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A detailed calculation of the energy bands of germanium and silicon has been performed by use of the 
pseudopotential method. The first three potential coefficients have been determined empirically, and all 
higher ones set equal to zero. This potential was used to compute the energy eigenvalues at ^ 5 0 000 points 
throughout the Brillouin zone. By use of this sample, we calculated the imaginary part of the dielectric 
constant in the optical and near ultraviolet where direct transitions between the valence and low-lying 
conduction bands dominate the response. Photoelectric yield curves were obtained for comparison with re
cent experiments. In all cases agreement of theory and experiment was reasonable. Energy contours were 
constructed in several of the principal symmetry planes. These were used to explain the structure in the 
optical properties of Ge and Si in terms of transitions near certain important critical points. Effective 
masses and the static dielectric constant were also computed. 

I. INTRODUCTION 

RECENTLY, very precise reflectivity measurements 
have been taken on1 Ge and2 Si in the optical and 

near ultraviolet region of the electromagnetic spectrum. 
When the reflectance, \r(<a)\2, is plotted as a function of 
o), the resulting curves show detailed structure. The 
energies involved (1.5 eV<#a><10 eV) are such that 
direct interband transitions between states lying near to 
the forbidden gap are expected to dominate the die
lectric properties of these materials. 

Before attempting an explanation of the observed 
data, it is necessary to know the behavior of the 
valence and low-lying conduction bands throughout the 
Brillouin zone. Prior theoretical work on the energy 
bands of3"5 Ge and6"9 Si has been confined to calcula
tions at points and along lines of particularly high 
symmetry. This is inadequate for our purposes; we find 
it necessary to extend the energy-band calculations so as 
to sample all of the zone. 

The previous energy-band work will, however, be 
used as a starting point. First of all, we shall employ a 
simplified version of the orthogonalized plane-wave 
method (OPW method) utilized in Refs. 3-9. Secondly, 
we shall make use of the eigenvalues at symmetry points 
in order to deduce the numerical values of the pseudo-
potential matrix elements used as computational pa
rameters in this simplified approach (see Sec. I l l of this 
paper). A reasonably precise knowledge of these eigen-
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values (or rather the differences between them) is 
necessary to undertake the present computations. 

For our purposes the energy levels can be put into two 
categories: levels which are sensitive to small changes in 
the crystal potential and those which are not. The 
former have, in the past, been computed ab initio with 
an uncertainty of order 3 eV,10 while the latter were ob
tained to within ~ | eV. The principal features (peaks 
and edges) of the optical curves are separated by less 
than 1 eV. It is necessary, therefore, to know the levels 
with a considerably greater accuracy than the current 
a priori calculations permit. Fortunately, a good deal of 
very fine experimental information is available which, 
when combined with the results of band theory, allows 
a sharp definition of both the sensitive and insensitive 
levels. Ehrenreich, Philipp, and Phillips11 have given a 
good account of most of the main energy gaps at the 
symmetry points. Table I is largely taken from their 
work. 

TABLE I. Some of the major energy gaps at the symmetry points 
r=(2*-/a)(0,0,0), £=(27r/<z)Q,ii), and X = (2ir/a)( 1,0,0). The 
labeling of states is after Bouckaert, Smoluchowski, and Wigner.a 

The experimental reference list is by no means exhaustive. Fur
thermore, energy-band calculations, not included in the table, 
played an important role in making the identifications. 

Energy Energy 
(eV) (eV) 

Gap Ge Si 

LV-*U 2.1 3.7 
2.3 

U* -> U 5.9 5.5 
6.1 

r25 ' -> FY 0.8 ~3.0 

1*25' —* Ti6 3.1 3.5 

X4 -> Xi 4.5 4.5 

a L. P. Bouckaert, R. Smoluchowski, 
(1936). 

Refs. 
Ge 

1, 13, 16 

1 

17,20 

19, 22 

1 

and E. Wigner, 

Refs. 
Si 

17, 18, 19 

2 

17,21 

2, 21 

2 

Phys. Rev. 50, 58 

10 F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963). 
11 H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. 

Letters 8, 59 (1962). 

A1337 



A1338 D A V I D B R U S T 

I t should be emphasized at this point that Ehrenreich 
et al. have deduced some of the energy gaps of Table I 
with the aid of several natural assumptions. They as
sume, for example, that the main features of the optical 
curves can be associated with direct transitions between 
levels at symmetry points. One of the primary purposes 
of the present work is to attempt a justification of such 
assumptions and working hypotheses. In order to illus
trate further, Ehrenreich et al.11 make use of certain 
characteristic properties of the reflectivity, as discussed 
by Phillips,12 in order to make their assignments in a 
definite way. For example, the edge near 2.2 eV in Ge 
has been resolved into a doublet13 (see Table I) . This 
corresponds to the expected 0.2 eV spin-orbit splitting 
of the Lz' level14 provided the optical edge is taken as 
arising from transitions near Lv —•» L±. This assignment 
was considered as reasonable since both band theory and 
g-factor information15,16 indicate an Z3/ —> L± splitting 
- 2 e V . 

With the L%> —> L\ gap determined in Ge it was 
possible to deduce it in Si.12 This was done by ex
trapolating the indirect gap (r25' —> L\) in Ge-rich 
Ge-Si alloys17,18 to its value in pure Si, and also by 
extrapolating the Ly —> L\ optical edge19 to give a value 
for the Lv —> Lx splitting in Si. 

The T25' —» IV splitting was found in Ge by observing 
the threshold for direct optical transitions.17'20 I ts value 
could be deduced in Si by the extrapolation of alloy 
data17 and also (see Ref. 12) by cyclotron resonance 
measurements in strained ^-type Si.21 The last-men
tioned experiments as well as optical reflectivity were 
used to find a value for F25' —» Tig/ in Si. Again cyclotron 
resonance22 and extrapolation techniques19 were used 
to get r 2 5 ' - > T i 5 in Ge.11'12 Finally, X 4 - > X i and 
Lv —> Lz were determined by comparing band-theory 
results (these two gaps are both insensitive to the 
potential) with reflectivity data. 

To sum up, the energy levels of Table I provide a 
model on the basis of which we can begin our detailed 
calculations. Hopefully we will be able to explain the 
frequency dependence of the optical properties. This 
will enable us to establish the validity of Table I and 
provide us with a much broader understanding of the 
band structure than has heretofore been possible. 
Furthermore, the present work in the course of checking 
the level assignments of Ehrenreich et al.11 and Phillips12 

will confirm or redefine their diagnostic techniques. 
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16 L. Roth and B. Lax, Phys. Rev. Letters 3, 217 (1959). 
16 G. Feher, D. K. Wilson, and E. A. Gere, Phys. Rev. Letters 3, 

25 (1959). 
17 R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. 109, 

695 (1958). 
18 E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954). 
19 J. Tauc and A. Abraham, Phys. Rev. Letters 5, 253 (1960). 
20 S. Zwerdling and B. Lax, Phys. Rev. 106, 51 (1956). 
21 J. C. Hensel and G. Feher, Phys. Rev. Letters 5, 307 (1960). 
22 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368. 

(1955). 

Spin-orbit effects will not be accounted for in this 
paper. They are observable in Ge, as mentioned, but are 
< 10% of the band separations. These effects, if desired, 
can be treated as a perturbation, and their influence on 
the line shape determined. 

II. OPTICAL PROPERTIES 

A. General Discussion 

If €2 (to) is used to denote the imaginary part of the 
complex dielectric constant, we have from Eq. (9) of 
Ref. 23 

4TTV# r 2 
€2(w) = £ 

3m2u>2 « , S J B . Z . (27T)3 

X6(^ , s ( k ) -co ) | ^ i S ( k ) | 2 ^ . (1) 

The subscripts n and s refer to filled and unfilled bands, 
respectively,andcow>s(k) = (E8(k) — En(k))/h. \Mn>s(k)\2 

= | (Uk,n\ V | Z7k,s) |
2, where Uk,n and Uk,s represent the 

periodic parts of Bloch functions. Expression (1) neg
lects lifetime broadening effects such as those resulting 
from phonon and impurity scattering. If we ignore for a 
moment the matrix element in the integral (and the 
factor 4cT2e2h/3m2oo2) then the contribution from a given 
pair of bands to €2(a>) is simply 

/». . («) = / 5(con,.(k)-«)(PA. (2) 
J B . Z . (2TT)3 

The quantity /n,«(w) is the joint density of states for the 
two bands indexed by n and s. /w,8(co)Aco is equal to the 
number of pairs of states in bands n and s with 
h(co-Aa>/2)^(Es(k)-En(k))<h(a>+Ao>/2). Later in 
our discussion of momentum matrix elements we shall 
see that |Afn , s(k)|2 can, to a good approximation, be 
treated as a constant. This implies that a knowledge of 
the relevant Jn,s(u) is all that one requires to under
stand the properties of €2(00). 

In the Introduction it was stated that the reflectivity 
data were used as an aid in establishing the model term 
scheme of Table I. Actually the reflectance is a function 
of both 61 (OJ) and €2(0)). However, by examining the 
figures of Refs. 1 and 2 and comparing them with €2(o>) 
for Ge and Si presented in Sec. VIII of this paper one 
sees that R (00)^62(0?). All of the principal features in 
j r(co) [2 are reproduced at the same energies in e2(a>). 

B. Theory of Optical Structure 

At this point it is clear that to understand e2(co) (we 
shall direct our attention to the imaginary part of the 
dielectric constant hereafter), we must carefully ex
amine the functions Jn,s(co). Expression (2) can be 

23 M. H. Cohen, Phil. Mag. 3, 762 (1958). 
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transformed to 

2 r 
/n . . («0)= / <fe/|VkCOB|!(k)| , (3) 

'2xWM, (2*)3 
wn, «(k)=w 

where the integral extends over the surface defined by 
ojn,s(k) = co and ds is an infinitesimal element of area on 
that surface. The points k0 where | VkCOn.̂ k^k-ko—O 
are significant and are called critical points (c.p.). 
Van Hove24 wrote the following expansion, valid about a 
normal c.p., 

wn,s(k) = coc+ ]T a«eaAk«2, (4) 

where € a = ± l , Ak=k—ko. Here coc=con,s(ko), and a 
coordinate transformation which preserves dzk has been 
made so as to get the functional dependence expressed 
by (4). He found that the critical points produce 
analytic singularities in what we call /n,s(co). The 
mathematical behavior of /n,s(co) near the "Van Hove" 
singularities is described by the following list: 

Mo € i = € 2 = € 3 = l , 

[C+0(o>—coc) when co<coc 
/ » . . ( « ) = (5) 

(C+Afa—o)c)
1/2+0(o)—o)c) when co>coc, 

Ml € i = € 2 = ~ € 3 = 1 , 

\C—A(a)c—co)1/2+0(coc—co) when co<coc 

/ » . . ( « ) = (6) 
lC+0(co—o;c) when OJ>COC, 

M 2 € 1 = € 2 = — € 3 = — 1 , 

i C-\-0(o)—o)c) when co<coc 
(7) 

C—A(o)—coc)
ll2+0(o)—o)c) when co>coc, 

I f 3 €1=62=63= — 1 , 

iC+A(a)c-a)yi2+0(a>-a)c) when co<wc 

/ » . . ( « ) = (8) 
lC+0(co—coc) when w>coc. 

In each of these expressions C and 4̂ represent con
stants. The symbol Mo designates a minimum in 
<o»,,(k), M3 denotes a maximum, and Mi and M2 refer 
to saddle points. In Figs. 1 (a)- l (d) we plot the behavior 
of Jn,s(o)) near the Van Hove singularities. One can 
already see the way in which a critical point can produce 
edges in the joint density of states and hence in €2(0;). In 
Fig. 1(e) we show the possibility of two nearly de
generate critical points of the Mi and M% type producing 
a peak-like structure in /w,s(co). Later work by Phillips25 

showed that the periodicity of the energy bands requires 
the existence of a minimal set of critical points. From 
group theoretical arguments he demonstrated that 

24 L. Van Hove, Phys. Rev. 89, 1189 (1953). 
25 J. C. Phillips, Phys. Rev. 104, 1263 (1956). 

FIG. 1. Joint den
sity of states near a 
normal critical point 
(a) Mo, (b) Mh (c) 
M2, (d) Mit (e) 
a nearly degenerate 
pair Mi and M2. It 
should be noted that 
the slope of the linear 
portion is not deter
mined by the nature 
of the critical point. 

Jns(CU) 

(b) 

Jn$M 

(LlC 

t 
S(GJ) 

(c) 

M 

J\ 
.M, 

V 
(d) 

(e) 

critical points occur at symmetry points. In the simplest 
cases (e.g., lattice vibration spectra), almost all the 
critical points may occur at symmetry points. In the 
absence of detailed information about E(k) throughout 
the Brillouin zone, the empirical analysis of the previous 
section was confined to symmetry points. For the com
plicated band structures of Ge and Si this simplification 
(which has also been made in order to interpret the 
ultraviolet spectra of the noble metals) is certainly not 
valid. Moreover, the constants in (5)-(8) which indicate 
the strength of a given edge can only be obtained from 
values of JE(k) throughout the Brillouin zone. 

C. Band-Structure Approach to Optical Properties 

We now wish to do a band-structure calculation with 
the view of deriving €2(0;). A description of the logical 
framework to be employed is the following. First a 
method of computing the bands will be proposed. The 
method should have a small number of disposable 
parameters. In order to determine these parameters, the 
term scheme discussed in Sec. I will be used as a 
starting point. Having set the parameters, we shall then 
proceed to find the bands throughout the Brillouin zone. 
From the band structure €2(0?) can be computed. If the 
dielectric function agrees with experiment, we shall 
conclude that both the model of Sec. I and the computed 
band structure are correct. Should there be substantial 
disagreement then a consistent alternate to the starting 
term scheme will be tried, and a corrected band struc
ture found. A schematic diagram of this is shown in 
Fig. 2. 

Since the optical structure is associated with critical 
points, we must find them in the computed bands. Of 
course, we know that they will appear at the symmetry 
points, and they will have energies which correspond to 



A1340 D A V I D B R U S T 

Term Scheme 

| Disposable Parameters 

Analyze 
Difficulties 

Band Calculation 

Disagreement Compare € (cu) in 

Theory with Experiment 

Agreement 
Analysis of 

Computed Bands 

FIG. 2. Logical flow diagram. 

optical edges. We cannot be sure in advance that they 
will be of the right analytical class or will contribute 
edges of the correct strength. Furthermore, there may 
be critical points away from the principal symmetry 
points, in which case they will have to be located. 

III. PSEUDOPOTENTIAL METHOD 

We mentioned earlier that for certain levels the OPW 
technique is only accurate to ^ 3 eV.10 Furthermore, the 
unwieldy nature of the orthogonalization terms makes 
it unsuitable for extensive calculations. These con
siderations imply that the OPW method is unsuited for 
our needs. 

Research workers using the OPW method noticed 
that the effect of orthogonalizing the plane waves to 
core orbitals was to greatly diminish the magnitude of 
the off-diagonal matrix elements in the secular equation. 
This led Phillips and Kleinman26 to write the wave 
functions in the form 

^».k(r) = 0 » i k ( r ) - Z « < ^ k ( r ) | 0 » i k ( r ) ^ i k ( r ) . (9) 

Here 6t,k is the core function constructed from the tih 
core orbital, and <£n,k is a smooth wave function 
satisfying the wave equation 

(P2/2m+Vc+VR)<t>n,k=En(k)<j>n>k, (10) 

where Vc is the crystal potential. The operator VR has 
the character of a repulsive potential. Cohen and 
Heine27 show that <f>n,k and VR are not unique. By a 
variational argument they demonstrated that the latter 
can be chosen so as to minimize 

Veu=Vc+VRj (11) 

in which case VR has the form 

VR<t)n,k— ~^lLt(0t,k| Vc<j>n,k)0t,k- (12) 
26 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959). 
27 M. H. Cohen and V, Heine, Phys, Rev, 122? 1821 (1961); also, 

see Ref. 3Q, 

From (11) it is apparent that if the set of core orbitals 
were complete, perfect cancellation of (V^n.k) by 
(VR(j>n,k) would result (the bands would then be com
pletely free electron). The core orbitals form a sur
prisingly good basis set in the core region. This implies 
that the Fourier coefficients of Felf

G*= Vc
Gi+ VR

Gi are 
small for large values of G,= (a/27r)K; where K* is a 
reciprocal lattice vector.28 This suggests introducing a 
pseudopotential with Fourier coefficients Vp

Gio^V'eft
Gi 

which are zero for | G; | greater than the first two or 
three values.29 A pseudopotential of this form was first 
introduced by Phillips.30 He, however, chose V p

Gi 

= const for large G*. Bassani and Celli,31 on the other 
hand, took Vp

Gi=0 for G* such that |G 1 ( 2 >11 which 
materially improved the convergence in agreement with 
the variational arguments of Cohen and Heine. 

In this paper we shall adopt a pseudopotential having 
the form used by Bassani and Celli. For both Ge and Si 
this will be of the form 

VP=Y, 7 p
G ' e x p [ ( 2 * i / a ) G r r ] , 

i 

^ P G ^ ^ p ( 3 ) c o s r ( G i , 1 + G y ) 2 + G i ) 3 ) - l if l G y | 2 = 3 , 

= F p (8 ) cos [ (G ,M+G y , 2 +G y i 3 ) - l if lGy |2 = 8, 

= F p ( l l ) c o s [ ( G y , i + G i i 2 + G y t 8 ) - | if [ G y | a = l l , 

- 0 if | G y | 2 > l l . 

Here Gy.i is the projection of Gy on the (1,0,0) direction 
(direction normal to a square face). There are then three 
adjustable parameters Vp(3), Vp($), and F p ( l l ) . We 
should point out that Veti is both / and k dependent. 
That is, it is different depending on whether <j>n,k has s 
or p symmetry, and also varies throughout the Brillouin 
zone. This nonlocal character is a consequence of the 
OPW method. We notice, however, that Vp is a local 
(function of r only) potential. This simplifying feature 
cannot be regarded as deleterious. The energy eigen
values which result from using Vp are generally within 
2 eV of those deriving from the use of Feff. The latter, 
one remembers, gives energies certain to only 3 eV 
furthermore, Vp will be adjusted at the outset to agree 
with what we believe to be a large number of symmetry 
term values. We would then expect Vp to give eigen
values at other points of the zone with an error much 

28 In these units the center of the hexagonal face is located at 
(hhi) a n ( l t n e shortest nonzero G; has length =v3. 

29 We are here distinguishing between Vea which is uniquely 
defined by (7) and (8) and Vv which is an approximation to Vett-
Inserting Vett into (6) gives exactly the same results as the OPW 
method from which it is derived, whereas Vp does not. 

so J. C. Phillips, Phys. Rev. 112, 685 (1958). 
» F. Bassani and V. Celli, Phys. Chem. Solids 20, 64 (1961). 
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less than the OPW method. The pseudopotential in a 
sense circumvents the task of finding a crystal potential 
replete with a correct exchange interaction, Coulomb 
interaction, etc. It fits, instead, the most important 
terms in the potential to experiment. 

One more point should be made. Bassani and Celli do 
distinguish between 5- and p-likz states by allowing 
Vs(0) to differ from Vp(0). In this way they can raise 
s-like states with respect to p-like states. We have found 
that this is not necessary to get an adequate fit to the 
experimental interpretation of the levels. 

IV. DIAGONALIZATION PROCEDURE 

We seek to determine the energy eigenvalues of our 
model wave equation 

Hv(j)nt\i~ En,k<t>n,k, (13) 

where Hp= (—h2/2m)V2+Vp. To do this we must in 
principle solve the infinite secular equation 

! # , ' • > - £ 8 U | = 0 . (14) 

Here Hp^={^+Ki\Hp\^^ and fa^e***™'*. 
That is, we use a plane-wave representation in which to 
expand the #n,k. The lowest four levels will represent 
valence states and the higher one's conduction states 
(one remembers that the core levels have been elimi
nated from the problem by the orthogonalization pro
cedure). Only the low-lying conduction levels are of 
interest so that we shall ask for only the first eight 
eigenvalues of Hp (four valence and four conduction). 

Assuming that the <£k+K; have been ordered so that for 
i>jy |k+K«| 2 ^ |k+K,-|2, we may truncate the secular 
Eq. (14) so as to include contributions from only those 
plane waves for which i, j^N (N some integer). We 
expect the low-lying levels to converge to their final 
values as N is made large. If we take as our convergence 
criterion that | £ n , k * ^ ° - £ n , k ^ | <0.1 eV then No 
would have to be ~50. The time required by the IBM 
704 to diagonalize a 50X50 matrix at a large number of 
points was judged as too great to make this approach 
feasible. By augmenting the calculation with perturba
tion theory it is possible, however, to reduce greatly the 
computing time. 

A form of perturbation theory, e.g., Lowdin32 was 
used instead of the Rayleigh-Schrodinger method. We 
seek the eigenvalues of the secular equation 

\Up
n>m- •E8ntm\ — 0 , 

Up
n*m=Hp

n*m+ E 
r Hn

n^Hv^
m 

y=N+l E—Hp™ 

(15) 

(16) 

with n, m^N and y>N but ^ T where N and V are 
integers. The indexes n and m refer to plane waves being 
treated exactly; whereas T refers to higher plane waves 
being treated only through perturbation theory. This 

32 P. Lowdin, J. Chem. Phys. 19, 1396 (1951). 

~ « 0 PLANE WAVES 

E 
- 8 L E V E L S -

|\&LENCE 
BANDS 

^CONDUCTION 
BANDS 

-TO PLANE WAVES 

FIG. 3. The approximate relationship of the quantities entering 
the band calculation. E represents an average energy for the 
valence and conduction bands. EN is a cutoff energy such that all 
plane waves with kinetic energy (ffl/2m) | k + K ; | 2 ^ £ j v are 
treated exactly, whereas those having a kinetic energy between EN 
and ET are accounted for by perturbation theory. 

procedure is especially convenient for handling de
generate and quasidegenerate cases as it is not necessary 
to find linear combinations of zero-order degenerate 
states as in the standard method. This is particularly 
advantageous when automatic computing machinery is 
employed. 

Before proceeding it was necessary to eliminate the 
eigenvalue dependence of the matrix elements in (15). 
If this were not done, we should have to solve for each 
of the eigenvalues separately and to use an iteration 
procedure for each of them. We wished, instead, to 
diagonalize (15), and obtain all eight interesting levels 
at once. 

In handling the matrix elements the following substi
tutions were made: off the diagonal ^2y(Hp

n'yHp
y'm)/ 

{E-Hy«)^£y(Hp*'Wf'")/{E-Hp™)9 that is, 
E—>E. Here E is an average of the eight energy levels 
at each point in the reduced zone. On the diago
nal E 7 ( i / / ' ^ ^ ) / ( £ - -Hp™)-
(Hp

n>n-HpV'V), 

J 
E(.V) 

<L/iy 

i.e., E—^HV = (*V2«)|k+K» 
KJBpV-n)/ 

(GriW) 

.03 «V 

|.09«V 

Lo3«v 

Lo4«v : 

• 

. i « I 

EN/t2TT2 lf/ma2)-^ 

FIG. 4. Shows the convergence properties of the worst cases 
among those tested. Gi and G% refer to states at the general point 
of the zone with k = (0.60,0.35,0.10). The energies (in eV) at the 
left are an estimate of the convergence for EN=7.0 (the value 
actually used). They were gotten by comparing with the results for 
£#=9 .0 . 
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AeV 

t 
A 

-.5 

2.5 
.06 .08 

V (ll)ryd.-*— 
FIG. 5. Variation of some of the principal 

band gaps with the potential coefficients. In 
eV: A i = ( * i - * 4 ) - 3 . 0 , A2= ( Z 3 - £ 3 , ) - 4 . 5 , 
A3= (X^ZaO-1 .5 , A4 = ( I V - I V ) ; (a) 
7(3) = -0 .21 Ry, 7(8) =0.0 Ry; (b) 7(3) 
= -0 .23Ry , 7(11) =0.06 Ry; (c) 7(8) =0.0 
Ry, 7(11) =0.06 Ry. 

We here, in essence, replace E by the kinetic energy of 
the principal plane waves making up the expansion of 
0„,k. This allows a closer representation of E than any 
one choice of E permits. It was felt that the more accu
rate representation of the diagonal matrix elements 
would improve the convergence. 

The error AUp
n>m in a matrix element resulting from 

these approximations is 

Ar/,»^«E 
Hp

n^Hpy*m 

-&E, 
y (E-Hy,7v)2 

8E=E-E, n^m, 

5E=Hp
n>m-E, n=m. 

(17) 

Since E refers to the energy of one of the lowest eight 
eigenvalues, one sees that by increasing N and hence the 
minimum value of Hp^^ that AUp

n>m —> 0. 
Now suppose that the plane waves 0k+Kn being treated 

exactly are those obeying the condition (h2/2m) | k + Kn |
2 

^ EN. Here EN is a cutoff energy which we shall choose 
below. By this definition N will be somewhat dependent 
on k. In a like manner the plane waves <£k+K7 entering 
the calculation through perturbation theory satisfy 
EN<(h2/2ni)\k+K^^ET. 

The actual choice of EN, ET, and E depend on an 
intelligent use of trial and error. The values ultimately 

chosen were 

EN=7.0(2w2h2/ma2)SS eV, 

E r = 19.0(2T2h2/ma2)^S5 eV, 

E=2.0(2w2h2/ma2)^10 eV. 

With this choice N was ^20 and T~90. In Fig. 3 we 
show these values in comparison with the band energies. 

The question of convergence was examined by ob
serving the change in the eigenvalues as EN was in
creased. In Fig. 4 the levels showing the poorest con
vergence among the test cases are plotted as a function 
of Eiv. One should note that convergence is good to 
^-0.05 eV which is within the limits of the accuracy 
being sought. 

V. PSEUDOPOTENTTAL PARAMETERS 

We now turn to a brief discussion concerning the 
choice of the pseudopotential coefficients. The work of 
Bassani and Celli31 on Ge was found to be a convenient 
starting point. Since the present work makes no dis
tinction between s and p symmetry, it was necessary to 
redefine their potential slightly. In determining the 
Fourier coefficients particular emphasis was placed on 
getting good agreement with the proposed interpreta
tion of the optical experiments. That means we sought 
to make the direct splittings such as Ly —> LS) L%> —-» L\, 
etc., come as close as possible to the experimental 
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TABLE II . Energy of principal gaps (in eV). 

Gap 

r25' —* rv 
rW "~* TIB 

£ S > - > £ I 
Lz> —> Lz 
Xi—>Xi 

Bassani 
(Ge) 

0.8 
3.4 
2.0 
5.4 
4.4 

Brust 
(Ge) 

0.6 
3.6 
1.8 
5.4 
3.6 

Brust 
(Si) 

3.8 
3.4 
3.1 
5.4 
4.0 

identification. Since at our first trial we sought to test 
the proposed energy model by attempting to get the 
correct structure in the optical properties, it was natural 
to make the splittings agree as closely as possible with 
the model. 

In order to reduce the labor required to get a good set 
of pseudopotential parameters the graph shown in 
Fig. 5 was prepared. This indicates how the principal 
band gaps vary with changes in the potential coeffi
cients. By using this a good fit could be obtained with 
only one or two trials for both Ge and Si. In this way we 
found for Ge: F (3)=-0.23 Ry, F(8) = 0.0 Ry,~and 
F( l l ) = 0.06 Ry; while for Si: 7 (3)=-0 .21 Ry, 7(8) 
= 0.04 Ry, and 7(11) = 0.08 Ry. The term values re
sulting from these choices are given in Table II where 
our Ge results are compared with those of Bassani and 
Celli. 

The values of Table II are somewhat different from 
those of Table I. It is not possible to get an exact fit 
with a three-parameter potential. If one required a 
better set of values, additional coefficients would have 
to be introduced into the potential. 

It was of interest to compute the energy bands along 
symmetry directions. These are shown in Fig. 6, and 
should be compared with earlier results obtained by 
Herman on Ge and by Kleinman and Phillips for Si. We 
should point out that the good behavior of our bands 
was used as an indication of both the convergence of our 
computational procedure and of the correctness of the 
pseudopotential approach. 

We are now in a position to go on to a calculation of 
€2(0;). Before doing this, however, we shall examine the 
result of computing effective masses according to the 
present scheme. 

VI. EFFECTIVE MASSES 

We wish to determine the effective masses of the 
conduction electrons within the framework of the 
pseudopotential method. Doing this for Ge by the 
formulas of k*p perturbation theory we have for Ge, 
e.g., Liu14 

/me\ 2 K^HVlLa,*')! 

m (ELl—EL^) 
(18) 

Here Py* is a momentum operator in a direction trans
verse to the (1,1,1) direction. Using our pseudopotential 

(1,0,0) <$,j.0ni-,ip> (0,0,0) 

(a) 

<Ut) (o,op) OAO) (}, i ,0)(^p) (0,0,0) 

(b) 

FIG. 6. Pseudopotential energy bands along A, A, and X sym
metry directions. Some of the principal transitions have been 
marked. 

wave functions the momentum matrix element was 
found to be 0.73/z2(27r/a)2. The energy denominator is 
1.8 eV. Putting these values into (18) one finds mt* 
= 0A2me compared with the experimental value of 
0.082me. Considering the approximations, used to get 
w<* the result is reasonably close to experiment. This 
value was checked by directly computing E(k) in a 
transverse direction and using 

me/(mt^l2me(E(Ak+kL)-E(kL))yh'(Ak)K 

This also gave us 0A2tne, which justifies the use of a 
two-band model in the k«p calculation. 

For Si where the minima correspond to Ai states, we 
have from Dresselhaus33 

\mt*/ 
' i+£ 

\(Al\Py\A^ 

1 (EAl-E^ 
(19) 

33 G. F. Dresselhaus, Ph.D. thesis, University of California 
(unpublished). 
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(a) 

k z ^ - - X - . _ 

(b) 

FIG. 7. Scheme for sampling zone (a) mesh of sampling points in 
two dimensions, (b) section of zone actually sampled. 

In this case we must use a 3-band model taking two A5 
states (one valence and one conduction). We now get 
w**=0.17we compared with 0.19me from experiment. If 
only the A5 state in the valence band is used, we get 
w**=0.14we. By examining E(k)mi*=0.17w e was 
found, showing that a 3-band k»p calculation is ade
quate for our purposes. 

VII. SAMPLING PROCEDURES 

With a view toward finding €2(00) we discuss the 
calculation of the joint density-of-states functions 
Jns{u>) defined by Eq. (2). Since in practice it is possible 
to solve for the eigenvalues of Hp at only a finite number 
of points in the reduced zone, we must replace the 
integral in (2) by a finite sum. This was done by defining 
the quantity 

8(ki)—a)t). (20) 

Here kz is a set of uniformly spaced sampling points 
lying within the first Brillouin zone. The delta function 
is defined by 

5Aco(ojns—coo)= 1 if \o)nS—o)o\ ^ (Aw/2) = 0 otherwise. 
(21) 

The function Kns(a>i) is then defined for a set of values 
coi such that co;+i=o>;+Aa>. The meaning of Kns(^i) is 
clear. I t measures the number of pairs of states in bands 
n and s with direct energy gap #a>ns=^co4dz#(Aco/2) as 

found in the sample. The relationship between Kn,s(o)i) 
and Jns(o)) is 

Aco (2TT) 3 

Kns(o)i) = /„«(co = « i ) , (22) 
A*k 2 

where A*k is the elementary volume surrounding the 
sampling points. 

In making a choice for Ao> we were guided by the 
consideration that most of the experimental structure in 
€2(00) has a half-peak width ^ J eV. We consequently 
took AOJ=0 .1 tV/h as a reasonable value. 

The reciprocal lattice vectors of the diamond struc
ture form a bcc lattice. The most natural choice for the 
sampling vectors kz is a mesh of points forming a bcc 
array. This was reduced in size from the host lattice by 
a scaling factor of 36. That is, the kz are determined by 
ki—Ki/36 where Kz are reciprocal lattice vectors. This 
idea is demonstrated for a two-dimensional body 
centered structure in Fig. 7(a). With this reduction in 
scale the calculation gives results for 36s = 46 656 
^ 5 0 000 points in the reduced zone. 

Advantage was taken of the 48-fold symmetry of the 
Brillouin zone of the diamond structure. I t is then 
necessary to examine only that l /48th part of the zone 
indicated in Fig. 7(b). This region is defined by the 
conditions 

0^(kO^(kz)^(kO„ (23) 

and kj contained within the first Brillouin zone. The 
contribution to Kns(o)i) from a point kz, in the interior 
of the sampling region is then taken to be 48. The 
number 48 is referred to as the weighting factor W of the 
point kz. 

For points not in the interior of the sampling region 
W is easily found. We simply find the number of regions 
between which the point kz is shared. If we call this 
number C, then Tf=48/C. For points not on the 
Brillouin zone surface C is found as follows: 

c:i;i 
C--

C=(2 

4 

C = f 6 

48 

if Cki)«*(ki) ,*(k«) 

if (kO^(kOK=(k;) 

if (k,),= (k,)^(k,) 

if (k,),= (k,),= (k,) 

^ 0 

= 0 

^ 0 

= 0 

= 0 

= 0 

(24) 

If kz lies on the first Brillouin zone surface then it is 
shared with adjoining zones, and the above value of C 
is multiplied by 2, 3, or 4 according to whether kz is on 
a face, edge, or corner. For example, for the point T, 
C = 4 8 and W= 1. With this technique Hp had only to be 
diagonalized at ^1200 points. 
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When the data first came from the computer, it was 
observed that the scatter in the 0.1-eV histograms, 
Kns(a)i), was excessive. We found, however, that by 
smoothing Kns(o)i) according to 

Kns(a)i) = l[Kns(c0i+i)+Kns(<J)i)+Kns(a)i-i)~]; (25) 

the scatter was materially reduced. This method is dis
cussed by Hartree.34 When the smoothing procedure is 
combined with the results of critical point analysis as in 
the next section, excellent results are achieved. In the 
Appendix we examine the effects of smoothing as well as 
the sources of the statistical noise. 

VIII. DISCUSSION OF LINE SHAPES 

In discussing the results we shall begin by examining 
the histogram for bands 4 and 5 (the bands are ordered 

(a) 

(b) 

FIG. 8. 4-5 histograms. Volume effects refer to structure which 
could not be traced to critical points, (a) Ge, (b) Si. 

• / y 
/ // 
A/y/_ 

• 
A 

• /J /AA 
• AAA 

'//'A / / * / \ 'A'/A ''/A\ 
V/7A A, 

(a) 
E — 
(b) 

34 D. R. Hartree, Numerical Analysts (Oxford University Press, 
London, 1952), pp. 249-251. 

FIG. 9. (a) Sampling planes (dashed lines) are parallel to energy 
contours (solid lines); (b) resulting density of states showing the 
spurious peaks. 

in the conventional way with w = 4 the highest valence 
band, and s=5 the lowest conduction band). From 
energy considerations it can be guessed that this will 
make the most important contribution to e2(co). Figure 8 
shows K^{oy) for both Ge and Si. One notices that the 
graphs show a group of periodic peaks (dashed lines) 
beginning at 4.5 eV in Ge and at 5.6 eV in Si. A close 
study of the data disclosed that these arise in an arti
ficial way as boundary sampling errors. Near the point 
W one finds that the planes of sampling points lie 
parallel to the surfaces on which £4,5(k) is constant. 
This condition is drawn for a two-dimensional example 
in Fig. 9, where one easily sees how these artificial 
sampling peaks can be formed. Since they were judged 
to be spurious, the peaks have been eliminated from the 
joint density of states (solid lines in Fig. 8). 

The most striking result is the large central peak. We 
remember that in our starting model the large optical 
peak was associated with transitions _of the type 
X4 —> X\. To understand how it arises in i£4,5 we inspect 
Fig. 10 where E4)5(k) is plotted in the basal plane 
(JLKX plane). By looking at the energy contours near 
the point X in Fig. 10(b), one discovers that there 
exists a critical point of the M\ class with a direct 
energy gap of 3.6 eV. Furthermore, on the S axis near 
the point k = (0.6,0.6,0.0) there occurs another critical 
point. This belongs to the M2 class, and has an energy 
gap of 3.8 eV. The large peak in i£4,5 of Ge, results then 
from these two nearly degenerate critical points corre
sponding to X4 —> Xi and S4 —> Si transitions. This idea 
has been demonstrated previously in Fig. 1(e). The 
occurrence of a critical point on S is a new result. 

The analysis of Fig. 10(b) for Si leads to the same 
general conclusions. At the point X there again occurs 
an Mi critical point with energy of 4.0 eV. On the S axis 
near k = (0.4,0.4,0.0) we find an M2 critical point this 
time with an energy gap of 4.4 eV. 

In Fig. 8 the reader may notice that sharp corners 
have been drawn into the data. The analysis discussed 
earlier indicates that this is the correct behavior near a 
critical point. 

Retumingjto Fig. 8(a), we see a sharp corner of the 
Mi type in i£4(5 of Ge at 2.0 eV. I t is clear that this is 
identifiable with the spin-orbit split optical edge at 2.2 
eV. Figure 11(a) shows the contours of E4)5(k) in the 
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FIG. 10. Eiib(k) contours 
in YKX plane. The energies 
indicated on graph are all in 
eV. A few of the principal 
contours are drawn show
ing behavior near critical 
points, (a) Ge, (b) Si. 

plane denned by TKL. At L there is an Mo critical point 
with a gap of 1.8 eV. Looking along A, we detect another 
critical point near k= (0.17,0.17,0.17). This one is 
classified as an Mi with an energy of 2.0 eV. The edge 
results from A3 —» Ai transitions, while the threshold is 
produced by Ly —> L\ transitions. This interpretation is 
again a new one. 

Both A3 —> Ai and Ly —> L± are spin-orbit split by 
approximately the same amount. Although the pre
dicted breadth of the 2-eV edge given by the separation 
of the Mo and Mi singularities (0.2 eV) is in good 
agreement with experiment, more decisive confirmation 
of the predicted Mo threshold can be obtained in ma
terials where the spin-orbit splitting and the Mi peak 
are somewhat larger. This is the case for GaAs36 and 
still more clearly ZnTe.36 The M0 thresholds are well 
resolved approximately 0.2 eV below the Mi edges. It 
is striking that such fine details appear to carry over not 
only to slightly ionic crystals such as GaAs but also to 
strongly ionic ones such as ZnTe. 

In the 4-5 histogram of Si there is an edge at 3.5 eV. 
This is identified with the peak at 3.5 eV in e2(w). 
Figure 11(b) shows that the threshold for this edge is 
once more an Mo critical point at L. The energy of the 
Ly —> Li gap is here 3.1 eV (in Si this appears to be the 

minimum vertical separation between the valence and 
conduction bands). The edge itself is a bit more difficult 
to classify. The energy contours indicate that it comes 
from points near the zone center. There appear to be 
several critical points clustered about V degenerate to 
within 0.04 eV. Our convergence, however, is not re
liable for such small energy differences. We prefer to say 
simply that the edge is due to a critical point at 
(r25' —> Ti5) with an energy gap of 3.5 eV. 

Finally returning to the Ge histogram of Fig. 8(a), we 
notice a shoulder near 3.2 eV. This is presumably caused 
by a point of inflection in £4,5 (k) near the point 
k== (0.4,0,0). This has the same effect as a weak pair of 
critical points of the Mo and Mi category. We mention 
this as a possible explanation of a similar shoulder in 
€2(0?) of Ge near the same energy. In our data it is less 
pronounced than in experiment owing to the nearness of 
the large peak which masks the shoulder. 

That exhausts all of the interesting structure in the 
4-5 histograms. We wish to check that our critical-point 
analysis is complete. To do this we use a rule discussed 
by Phillips,25 which says that 

N(Mo)-N(Mi)+N(M2)-N(Mi) = 0. (26) 

Here N(Mo) = number of Mo critical points; N(M%) 

FIG. 11. £4,500 in YLK 
plane, (a) Ge, (b) Si. 

36 D. L. Greenaway, Phys. Rev. Letters 9, 97 (1962). 
a6 M. Cardona and D. L. Greenaway, Phys. Rev. 131, 98 (1963). 
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FIG. 12. 4-6 histogram, (a) Ge, (b) Si. 
(b) 

= number of M\ critical points; etc. In Ge, N(Mo) has 
contributions from three sources: T (the absolute mini
mum T25' —» IV), L, and A (the Mo contribution of the 
kink). Putting in the weighting factors (W) for each of 
the points we have iV(M0) = 1 + 4 + 6 = 11. For N(Mi) 
the contributions are from A, Xy and A (the Mi saddle 
point arising from the kink). This gives Ar(Mi) = 8+3 
+6=17. The contributions to N(M%) are all from 2J and 
N (M2) = 12. The contributions to M3 all come from the 
maximum in £4,5 (k) which occurs at W and N(Mz) = 6. 
Forming the sum implied by (26) we get 11 — 17+12—6 
= 0 as required. We have not applied the rule to Si 
because of the complexities discussed earlier. We can 
nevertheless, be confident that all the important critical 
points have been found since the energy contours in Ge 
and Si are very similar. 

Next we examine the contribution of the 4-6 histo
gram. In Fig. 12, K^ioo) is drawn. The main feature in 
the Ge data [Fig. 12(a)] is the large peak at 5.3 eV. 
From the energy contours of Fig. 13(a), one can see that 
the structure is associated with L. In this case the 
transition being Ly —» Lz which agrees with the inter
pretation of the corresponding optical peak. 

The Si data are understood similarly. The Ly —> L% 
transition is responsible for the peak at 5.3 eV. The 
somewhat large peak at 5.8 eV is apparently a boundary 
sampling error of the type discussed in connection with 
the 4-5 histogram. After matrix__elements are accounted 
for, the remaining structure in X4,6 is too weak to make 
an observable contribution to the optical properties. 
For the same reason the remaining histograms con
tribute nothing to e2(co). 

We are now in a position to use these results to con
struct e2(co). First we shall give a very brief discussion 
of how the matrix elements were determined. 

In order to develop a reasonable way of handling 
|Mn,s(k)|2 we computed matrix elements for ^=4 , 
s=5, and for w=4, s=6, at a number of points in the 
reduced zone. These were gotten by using the pseudo-
potential wave functions <£n,k. Such a procedure corre
sponds to using the smooth part of the OPW wave 
functions which according to Ref. 37 gives accuracy of 
better than 20%.38 The results are shown in Table III. 
The Si wave functions were used; however, we would 
get almost identical results with the Ge wave functions. 
In obtaining the matrix elements for the symmetry 

FIG. 13. JEM(k) in TLK 
plane, (a) Ge, (b) Si. 

ŝ  L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960). 
38 The effective masses are determined by momentum matrix elements. Since our computed values for the effective masses agree 

well with experiment, we naturally expect the computed matrix elements also to be correct. 
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E(eV)-

(a) 

FIG. 14. Contribution 
of bands 4 and 5 to 
€2(o>). (a) Ge, (b) Si. 

points, we did the calculations at neighboring points. 
This was done so that degeneracies would be lifted, and 
the resulting matrix elements would be those of the 
bands being studied. If this were not done then, for 
example, the wave functions of bands 5 and 6 would mix 
at X.39 

Looking at the values for | M4,5(k) | 2 in Table I I I we 
see that it is roughly constant throughout the zone 

TABLE III . Matrix elements in units of (2T/O)2. 

k 

(0.04,0.04,0.02) 
(1.00,0.04,0.04) 
(0.72,0.39,0.33) 
(0.6,0.6,0.0) 
(0.58,0.25,0.14) 
(0.50,0.48,0.52) 

l^4,5(k) |2 

0.90 
1.51 
1.33 
1.41 
0.94 
0.85 

l^4,6(k)|2 

0.01 
0.00 
0.09 
0.00 
0.22 
0.63 

varying by less than a factor of 2. We could then 
replace the matrix element in Eq. (1) by a k-inde-
pendent quantity |lf4,s|2 . To determine this value we 
took the weighted average of the values in Table I I I . 
Then | Jf4,5 |2=1.2(27r/a)2. As Table I I I points out, 
\M4,e(k)\2 is small except near the point L, precisely 
where the 4-6 peak originates. I t is a bit difficult to 
settle on a way to handle the matrix element. We have 

taken \M4,e\2=0.6(2w/a)2. That is we take a constant 
value equal to | Af4,6(k= (§,!,§) ) | 2 . In Figs. 14 and 15 
we show the contributions to 62(a)) of the 4-5 and 4-6 
histograms. In Fig. 16 we take €2(a>) = €2

4'5(a>)+€24'6(w), 
that is, as the sum of the contributions from the 4-5 and 
4-6 histograms, and compare with experiment. In previ
ous work (see Refs. 40 and 41) e2(a>) was also taken as 
= €24,5(co)+€24'6(co). Figure 6 shows our energy bands 
with the principal transitions marked. 

To check our hypothesis regarding matrix elements it 
was decided to do Si with matrix elements included. 
|Mn ,&(k) |2 was computed along with the energy eigen
values at each point of the zone, and put in Eq. (1). 
This added about 3 h of machine time to a total of about 
15 h. The result for e2(co) shown in Fig. 16(b) includes all 
of the separate histograms. 

As Fig. 16 indicates, our line shapes appear satis
factory. The two exceptions are the Ly —> L% peaks in 
Ge and Si, as well as the r25' —» Ti5 peak in Si. The main 
difficulty in the first case centers around the strength. 
We have seen that our treatment probably overesti
mates the matrix element so that it is not surprising that 
the computed strength is too large. In Fig. 17 we ex
amine the experimental line shape derived by taking the 
shaded portion of €2(0?) as shown by the inset. With 
suitable magnification the theoretical and experimental 
line shapes are in good agreement. The r25' —> Tn peak 
is not well understood. Since it is so narrow, there is a 

1 

[ , 1 — ' 
3 3 

1 
4J5 5.5 

E(«V) -

1 , 

6.5 

FIG. 15. Contribut 
of bands 4 and 6 
62(«). (a) Ge, (b) Si. 

ion 
to 

(b) 

39 The program did not construct symmetrized combinations of plane waves as it was a general one designed to handle all points of 
the zone on an equal footing. 

40 D. Brust, J. C. Phillips, and F. Bassani, Phys. Rev. Letters 9, 94 (1962). 
4i P . Brust, M. L. Cohen, and J. C. Phillips; Phys. Rev, Letters 9, 389 (1962). 
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i' 

J i_ 1.5 2.5 3.5 
E(eV)-

(a) 

35 4.5 5.5 
E(eV)—-

(b) 

6.5 

FIG. 16. Experimental result for €2(co) (solid line) compared with our computed value (a) Ge €2(co) = €2
4'5(co)+€2

4,6(w) (dashed line, 
with edges emphasized to account for critical points), (b) Si e2(aj) = €2

4'5(w)+e24,6(co) (dashed line), e2(o>) taken as sum of contribution 
from all bands with dipole matrix elements included (dotted line). 

chance that it is a density-of-states effect which we 
did not detect. The reader should see a further discussion 
concerning this point by Phillips.42 

The results of this section are summarized in 
Table IV. 

IX. STATIC DIELECTRIC CONSTANT 

From a knowledge of 62(00) it is possible to calculate 
the real part of the dielectric constant 61 (co) in the limit 
00 —> 0. From the Kramers-Kronig relation the following 
expression can be obtained43 

2 f°e2(co) 
ei(0) = l + - / dco, 

T J 0 CO 

TABLE IV. Important critical points below 6 eV. In some cases 
they have been given to 0.01 eV with a reliability ^0.03 eV. 

Type 

Mo 
MQ 

Mi 
Mi 
Mi 
M2 

M2 

Mo 
Mi 
M2 

. . . 
Mo 
Mi 
M2 

Mo 

Location 

(0,0,0) 
(0.5,0.5,0.5) 
(0.17,0.17,0.17) 
(0.3,0.0,0.0) 
(1.0,0.0,0.0) 
(0.5,0.0,0.0) 
(0.61,0.61,0.0) 
(0.0,0.0,0.0) 
(0.56,0.56,0.39) 
(0.5,0.5,0.5) 

(0.0,0.0,0.0) 
(0.5,0.5,0.5) 
(1.0,0.0,0.0) 
(0.4,0.4,0.0) 
(0.5,0.5,0.5) 

Bands Symbol 

Germanium 
4 - > 5 
4 - > 5 
4 - * 5 
4 - > 5 
4 - + 5 
4 - > 5 
4 - > 5 
4 - + 6 
4 - > 6 
4 - > 6 

I V - » I V 

u -> u A3—>Ai 
A5->Ax 
X^Xi 
A5->A! 
2 4 - > 2 i 

r25' —> Ti5 

L%> —* Lz 

Silicon 
4 - > 5 
4 - * 5 
4 - + 5 
4 - ^ 5 
4 - * 6 

IV' —̂  Tig 
• Lv-+Li 
X4 —> Xi 
24-^S i 

Lv -* Lz 

Theo
retical 
energy 

0.6 
1.78 
2.01 
3.17 
3.6 
3.21 
3.8 
3.6 
5.33 
5.44 

3.5 
3.15 
4.0 
4.4 
5.2 

Experi
mental 
energy 

0.8 
2.1 
2.3 
3.0 (?) 
4.3 
3.4 (?) 
4.4 
3.2 (?) 
5.6 
5.7 

3.5 
.3.0 
4.3 
4.4 
5.4 

Using our results for €2(0?), we can now derive ei(0). It is 
realized, however, that the value calculated in this way 
is directly proportional to the choice of matrix elements. 
In the case of the 4-5 bands we took this as 1.2(2ir/a)2 

with an assigned error ^ 2 5 % . For the other pairs of 
bands where the matrix element is considerably smaller 
we do not have a sufficiently reliable value for this 
purpose. Therefore, only the contribution from e2

4,5(co) 

42 J. C. Phillips, Phys. Rev. Letters 10, 329 (1963). 
« T . S. Moss, Proc. Phys. Soc. (London) B66, 141 (1953). 

E ( e V ) - — 

FIG. 17. Comparison of the theoretical and experimental line 
shapes for the Lz> —> Lz transition in* Ge. The solid line is the 
shaded portion of the experimental curve indicated by the inset. 
The shaded region has been moved 0.5 eV to the left and magnified 
seven times. The dashed line is a similar region under the theo
retical curve. 
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FIG. 18. Photoemissive yield: electrons/absorbed photons, as a 
function of photon energy, with vacuum W, eV, above the top of 
the valence band, as computed in present work. 

was evaluated. For Ge this gave ei4'5(0) = 12.4 and for 
Si ei4'5(0) = 7.6, which are to be compared with the 
experimental values of 16.0 and 12.0, respectively. As 
expected €i4'5(0)<ei(0) due to the neglect of the higher 
bands. The 4-5 bands of Ge appear from these values to 
give a better result than those of Si. This, however, 
arises from the fact that the large peak in Ge has been 
erroneously shifted to a lower energy, and thus gives a 
bigger contribution to the integral. These values show 
that the 4-5 transitions, which account for most of the 
structure in e2(o>), also contribute more than 50% of the 
value of ei(0), the macroscopic static dielectric constant. 

X. g FACTOR AND SPIN-ORBIT EFFECTS 

According to Roth and Lax,15 the longitudinal com
ponent of the g tensor is 

gu = 2 f 1 ) . 
(ELl-Ew)\mt I 

Here As0 is the spin-orbit splitting of the Ly states. We 
use Lukes and Schmidt's44 value for Ge, As0= 0.195 
±0.02 eV, and take the Mo threshold in the optical 
response as the Ly-±Li transition, which gives 
(ELl~Ew) = 2A eV. g„ is then found to be =0.96 
(mt=0.082mo). This is compared with the experimental 
value of 0.87. With the old interpretation that the edge 
itself is to be identified with Ly —> Li we would use 
2.35 eV for (ELl-Ew) and get £,,= 1.07. Hence the 
new interpretation is seen to give better agreement with 
the g-factor data. 

The identification of the edge with A3 —> Ai transitions 
allows us to resolve a problem in the spin-orbit splitting 

of GaAs. In this material Aso is observed to be =0.26 
eV, whereas from theory one would expect it to be 0.20 
eV. The latter value is based on the assumption that the 
Ly —> L\ transition is responsible for the edge. In that 
case A,o(£) = f A,o(r). The paradoxical result is resolved 
by the conclusion that the transition is associated with 
a point on the A axis where Aso=0.26 eV, that is, falls 
between the extremes at T and L. 

XI. PHOTOEMISSION RESULTS 

The present work provides an interpretation not only 
of the dielectric properties of Ge and Si, but also of 
recent studies on the photoemissive properties of Si. 

This work may be divided into two parts. Very precise 
studies45 of weak photoelectric emission from Si near 
threshold on atomically clean surfaces reveal direct and 
indirect thresholds similar to the infrared absorption 
edges discussed by Hall, Bardeen, and Blatt.46 The in
direct threshold is at 5.15 eV, the direct threshold at 
5.45 eV. The crystal surface is a (111) plane, and the 
thresholds, according to Kane,47 are associated with the 
symmetry line A, where V is directed normal to the (111) 
plane. The direct transition responsible for the direct 
threshold therefore starts from A3 at an energy 0.3 eV 
below r25'. The transition marked D in Fig. 6(b) starts 
from k= (0.12,0.12,0.12) and requires £=5.5 eV. The 
agreement with Kane's theory and Allen and Gobelli's 
experiment is satisfying. It should be emphasized that 
this agreement is a by-product of our calculations for 
the ultraviolet absorption. 

The second part of the photoelectric data concerns the 
broad yield curves obtained when the effective work 
function is reduced by covering the surface with up to 
one monolayer of Cs. In doing the analysis we assume 
that electrons which are excited into the conduction 
bands have an escape probability Ps

w(k). Then Ps
w(k) 

= 0 if Es(k)<W and P8
W=P if E8(k)>W. Here £.(k) 

is the energy of the electron state with respect to the 
top of the valence band and W is the vacuum energy 
also measured relative to I V . With these assumptions 
the photoemissive yield function (number of electrons 
emitted/number of photons absorbed) is given by 

£ f d3kP8
w(k)8(o>nAK)-o>)\Mn,8$)\2 

n's J B . Z . 
Yw(o>) = -

£ / <M5(wK,s(k)-co)|M„,8(k)|2 

n>s J B.Z. 
(27) 

in which it is assumed that the electron escapes with a 
negligible loss of energy. 

44 F. Lukes and E. Schmidt, Proceedings of the International 
Conference on the Physics of Semiconductors 1 Exeter (Institute of 
Physics and the Physical Society, London, 1962), p. 389. 

« G. W. Gobelli and F. G. Allen, Phys. Rev. 127, 141 (1962). 
« L . H. Hall, J. Bardeen, and F. J. Blatt, Phys. Rev. 95, 559 

(1954). 
4?E. O. Kane, Phys. Rev. 127, 131 (1962). 
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In performing the calculations we arbitrarily set 
P=0 .26 . Then, again, taking constant matrix elements 
we have after making a finite sample of the zone 

20 

ZKn^MlMn, 
Yw(o)i) = -

Y, Kn,8(0)i)\Mn,9\ 
(28) 

where 

^»..w r(«i) = EP. 1 | r(k,)6A-(f i )„ i . (ki)-«<) . (29) 
k j 

Again we replace the quantities KntS(o)i) and KniS
w(u%) 

by the three point smoothed quantities Knf8(o)i) and 

In Fig. 18 we have plotted the results for Yw(o>) with 
co varied between 1.5 and 5.1 eV. This is to be compared 
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FIG. 19. Experimental results for the photoemissive yield 
(a) Spicer; (b) Gobeli and Allen. 
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FIG. 20. (a) The energy distribution of electrons emitted from Si 
for^w = 3.6±0.1 eVand5.3±0.1 eV with W = 1.5 eV, as computed; 
(b) Spicer's results for P(E)t W= 1.5 eV. 

with the experimental results obtained by Spicer48 and 
by Gobeli and Allen49 as shown in Fig. 19. The value of 
co is experimentally varied, as we said, by covering the 
Si surface with a fraction of a monolayer of Cs. The 
over-all agreement appears satisfactory. The principal 
features in the W— 2.7-eV plot are the peaks at 3.4 and 
5.3 eV due to T25' —» Tu and Ly —> Z,3 transitions. The 
X4—* Xi dip at 4.3 eV arises since E(X{)—E(T2v) 
= 1.1 eV <W. The secondary peaks at 3.8 and 4.8 eV 

48 W. E. Spicer and R. E. Simon, Phys. Rev. Letters 9, 385 
(1962). 

49 G. W. Gobeli and F. G. Allen (to be published). 
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have been identified as due to transitions near A3 —> Ax 

and points in the volume of the Brillouin zone, re
spectively. As W is increased the behavior of the curves 
is in quantitative agreement with the experiments. 

In Fig. 20(a) we have drawn the energy distribution 
P{E) for the emitted electrons with TF=1.5 eV for the 
cases foo=3.5 and 5.3 eV. Since our sample includes 
considerably fewer points, we take an energy interval of 
0.3 eV. The experimental results of Spicer are drawn for 
comparison in Fig. 20(b). Again our results provide an 
interpretation of the experiment. The peak at 1.2 eV in 
the fio) = 3.5-eV distribution is centered around the 
F25' —> Ti5 transition. The peak at 2.4 eV in the fiu=5.3-
eV curve arises from Lv —> L% transitions. 

XII. DISCUSSION OF RESULTS 

By starting with a model term scheme for the levels at 
T, X, and L, we have constructed a pseudopotential 
which has given the bands throughout the zone. The re
sults we have found for e2(co) explain the line shapes 
which are seen in experiment. As an additional feature 
we can explain the results of recent studies on photo-
emission from Si,50 Although our starting model had 
errors in it, they were subsequently straightened out by 
the band calculations. We also found several new 
critical points. This demonstrates the value of the 
optical data as a guide to theory. It gives us a way to 
start our calculation and a way to check it upon 
completion. 

We have seen that the calculation was limited by 
convergence and sampling noise to errors ^0.05 eV. 
Further improvements of these quantities can be 
achieved by increasing the number of plane waves 
admitted to the expansion, and by taking more points 
into the zone sample. The next step would require the 
use of a more accurate potential. 

By analyzing the optical properties of Ge and Si 
using a very simple model we have succeeded in ex
ploring the electronic structure of these materials over 
an energy range of order 10 eV. This range is an order of 
magnitude larger than that studied by infrared experi
ments. The precision of our study enables us not only 
to explain all the observed structure but also to predict 
new features, such as Mo thresholds. 

Comparing the results for Ge and Si we find that 
alterations in the crystal potential are small and lead to 
much smaller changes in the over-all band structure 
than might have been supposed from infrared data. 
This agrees with the ultraviolet experimental results. 
One may say that in Ge and Si the energy surfaces in 
k space are determined primarily by the shape of the 
Brillouin zone, i.e., by symmetry considerations, and by 
7(3), which measures the strength of the covalent bond. 

60 A further application has allowed us to explain some of the 
properties of Ge-Si alloys as well as high-pressure effects on the 
band structure [F. Bassani and D. Brust, Phys. Rev. 131, 1524 
(1963)]. 
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APPENDIX 

In Fig. 21 we plot Z"4,5(w»). This should be compared 
with Ki)b(ot)i) shown in Fig. 8(a) of the text, which 
shows the effect of smoothing. 

To do a rigorous statistical analysis of the smoothing 
process would be exceedingly complex and not particu
larly rewarding. By a few heuristic arguments we can, 
nevertheless, estimate the random errors entering the 
problem. Consider first a one-dimensional situation. 
Suppose we have in this model a monotonically in
creasing Ens(k) curve. In Fig. 22(a) imagine that the 
solid lines divide the energy range into intervals of 0.1 
eV, that is, Ens(ki+1)=Ens(ki)+0.1 eV. Next suppose 
that a uniform net of sampling points is laid over the 
line. The result of this sample is used to approximate the 
true joint density of states. Suppose also that in 
computing EnsQs) we had convergence noise ~0.05 eV. 
There are then two sources of error in the computed 
joint density of states. The first results from the fact 
that the last sampling point in an interval is not 
significant. For example, in Fig. 22(b) shifting the 
boundary at 0.2 eV very slightly to the left will, put the 
last point in the 0.1-0.2 eV interval into the 0.2-0.3 eV 
interval. The second source of error arises because our 
calculation does not locate the boundary energies ex
actly. The idea is sketched in Fig. 22(c). One should 
note that the error in the energy eigenvalues is a dis-

4000^ L U__J—_J—i_J 

J 3000 h—H 

""5 2000—,—J J L 
«JC I * ! 

1000 — — [ ~ — | - — — M I ' 1 
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nw(eV)— 

FIG . 21. Kit B (a> »•), compare with KA, 5 (w). 
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FIG. 22. Monotonically 
increasing Ens(k) in one di
mension (a) energy divided 
into intervals of 0.1 eV, (b) 
uniform sampling net used 
to determine joint density 
of states, (c) wavy lines 
indicate erroneous bound
aries of intervals arising 
from convergence noise. 
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continuous function of k. This occurs because the num
ber of plane waves in our expansion depends on k. 

If we take a sampling mesh of 1000 points and suppose 
that .Ews(k)max=5 eV, then our one-dimensional sample 

contains ^20 points per interval. These numbers 
roughly correspond to those of the actual problem. Then 
the error from boundary corrections is about 1 point per 
interval or 5%. The error arising from convergence 
noise can be ~ 10 points per interval or 50%. The effect 
of the smoothing is clear. We take three times as many 
points while leaving the absolute error constant. Hence 
the dominant error is reduced from about 50% to 
about 20%. 

The situation in three dimensions is not so readily 
analyzed. The same sort of arguments ought to apply, 
however, we now have a two-dimensional surface for the 
boundaries of the energy intervals. The scatter resulting 
from boundary corrections and from convergence noise 
before smoothing is now estimated to be ~20%, and 
after, ^10%. 


