 
2 / 2 2 \ 

• r = — { * ! " * l ' + * 2 " <P2f), ( 9 C ) 
3 r 2 \ n r2 ' 

where the primes indicate differentiation with respect 
to r and the subscripts 1 or 2 mean that the term is to 
be evaluated at the nearest or second nearest-neighbor 
distance, respectively. There are three equations with 
four unknowns. Figure 1 indicates a family of possible 
curves of <p'(r) which fit the conditions in Eq. (9) and 
which are zero midway between the second and third 
neighbor distances. The value and slope of <p'(r) are 
determined at ri and r2, and the value is determined at 
the cut off distance re> while the lines indicate how 
smooth curves might be fitted to these conditions. 
Curve I I , which is roughly parabolic, is the "smoothest" 
of the family of curves, and no reason is seen to prefer 
any other to it. Indeed, it would be difficult to ra
tionalize the choice of any of the other curves in 
preference to the parabolic one. Equation (9) contains 
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FIG. 1. A family of possible curves of the derivative of the 
potential, <p'(r), which fit the short-range elastic constant con
ditions and which are zero midway between the second and third 
nearest neighbor distances. 
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TABLE II . Iron potential. 

Range (A) Potential (eV) 

1.9-2.4 .-2.195976(r-3.09791O)»+2.704060r-7.436448 
2.4-3.0 -0.639230(r-3.115829)3+0.477871r-1.581570 
3.0-3.44 ~1.115035(r-3.066403)3-f0.466892r-1.547967 

three conditions and a parabola has three coefficients, 
so there is one parabola which fits the elastic moduli 
exactly. This parabola does not have a zero value 
midway between the second and third nearest-neighbor 
distances and so, another parabola was joined to it 
just past the second neighbor distance with matching 
value and slope, and zero value midway between the 
second and third neighbors. These parabolas represent 
<p'(r), the derivative of the potential, and the actual 
potential was found by integration. The constant of 
integration was determined by the condition that the 
value of the potential be zero at the cutoff distance rc. 

Gibson et al.1 and Erginsoy et alJ have shown that 
the threshold energy for radiation damage is determined 
primarily by the form of the potential at separations 
considerably less than the nearest-neighbor distance; 
distances which do not enter into the present calcu
lation. I t was felt, however, that the potential used 
here should be matched to the radiation damage 
potential for iron,7 and thus, a cubic equation was 
joined with matching value and slope to the potential 
derived above at a distance just less than the nearest-
neighbor distance, and was joined with matching value 
and slope to the dynamically determined potential at a 
distance less than any equilibrium distances expected 
from the calculation. Thus, the potential was a com
posite of the three cubic equations given in Table I I 
and is shown in Fig. 2. All distances are given in A, the 
iron lattice constant was taken as 2.86 A, and energies 
are given in eV. 

The coefficients a and b occurring in Eq. (2) may 
now be easily evaluated. From elastic theory, the 

r ( A ) 

FIG. 2. The iron-iron interaction potential, <p(r), which was 
used in the present calculation. 

pressure required to hold the crystallite in the perfect 
lattice configuration is14 

= i C ( ^ ) . r - (C44) , r - i (C U -C l2 ) . , ] . (10) 

For the elastic constants given in Table I for iron, 
P = 0 and thus, 0 = 0. The value of a may also be found 
by an explicit bond calculation in which Eq. (5) is 
evaluated for the perfect lattice with the requirement 
that F c = 0 , i.e., that the perfect lattice is in equilibrium. 
Using the iron potential given in Table I I , this calcu
lation yields 

a=0.0134 eV/A3, 

which value was used in the calculations. The dis
crepancy between this value of a and the value derived 
from elastic theory is negligible when compared with 
the magnitude of the elastic moduli. I t arises because 
there is not an exact ratio of 4:3 of nearest to second 
nearest-neighbor bonds crossing the boundary between 
the crystallite and the elastic region. 

The coefficient b was calculated from elastic theory14 

by setting the energy due to a displacement field u 
stored in the elastic field outside the crystallite equal 
to bC2. This leads to 

6= (6W/5Nr2%(Cu)sr+UCn-C1,)sr'], (11) 

where N is the number of atoms in the crystallite. The 
pressure term aC plays a somewhat more important 
role than the elastic term bC2, but for iron both terms 
could have been eliminated from the calculations with 
no serious effect upon the results. 

RESULTS 

Interstitials 

There are six interstitial configurations which must 
be equilibrium configurations because of symmetry, 
but only one of which is stable. These six configurations 
are denoted by the symbols Ih Ir • 'It, and are de
scribed as follows: I\ [(100) split interstitial, Fig. 3(a)] , 
two atoms are symmetrically split in a (100) direction 
about a vacant normal lattice site; 12 [(HO) split 
interstitial, Fig. 3(b)] , two atoms are symmetrically 
split in a (110) direction about a vacant normal lattice 
site; Iz [(111) split interstitial, or crowdion, Fig. 3(c)] , 
two atoms are symmetrically split in a (111) direction 
about a vacant normal lattice site; 14 [activated 
crowdion, Fig. 3(d)] , an atom is located at the mid
point between two normal nearest-neighbor lattice 
sites; I5 [octahedral interstitial, Fig. 3(e)], an atom is 
located at the midpoint between two normal second 
nearest-neighbor lattice sites; and IQ [tetrahedral 
interstitial, Fig. 3(f)], an atom is located at the mid
point between two nearest octahedral interstitial sites. 

14 H. B. Huntington, in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7. 
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In the three "split" cases the pairs of atoms are ap
proximately 1.5 do apart (ao=half-lattice constant). 

Configuration 72, the (110) split interstitial, is the 
minimum energy configuration and is, therefore, stable, 
in agreement with the results of Erginsoy et al.,7 while 
Is, the (111) split interstitial, is just barely a local 
minimum, i.e., metastable. The energy and volume 
expansion for the various interstitial configurations are 
given in Table III. Ij is the saddle-point configuration 
for motion of the interstitial, and is somewhat awkward 
to describe because it does not have much symmetry. 
If the initial configuration is a [110] split interstitial 
centered at (0,0,0), the next equilibrium configuration 
after one jump might be a [101] split interstitial 
centered at (1,1,1) do. The saddle point for this step is 
at (0.50, 0.69, 0.31) do. The migration sequence I^~* 
It—±Ii is shown in Fig. 4., and the activation energy 
for this process was found to be 0.33 eV. The calcu
lation also gave an activation volume for motion of 0.1 
atomic volume. 

TABLE III . Interstitial configurations (0=atomic volume). 

FIG. 3. Six iron interstitial configurations: (a) h or (100) split 
interstitial; (b) I2 or <110> split interstitials; (c) Ih (111) split 
interstitial or crowdion; (d) 74 or activated crowdion; (e) h or 
octahedral interstitial; and (f) J6 or tetrahedral interstitial. 

The crowdion configuration 73 is metastable, but by 
less than 0.01 eV, and the crowdion migration sequence 
Iz—tli—^Iz has an activation energy for motion of 
0.04 eV. The activation energy for rotation of a split 
interstitial, holding the center fixed, was found to be 
0.33 eV, the same as the motion energy. 

In order to make a complete study of interstitials it 
was necessary to check for the possible existence of other 
equilibrium configurations. In a manner similar to that 
used for copper2 it was found to be possible to define a 
configuration by three coordinates. The iron calculations 
show that no two atoms ever approach each other 
closer than 1.5 #0, and that there is always one atom 
within a radius of 0.75 aQ from each normal lattice site. 
Thus, there is always one atom outside a bcc lattice of 
spheres of radius 0.75 a0, which atom is defined as the 
interstitial. If the remaining atoms are at equilibrium 
positions consistent with the interstitial position, the 

Configuration 

/ i 

h 
h 
U 
h 
h 
h 

Energy above h (eV) 

1.29 

0.32 
0.36 
1.12 
0.85 
0.33 

AF(0) 

1.7 
1.6 
1.7 
1.7 
1.4 
1.5 
1.7 

crystal energy may be considered as a function of just 
the interstitial coordinates. If two atoms are on opposite 
ends of a sphere diameter, each is considered half in 
and half out of the sphere. These are the "split" con
figurations, and if one atom of a split pair enters the 
sphere, the other moves away from the sphere and 
becomes the interstitial. The volume available to the 
interstitial that must be studied is greatly reduced by 
symmetry. The volume in which the interstitial co
ordinates have no symmetrically equivalent position is 
1/48 atomic volume, and only about half of this volume 
is outside the spheres, so, in effect, only about 0.01 
atomic volumes must be investigated. 

No further equilibrium configurations of interest 
were found. The general pattern of the interstitial 
energy contours was as follows: low energy pockets at 
12 sites; a plateau region containing 73 ,1^ and I? ; and 
high energies elsewhere. The plateau region is roughly 
an oblate spheroid with its axis along the line joining 
two nearest neighbors. It is centered at an I± site, has 
two 1% sites on its surface where the axis pierces the 
surface and has six I7 sites on its outer rim. Not only 
are the configurations within this region at about the 
same energy, but there are no steep contours between 
them. 

Di-Interstitials 

There are many possible di-interstitial configurations 
and the calculations showed that many of them are 
metastable. Di-interstitial configurations consist of two 
split-single interstitials in reasonably close proximity 
to each other: No cases were found which resulted in 
more complex configurations. The most stable di-
interstitial is shown in Fig. 5(a), and has two split 
interstitials parallel to each other at nearest-neighbor 
lattice sites, with their axes perpendicular to the line 

FIG. 4. The iron interstitial migration process. Configurations 
(a) and (c) are both 72 configurations, and (b) is Ii> the saddle 
point configuration. 
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FIG. 5. The iron di-interstitial migration process. Configurations 
(a) and (c) are both stable di-interstitial configurations, and (b) 
is the intermediate step between (a) and (c). 

joining their centers. The binding energy for this con
figuration relative to two separated interstitials was 
1.08 eV and the associated volume relaxation was 0.3 
atomic volumes. 

The migration of di-interstitials is by a stepping 
process in which the two split interstitials partially 
dissociate. If the initial di-interstitial configuration is 
an interstitial split in the [110] direction at (0,0,0) a0 

and an interstitial split in the [110] direction at 
(1,1,1) #o, the intermediate configuration might be an 
interstitial split in the [110] direction at (0,0,0) #o 
and an interstitial split in the [011] direction at 
(2,0,2) #o, and the final configuration would then be 
an interstitial split in the [011] direction at (1,1,1) #o 
and an interstitial split in the [011] direction at 
(2,0,2) ao. This two step process is shown in Fig. 5, 
and it should be noted that the interstitial moving in 
each step follows a single interstitial migration path. 
The di-interstitial motion energy was 0.18 eV and the 
activation volume for motion was 0.3 atomic volumes. 

The separation distance at which two split inter
stitials are bound as a di-interstitial did not have a 
well defined cutoff, but was calculated to be about 
4.4 ao. This is an average since the value depends upon 
the direction between the interstitials as well as their 
individual orientations. This range corresponds to a 
region of roughly 88 atomic volumes in which split 
interstitials have positive binding energy. 

Vacancies and Di-Vacancies 

The vacancy problem was straightforward compared 
to the interstitial calculations. The stable vacancy was 
the configuration in which an atom was missing from 
a normal lattice site, and the migration process con
sisted of a nearest-neighbor atom to the vacancy 
jumping from its normal lattice site to the vacancy 
site, thus filling in the vacancy and leaving a new 
vacancy behind. This process may also be thought of 
as the vacancy migrating by jumping to a nearest-
neighboring lattice site. The migration energy was 
found to be 0.68 eV and the activation volume for 
motion was negligible. 

The potential barrier for vacancy motion had a slight 
depression at the midpoint, i.e., the symmetric con
figuration at the midpoint of the process was not the 

saddle point but a local minimum. A single migration 
jump, therefore, had two saddle points as is shown in 
Fig. 6, where the energy of the configuration is plotted 
as a function of the position of the migrating atom. 
The existence of this metastable configuration should 
have little physical significance, however, since it is 
metastable by only about 0.04 eV. 

A di-vacancy consists of two single vacancies in close 
proximity to each other. The most stable di-vacancy 
was that in which two vacancies were at second nearest-
neighboring lattice sites, and the binding energy was 
0.20 eV. The binding volume, or volume decrease of 
the lattice upon formation of a di-vacancy, was 0.1 
atomic volumes. Vacancies at nearest neighboring sites 
were bound by 0.13 eV and vacancies at fourth nearest-
neighboring sites were bound by 0.05 eV. No other pairs 
had an appreciable binding energy. 

Di-vacancy migration was by a stepping process, in 
each step of which one of the vacancies of a di-vacancy 
pair moved as a single vacancy. Two possible migration 
processes were important; where the configuration 
changes from second nearest neighbor to nearest 
neighbor and back to second nearest neighbor, and from 
second to third and back to second nearest neighbor. 
The energy barrier for half of each of these migration 
paths is shown in Fig. 7, where the solid line is the 
energy barrier for migration via the third nearest-
neighbor configuration and the dashed line is the energy 
barrier for migration via the nearest-neighbor con
figuration. The motion energies are 0.66 and 0.78 eV, 
respectively, and the activation volumes are negligible. 
These curves are seen to bear a strong resemblance to 
the curve in Fig. 6, so that a divacancy step may be 
thought of as a perturbed single vacancy step. 

Motion by the third nearest neighbor mechanism 
always leaves the orientation of the divacancy un-
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FIG. 6. The vacancy migration energy barrier. The energy of 
the configuration is shown as a function of the position of the 
jumping atom, as the vacancy migrates from (0,0,0) at the left 
to (1,1,1) at the right. The curve does not extend to (1,1,1) and 
(0,0,0) because the atom relaxes towards the vacancy. 
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altered, while the orientation may be changed by a 
nearest neighbor process. The nearest-neighbor con
figuration also may act as a trap, since 0.71 eV are 
required for the nearest neighbor to second nearest-
neighbor divacancy transition. 

A summary of these results is given in Table IV. 
Interstitial motion is not by the same mechanism as 
interstitial reorientation, although the energy and 
volume are the same. The corresponding di-interstitial 
processes are the same. Vacancies have the symmetry 
of the lattice and therefore do not have any reorien
tation process associated with them. 

TABLE IV. Summary of results (energy in eV, 
volume in atomic volumes). 

Interstitial 
Crowdion 
Di-interstitial 
Vacancy 
Di-interstitial 
Interstitial 
Di-interstitial 
Divacancy 

Motion 
energy 

0.33 
0.04 
0.18 
0.68 
0.66 
0.33 
0.18 
0.78 

Motion 
volume 

0.1 
0.0 
0.3 
0.0 
0.0 
0.1 1 
0.3 [ 
0.0 J 

Binding Binding 
energy volume 

1.08 0.3 

0.20 0.1 

Reorientation 

DISCUSSION 

Results 

Very little experimental data are available per
taining to the results reported in the present paper, 
but some comparisons may be made for interstitial 
migration. Lucasson and Walker8 have obtained 
isochronal resistivity annealing curves for iron and 
copper after irradiation with electrons at energies 
slightly above threshold. They also found that the 
stage I iron and copper annealing curves can be super
posed if the iron temperature scale is reduced by a 
factor of 2.5.15 Corbett, Smith, and Walker16 have 
found an energy value of 0.12 eV for annealing of stages 
Id and Ie in copper and have ascribed this annealing to 
interstitial migration. Assuming that the corresponding 
annealing stages in iron are also due to interstitial 
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FIG. 7. The divacancy migration energy barrier. The energy 
of the configuration is plotted as a function of a configuration 
coordinate (similar to the coordinate of the jumping atom) as 
the divacancy transforms from a second nearest neighbor con
figuration on the left to a third nearest neighbor configuration 
along the solid line and a first nearest-neighbor configuration 
along the dashed line. Both curves have a mirror image repeat 
to the right of the drawn curves by which the migration process 
is completed. 

migration, and assuming that the pre-exponential 
factor associated with the migration processes of the 
iron and copper interstitials are roughly the same, then 
the iron interstitial migration energy is 0.30 eV. The 
calculated value was 0.33 eV, in very good agreement. 

In an internal fraction experiment by Wagenblast 
and Damask,17 which searched for a relaxation asso
ciated with the interstitial in irradiated iron, the 
irradiation was performed at 140°K and the relaxation 
was looked for at higher temperatures, with negative 
results. Using the interpretation that interstitials 
anneal in stage I, the work of Lucasson and Walker 
just discussed shows that the iron interstitial anneals 
out of iron in ten minutes at 120°K. Thus, this inter
pretation is consistent with the Wagenblast and 
Damask findings. 

Another interpretation of annealing in copper is that 
crowdions migrate in stages Id and Ie and interstitials 
migrate in stage III.18 The present calculations of 
crowdion stability and motion energy do not support 
this interpretation for iron. The Wagenblast and 
Damask experiment also does not support this inter
pretation since they found no indication of an oriented 
defect over a wide temperature range (140° to 385°K) 
in iron. 

No direct experimental evidence is available for the 
motion energy of vacancies in iron. The activation 
energy for self-diffusion in a iron is 2.6 eV,19 which is 
the sum of formation and motion energies. Theoretical 
estimates by Brooks20 and by Mehl, Swanson, and 
Pound21 indicate that the vacancy formation energy is 
considerably larger than the vacancy motion energy 
for bcc crystals, so that the motion energy of 0.68 eV 
reported in the present paper is not unreasonable com
pared to the self-diffusion energy. However, Damask 

» P. G. Lucasson and R. M. Walker, Phys. Rev. 127, 1130 
(1962). 

16 J. W. Corbett, R. B. Smith, and R. M. Walker, Phys. Rev. 
114, 1460 (1959). 

17 H. Wagenblast and A. C. Damask, Acta Met. 10, 333 (1962). 
18 C. J. Meechan, A. Sosin, and J. A. Brinkman, Phys. Rev. 

120, 411 (1960). A. Seeger, in Proceedings of the Symposium on 
Radiation Damage in Solids (International Atomic Energy Agency, 
Vienna, 1962), Vol. 1, p. 101. 

19 F. S. Buffington, I. D. Bakalar, and M. Cohen, J. Metals 4, 
859 (1952). 

20 H. Brooks, in Impurities and Imperfections (American Society 
for Metals, Cleveland, 1955), p. 1. 

2i R. F. Mehl, M. Swanson, and G. M. Pound, Acta Met. 9, 
256 (1961). 



A1336 R. A. JOHNSON 

et al.,22 in an extensive study of carbon in a iron did 
not find a vacancy annealing stage at temperatures 
which would correspond to a motion energy of 0.68 eV, 
and the model which they proposed to explain their 
results assumes that vacancies move at a temperature 
corresponding to a motion energy of greater than about 
1.0 eV. 

The present results indicate that none of the defects 
studied are amenable to internal friction studies. 
Vacancies have the symmetry of the lattice and are, 
therefore, eliminated from consideration. The energy 
to reorient di-vacancies is greater than their motion 
energy, and so they will anneal before being able to 
reorient. Both interstitials and di-interstitials require 
the same energy to migrate as to reorient (migration 
and reorientation are the same process for di-inter
stitials), and thus, internal friction experiments would 
be very difficult to perform as the concentration of 
defects would be decreasing at a temperature where 
internal friction would be large. This does not take into 
account the possibility that the relaxation strength 
associated with these defects might be sufficiently 
small so that internal friction could not be measured 
at experimentally obtainable concentrations. A detailed 
calculation of this effect was made for copper23 for an 
oriented interstitial with the result that even if the 
defect were present in heavy concentrations, it would 
be very difficult to detect by internal friction. 

Model 

The results of the present calculations are considered 
to accurately represent the model: Increasing the size 
of the region in which the atoms are allowed full 
freedom to relax, using greater precision within the 
calculation, using a different relaxation scheme, etc., 

22 H. Wagenblast and A. C. Damask, Phys. Chem. Solids 23, 
22 (1962). F. E. Fujita and A. C. Damask, Acta Met. 12, 331 
(1964). R. A. Arndt and A. C. Damask, Acta Met. 12, 341 
(1964). H. Wagenblast, F. E. Fujita, and A. C. Damask, Acta 
Met. 12, 347 (1964). 

23 H. B. Huntington and R. A. Johnson, Acta Met. 10, 281 
(1962). 

would not sensibly affect the results. The important 
question is whether or not the model satisfactorily 
represents the real crystal so that the results are 
meaningful. 

This model completely neglects any contribution 
from the so-called electron redistribution energy, i.e., 
it does not account for the drastic alteration of the 
electron wave functions near the defect. The author 
knows of no method currently available to obtain any 
sensible estimate of how this term enters into the 
differences in energy between various configurations. 
It is felt, however, that in all probability the calculated 
vacancy migration energy would be increased. It is 
also felt that the configurations are determined pri
marily by the close repulsions, so that the electron 
redistribution would have very little affect upon the 
configurations. 

The energy in this model is not a sensitive function 
of the volume, and thus, the volume changes for the 
various configurations should only be considered as a 
rough approximation. 

The choice of a potential is a critical part of any 
calculation, and it is felt that the potential used in the 
present calculation is as good an approximation as may 
be made. It matches the experimental elastic moduli 
and is fitted to a number of other not unreasonable 
criteria. A major objection might be that it is cut off 
after the second nearest neighbor. Aside from the fact 
that increasing the range of the potential would greatly 
increase the complexity of the calculation, it is desirable 
to test the simplest reasonable model first and only 
incorporate more complex features where necessary. 
The assumption in using a short range potential is that 
longer range effects average out to give rise to the 
volume-dependent binding. 
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