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The effect of doping germanium with n-type material and silicon with ^>-type material is to increase the 
attenuation and decrease the elastic moduli. The decrease in the cu elastic modulus for n-type germanium 
agrees fairly well with theoretical predictions. However, the modulus decrease in ^>-type silicon is much 
larger and varies with temperature much faster than predicted by any present theory. It is suggested that 
there is a temperature-induced change in hole population along the energy surfaces. The intervalley relaxa­
tion time, which determines the added attenuation, becomes independent of the doping for high dopings 
with the antimony time being about 100 times that for arsenic. This result indicates that the relative values 
are determined by the square of the triplet singlet separation which occurs near the impurity atoms. For 
^-type silicon the relaxation time at low temperatures increases very markedly indicating an activation-
energy effect. The energies agree well with the energies measured by infrared techniques for the largest 
excited state orbits around the impurity atoms. The relaxation times measured at high temperatures indi­
cate that the hole is transported J cycle from one (111) position to the next. 

I. INTRODUCTION 

IT was first pointed out by Keyes1 that the introduc­
tion of arsenic, phosphorus, or antimony into germa­

nium—n-type doping—produces a decrease in the shear 
elastic modulus cw The result was shown to be due to 
the effect of the electronic part on the strain energy 
function and to involve only those electrons which 
change from one valley to another. The experimental 
results of Keyes and Bruner showed that the measured 
decrease was about 75% of the calculated decrease and 
varied with temperature as predicted by theory. 

Pomerantz, Keyes, and Seiden2 showed that the 
finite time required for electrons to go from one valley 
to another was a relaxation effect and should result in 
an attenuation of sound waves at a high frequency. 
Measurements at 9 kMc/sec did show2 an absorption so 
high that it could not be quantitatively determined for 
any wave involving the cu elastic modulus, while 
normal phonon-phonon attenuation resulted for any 
mode not involving this elastic constant. 

II. EFFECT OF DOPING GERMANIUM WITH 
n-TYPE MATERIAL 

A. Experimental Results 

By going to 500 Mc/sec, or less, measurable results 
were obtained3 for arsenic doping. The present paper 
extends these results to antimony and phosphorus 
doping. These data are of considerable interest in de­
lineating the mechanisms causing changes of electrons 
from one valley to another and the relaxation times for 
these processes. Hence, they have been rather exten­
sively investigated. 

Figure 1 shows the increased attenuation for longi­
tudinal waves along the (110) direction caused by 

1 R. Keyes, I.B.M. J. Res. Develop. 5, 266 (1961); L. J. Bruner 
and R. W. Keyes, Phys. Rev. Letters 7, 55 (1961). 

2 M. Pomerantz, R. W. Keyes, and P. E. Seiden, Phys. Rev. 
Letters 9, 312 (1962). 

a W. P. Mason and T. B. Bateman, Phys. Rev. Letters 10, 151 
(1963). 

doping germanium with 1018 and 3X1019 arsenic atoms 
per cc. The measurements were made at a frequency of 
475 Mc/sec. The difference between the attenuation of 
the doped and pure crystal is practically independent of 
the temperature. The elastic modulus is determined by 
the sum 

c=(c11+c12+2cu)/2. (1) 

Since it has been shown1-3 that the only elastic constant 
that is affected by n-type doping of germanium is cu, 
the attenuation can be ascribed to the results of a 
resolved shearing stress associated with the longitudinal 
wave. In fact the attenuation is caused by the finite 
relaxation time associated with the motion of electrons 
between the four valleys of the energy surface of n-type 
germanium. It satisfies the relaxation equation 

A (Np./cm) = (Acu/2pVs) (co2r) , (2) 

valid when a>r<3Cl and (co/F)X< 1, where X is the mean 
free electron path. In this equation Acu is the change in 
modulus caused by the doping, co is 2irf, p the density, 
and V the velocity for the longitudinal wave. Changes in 
the C44 modulus for a doping of 3 X1019 boron atoms per 
cc were measured by Bruner and Keyes1 with the results 
shown by Fig. 2. This change was determined by the 
difference in velocities for pure and doped samples 
measured at 10 Mc/sec. The dashed curve shows the 
calculated value—from Eq. (13)—for the sample doped 
with 1018 arsenic atoms per cc. Measurements for 
antimony-doped germanium, shown by Fig. 4, give a 
very similar change. 

The attenuation measurements of Fig. 1 and the 
velocity measurements of Fig. 2 can be used to deter­
mine the relaxation times, which are 

r-4XlO-1 3sec; T-2.3XH)-13 sec, (3) 

respectively, for dopings of 1018 and 3X1019 arsenic 
atoms per cc. These times are shown plotted on Fig. 3. 
On account of the small change in attenuation, this 
method cannot be used to investigate dopings less than 1018 
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FIG. 1. Attentuation measurements 
of pure and arsenic-doped germanium. 
Longitudinal waves along (110), fre­
quency 475 Mc/sec. 
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arsenic atoms per cc. However, another method appli­
cable for lower dopings is the acousto-electric voltage 
method of Weinreich et al.A Figure 3 shows the relaxation 
times for a number of doping levels from 1014 to 1016 

arsenic atoms per cc. At low temperatures the relaxation 
time is determined by impurity scattering and the solid 
line of Fig. 3 shows the values obtained as a function of 
doping using the 40°K values.4 As the temperature 
increases, scattering occurs also by collisions with 
phonons and the dashed lines of Fig. 3 show the modi­
fication caused by this type of scattering for the tem­
peratures shown. 

The relaxation time for germanium doped lightly with 
arsenic impurities has been discussed by Weinreich 

et al.4 as being due to a combination of scattering by 
neutral and ionized atoms. At low temperatures neutral 
scattering predominates and this gives a time inversely 
proportional to the impurity density. If we extrapolate 
this down to an impurity density of 1018, the indicated 
relaxation time of 2X10-13 is less than the measured 
value of about 4X 10~13 sec. For a density of 3X1019 the 
relaxation time approaches the value of 2.3X10~13 sec, 
which appears to be an intrinsic time for going from one 
valley to another. 

An even stronger indication of this effect is furnished 
by antimony-doped germanium. Figure 4 shows the 
modulus and attenuation difference between a pure 
germanium sample and a sample doped with 1.5X1018 
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FIG. 2. Change in the elastic modulus cu for arsenic-doped 
germanium. Measurements made at 10 Mc/sec. Dashed curve 
shows estimated value for a doping of 1X1018 arsenic atoms per cc 
(after Bruner and Keyes). 

< G. Weinreich, T. M. Sanders, and H. G. White, Phys. Rev. 114, 
33 (1959). 
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antimony atoms per cc. The attenuation is so high for 
this sample that a measuring frequency of 99 Mc/sec 
was used. As before the measurements were made along 
a (110) direction for longitudinal waves. The relaxation 
time calculated from these measurements is shown 
plotted by the dashed line of Fig. 4. At low temperatures 
impurity scattering is dominant and a value of 
3.8X10-11 sec results. As the temperature is increased, 
phonon scattering occurs and the value approaches the 
same value found for arsenic doping at 300°K. The 
values for impurity doping by antimony are shown by 
Fig. 3. Another measurement was made for a doping of 
1017 giving the value of the relaxation time, as shown. 
Measurements for lower doping have been made by Tell 
and Weinreich.5 The results quoted indicate a relaxation 
time five times as large as that for antimony doping over 
a range from 1014 to 2.5X1015 atoms per cc. The resulting 
relaxation time for the entire range is shown by Fig. 3. 
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FIG. 4. Attenuation and modulus changes for germanium doped 
with 1.5X1018 antimony atoms per cc. Measurements made at 
99 Mc/sec. Dashed line shows corresponding relaxation time. 

Here the constancy of the intervalley relaxation time is 
confirmed over a wide doping range. 

B. Theoretical Interpretation 

Many experimental results for w-type germanium 
and silicon have been interpreted in terms of the many-
valley model of the energy surfaces. Figure 5 shows the 
energy surfaces for silicon and it is seen that for the 
conduction band, one of the surfaces has a very low 
energy value in k space along the (100) axis. Electrons 
tend to congregate about these momentum values. Since 
there are six (100) directions, there are six energy 
minima or valleys. The six surfaces are shown by Fig. 6. 
The ovals indicate surfaces of constant energy. Similar 
considerations apply to the conduction band for germa­
nium except that the minimum energy directions lie 

FIG. 5. Energy surfaces in valence and conduction band for silicon. 

along (111) axis and occur at the edges of the Brillouin 
zone. 

In the unstressed condition all the valleys have 
equal energies and electron populations. The effect of a 
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FIG. 6. Top figure: 

multivalley energy 
surfaces for n -silicon. 
Bottom figure: cross 
section of energy 
surfaces a constant 
distance below the 
origin. 

« B. Tell and G. Weinreich, Bull, Am. Phys. Soc. 7, 546 (1962). 
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stress Ti along a crystal axis in silicon is to raise the 
energy of the parallel valleys and lower those of the 
perpendicular valleys by amounts f^Si and - -J$Si , 
respectively, where Si is the longitudinal strain induced 
by the applied stress and $ is the deformation potential. 
This causes electrons in the parallel valleys to flow into 
the perpendicular valleys. In the nondegenerate range 
the equilibrium ratio of population is determined by 
Boltzmann's principle 

i W # o i o = e x p ( - - f c V * r ) . (4) 

This, together with the conservation of electrons 
given by 

iVo-2iV(ioo)+4^oio, (5) 

determined the equilibrium populations to be 

2iVioo=-

4Noio=-

2+exp(-<£tfi/&r) 

2iVo 

~ 3 L 3 kTJ 

2+expi-^Si/kT) 3 L 3kT. 

2Nof $5r 
(6) 

The change in energy AW caused by the applied stress 
is given by 

N0r 
AW=— 1 -

2 $ S r | 2 

3 kTJ3 

2N0\ 

3 
1+— — 

L 3kTJ 3 

2No&Sx
2 

9 kT 
(7) 

There is no change to first powers of the strain but a 
negative contribution occurs proportional to the square 
of the strain. If we add this to the elastic energy fdiSi2 , 
it is seen that a lowering of the elastic modulus occurs 
of a value 

4N<&2 

Acn= ; 
9 kT 

also (8) 
Acn 2N0& 

Aci2= = i A c 4 4 = 0 . 
2 9 kT 

The last two relations follow since a shearing strain 
affects all the wells in the same fashion while a stress 
along (111) direction also affects all the valleys 
equally. Since the elastic constant for this direction is 
(cu+2ci2+4:Cu)/3, the second relation of (8) must hold. 

For n germanium, a similar calculation1 shows that 

Acn= Acn- 0; Ac44= - (N0/9) (&/kT) (9) 

in the nondegenerate range. For the degenerate range 
the limiting value of Acu is obtained by replacing kT by 
two-thirds of the Fermi energy or 

ZWF=(W/3tn*)(3w2N)2 (10) 

where ft is Plank's constant h divided by 2ir, N is the 
number of free electrons, which is equal to the number 
of impurity atoms in the degenerate range, and w* the 
density of states mass 

f»*=(wn»^8(»)2 /«, (H) 

where mi is the longitudinal mass of a single valley, mt 

the transverse mass, and n the number of valleys. 
Inserting the value in (9), the limiting value of Acu at 
low temperatures is given by 

4 / 4 T T \ 

ACUQ^—( — ) 
3\3/ 

4/47r\2/3^1/3$2(mzw,2)1/3 

h2 
(12) 

Since mt= 1.57m0; mt= 0.082w0, where m0 is the electron 
mass 9.1X10 -28 g, this equation takes the form 

Acu0= - 1.58X 102*MV1'1. (13) 

From piezoresistance measurements and from other 
effects $ is usually taken as 16 eV at room temperature. 
For very low temperatures 19 eV is more probable 
which corresponds to 3.04XlOr~11 ergs. Hence, 

AC440-1.44X10W 1 ' 3 . (14) 

This equation checks quite well with the measured 
values of Figs. 2 and 4 where the theoretical values are 
4.7X 1010and 1.65X 1010dyn per square cm, respectively. 

At the degeneracy temperature, given by 

kTD=WF or TD~-
¥ (3rW)2 /3 

2m* 

^ T ^ I X I O " 1 1 ^ 3 , (15) 

the change in modulus should be one-half of A ^ . 1 The 
curves of Fig. 4 indicate a value of TD= 80°K compared 
to the calculated value of 99 °K. Over a temperature 
range the ratio of Ac44 to Acu0 follows the relation1 

shown by Fig. 7. Using TD=S0°K for Fig. 4, the agree­
ment with the measured value is excellent. 

The attenuation A is determined by the product of 
Acu and the relaxation time r which is the time required 
to go from one valley to another. Measured values are 
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FIG. 7. Calculated ratio of Acu/Acuo as a function of the ratio 
of the temperature to the degeneracy temperature (after R. W. 
Keyes). 
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shown by Fig. 3. A number of different mechanisms 
determine this time. For dopings from 1014 to 1016 and 
temperatures above 150°K, the scattering mechanism is 
the collision of electrons with phonons. The total 
relaxation time, as determined by the conductivity 
equation, is given by 

r= M*<r/Ne>=vm*/e= 0.37X 1.1X 10"31/1.6X 10~19 

= 2.5X10-13sec, (16) 

where a is the conductivity in mho/meter, N the number 
of electrons per cubic meter, e the electronic charge of 
1.6X10-19 C, fi the mobility in M2/V sec, and w* the 
effective drift mass in kilograms. Using the values for 
lightly doped samples, the indicated value is about 
2.5X10-13 sec at 300°K. Hence, about one in every 40 
collisions results in a change in valleys. 

As the temperature becomes lower, or the doping 
higher, the intervalley relaxation time is controlled by 
scattering from impurities. For low dopings this process 
has been discussed by Weinreich et al* as being due to 
a combination of scattering by neutral and ionized 
arsenic atoms. At low temperatures neutral scattering 
predominates and this gives a time inversely propor­
tional to the impurity density. Scattering is probably 
due to elastic scattering by the impurity atoms which 
follows6 a law 

1/T=TNR2V, (17) 

where N is the density of impurity atoms per cc, R the 
effective radius, and V the electron velocity. At 40 °K 
the indicated cross section R2 is about 5X 10~13 cm2. This 
is attributed4'7 to an exchange interaction between 
valleys although no values are given. 

As the temperature increases some of the arsenic 
atoms become ionized and a component is found which 
varies inversely as the electron density. This component, 
which has a strong temperature variation, is at­
tributed4,7 to a capture of electrons in bound donor 
states followed by re-emission in another valley. As will 
be shown in the next section, this process has an activa­
tion energy and hence the time between capture and re-
emission decreases as the temperature increases. 

For densities above 1018, the data of Figs. 1 and 4 
show that there is no activation energy for the process 
and the data of Fig. 3 show that the relaxation time 
tends to reach a constant value independent of the 
doping level. All of the impurity atoms will be ionized 
since Fermi degeneracy8 occurs in germanium at an 
impurity concentration between 1017 and 1018 impurity 
atoms per cc. The impurities for degeneracy9 are in the 
order of 1017 for antimony and 5X1017 for arsenic 

6 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, New York, 1958), p. 10. 

7 P. J. Price and R. L. Hartman (to be published) have recently 
given a derivation which accounts for the scattering of ionized 
arsenic atoms in germanium. 

8 F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954). 
9 H. Fritzche, Phys. Rev. 125, 1552 (1962). 

doping. Hence, bound donor states do not exist for these 
dopings. 

In the neighborhood of an impurity atom the four 
degenerate energy minima are split into a singlet and 
triplet states by the valley-orbit splitting. The separa­
tions caused by antimony, phosphorus, and arsenic are 
0.57X10"3, 2.9X10-3, and 4.15X10-* eV, respectively. 
One mechanism proposed for the interchange of elec­
trons between valleys is a "giant trapping"10 of electrons 
which involves a change in momentum between valleys 
by means of an interaction between the triplet and 
singlet states. If the electron is placed in the Is state 
and simultaneously in a known valley, it will not be in a 
stationary state, but in a linear combination. At a later 
time, depending on the relative phases of the singlet and 
triplet state, the electron will be in a different valley. 
Weinreich et al* have estimated that the relaxation 
time for such a valley change should be 

r > (16/3) (h/8E) = 8.4X 10~13 sec(arsenic) 
= 6.14X10-12(Sb). (18) 

These values are too large for arsenic-doped germanium 
and too small for antimony-doped germanium. 

Another derivation11 indicates that the relaxation time 
should be in the ratio of the squares of the singlet-
triplet separation and this is in better agreement with 
the experimental values. However, since this is essen­
tially an elastic scattering process, the independence of 
the scattering time versus impurity density is still 
anomalous. The same is true for the total scattering 
time of Eq. (17). This time varies from 6 to 2X 10~14 sec 
for the doping ranges from 1018 to 3X1019 impurity 
atoms per cc. The ratios of the intervalley to total 
scattering times are about 10 for arsenic and about 1000 
for antimony. 

III. EFFECT OF DOPING SILICON WITH 
>-TYPE MATERIALS 

A. Experimental Results 

Measurements have also been made of the effect of 
doping silicon with the p-type materials boron and 
gallium. The first measurements3 were made for 
2.5X1018 boron atoms per cc. Measurements were made 
for longitudinal waves along the (110) and (100) direc­
tions and shear waves along (110) with polarizations 
along (001)—which involves the shear modulus cu— 
and with polarization along (110) which involves the 
(cii—Ci2)/2 elastic modulus. As shown by Fig. 8(a), 
curve A, the attenuation for shear waves along (100) 
increases very markedly at low temperatures and be­
comes so high below 6°K and for a 475 Mc/sec frequency, 

i° M. Lax, Phys. Rev. 119, 1502 (1960). 
" P. J. Price, J. Appl. Phys. 31, 849 (1960); measurements have 

recently been made for one value (1.5X1018) of doping by phos­
phorus atoms in germanium. The value of 8X10~13 sec is inter­
mediate between As and Sb and agrees well with the square of the 
singlet-triplet separation. 
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that it could not be measured. The frequency was shifted 
to 98 Mc/sec and the curve was measured from 1.5 to 
15°K. In the overlap region, it is seen that the attenua­
tion is square law as indicated by the relaxation Eq. (2). 

Velocity measurements for pure and doped silicon 
were made by the pulse overlap method,12 which is 
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12 H. J. McSkimin and P. Andreatch, J. Appl. Phys. 34, 609 
(1962). 

capable of good precision. Figure 9 shows the measured 
velocities for pure and doped samples. From these 
measurements, the change in modulus Acu can be 
determined and it is shown plotted by Fig. 8(b), curve 
A. The relaxation time from the measured attenuation 
and modulus differences can be calculated by using 
Eq. (2). The result is shown plotted on Fig. 10, curve A. 
For temperatures above 8°K the relaxation time satisfies 
the equation 

Ti=1.3XKHV» / r, (19) 

indicating an activation energy 8E of 0.00113 eV. At 
lower temperatures the curve bends off and approaches 
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another straight line having an equation 

T I ^ I . W X I O - V - 9 5 ^ ; 5£=2.56X10~ 4eV. (20) 

Detailed measurements were also made for longi­
tudinal waves along the (100) direction with the results 
shown by Fig. 11. Here an increase in both attenuation 
and modulus change occurred as the temperature de­
creased, but their ratio, which determines the relaxa­
tion time, is approximately constant with a value 
r 2=4.2X10- 1 2sec. 

The shear wave measurements along (110) with 
polarization along (110) and the longitudinal measure­
ments along (110) confirmed the expected relation that 

Aci2=— A c i i / 2 . (21) 

The attenuations for these modes satisfy, respectively, 
the equations 

| Acnu2T2 [ (Acn /4 ) r 2 + Acur i]co2 

A = ; A = . (22) 
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The relaxation time n for shear waves along (100) 
has an activation energy term. In order to determine the 
origin of this term, measurements were made for a range 
of boron doping from 5X1017 to 3X1019 atoms per cc. 
Figures 8(a) and (b), curves B, show the results for 
shear waves along (100) measured at 500 Mc/sec for the 
doping of 5X1017. The relaxation time is shown plotted 
on Fig. 10, with an indicated activation energy of 
0.00117 eV or nearly the same as for the higher doping. 
The curves of Figs. 12 and 13 show the attenuation and 
velocities for the dopings of 1019 and 3X1019 boron 
atoms per cc. The lower value still has an increase in 
attenuation as the temperature is lowered, but the 

higher doping value has an added attenuation which is 
independent of the temperature with no activation 
energy. The doping of 1019 satisfies the relaxation 
equation 

r i = 2 . 1 X 1 0 - u ^ T , (23) 

while the relaxation time for the doping of 3X1019 is 
10~13 seconds independent of the temperature. 

In order to complete the interpretation, a measure­
ment was made for a doping of 1.5 X1018 gallium atoms 
per cc in a (100) silicon crystal. Measurements were 
made for shear waves in this direction at a frequency of 
500 Mc/sec. The results for the attenuation and 
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FIG. 12. Attenuation meas­
ured at 500 Mc/sec for boron-
doped silicon as a function of 
the temperature. The curve 
labeled 0.01 O-cm is for a 
doping of 1019 boron atoms per 
cc while the one labelled 0.0042 
is for 3X1019 boron atoms 
per cc. 
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FIG. 13. Measured velocities 
for pure and doped silicon 
samples as described in Fig. 12. 
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modulus changes are shown by Figs. 8(a) and (b) by the 
curve labeled C. In the lower temperature range, 
measurements of the attenuation were made down to 
1.5 °K for a frequency of 99 Me/sec A plot of the 
relaxation time is shown by Fig. 10, curve C. The 
initial part of the relaxation time satisfies the equation 

Ti=SXia-M^° / rsec, (24) 

giving an activation energy 5E of 0.0035 eV. At lower 
temperatures the relation becomes curved but ends up 
with another straight line r / which has a very low or 
zero activation energy. For intermediate temperatures 
the points agree fairly well with the equation 

1 / T = 1 / T I + 1 / T I \ 

B. Theoretical Interpretation 

(25) 

The interpretation for the relaxation time for the 
p region appears straightforward. Since the degeneracy 
temperature is 50°K or higher for all the doping levels 
used, the valence bands are filled up to 0.004 eV or 
higher above the band minima. Hence, it is believed 
that the relaxations measured are between different 
points on the same energy surfaces rather than an inter­
change between surfaces. The effect of a strain is to 
warp the surfaces, lowering one part with respect to 
another. This causes a flow from the higher energy-
momentum region to the lower energy regions. The holes 

change momentum directions near the impurity atoms 
by being captured in one of the excited states. This can 
happen with only a small number of collisions with 
phonons since the energies of the holes and the excited 
states are not very different. To leave the orbit, how­
ever, requires thermal energy to overcome the binding 
energy of the state, and this energy represent the activa­
tion energy measured. As the doping increases the 
activation energy decreases, and for a doping of 3X1019 

boron atoms per cc it disappears entirely. 
The activation energies for the relaxation time n of 

the shearing mode are in good agreement with the 
infrared measurements for the largest orbits in boron 
and gallium. The energy levels of the ground state— 
innermost orbit—and the excited states in relation to 
the band edge have been discussed by Kohn.13 These 
energy differences were measured by infrared absorp­
tion. The values of 0.0012 and 0.0035 eV agree well with 
the largest orbits, lowest energies, for the measured 
excited states. At lower temperatures, the relaxation 
times for the primary modes for both boron and 
gallium become so large that other processes take over. 
For boron doping, the next process is another excited 
state having the constants of Eq. (20), while for gallium 

13 H. J. Hrostowski and R. H. Kaiser, Bull. Am. Phys. Soc. [2] 
2, 66 (1957); see also W. Kohn in Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1957), 
Vol. 5, p. 257. 
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doping it appears to be a process without activation 
energy such as elastic scattering by the impurity atoms. 

Another verification that the processes observed are 
the excited states comes from the high-temperature 
values of n and T{ for both boron and gallium doping. 
The frequency with which an orbit is traversed is 
given by 

/ = S £ / / z = 2 . 8 X 1 0 n cycles/sec (boron) 

= 8.4X1011 cycles/sec (gallium) (26) 

for the first—n—process. The time of a cycle is the 
inverse of these values and the measured constants of 
1.3X10-12 sec (boron) and 5X10~13 sec (gallium) 
indicate that the transfer of momentum at high tem­
peratures takes place between points that are about one-
third of a complete orbit apart. Since the shearing stress 
raises or lowers the energy surfaces along (111) direc­
tions, the closest equivalent positions are 109° apart or 
about one-third of a complete cycle. The second process 
T{ of Eq. (20) indicates that the hole traverses two-
thirds of a much larger orbit before it transfers its 
momentum. 

As the doping increases, the impurity atoms come so 
close together that bound orbits are no longer possible. 
In this region the only process left is the elastic scattering 
by the ionized impurities which follows the law of Eq. 
(17). If we use the measured relaxation time of 10~13 sec 
for the impurity doping of 3X1019 boron atoms per cc, 
and calculate the velocity from the equation 

1^*72= 0t6WF=& (*V*»*) ( 3 i W 8 , (27) 

one finds for the scattering radius R the value of 
8.5 X 10~8 cm. Comparing the relaxation time 10-13 with 
the total relaxation time from the conductivity Eq. (16) 
it appears that about 1 out of 10 collisions results in a 
change of position on the surface. 

The theoretical situation for the change in moduli due 
to doping for ^-type silicon is far from satisfactory. 
Three theoretical derivations1'14,15 have been given for 
the change in shearing modulus. The first solution1 

assumes spherical energy surfaces, as shown by the 
dashed lines of Fig. 6, and limits consideration to the 
heavy hole surface. The second solution14 takes account 
of the curvature of the two surfaces. In the degenerate 
range these solutions reduce to the forms 

ACUQ— 

Sh2 

- 0.825w* d2Nm 

= (Keyes), (28) 
h2 

AcuQ= (~2.38ni*N1/*d2/h2) (Bir and Tursunov). (29) 

14 G. L. Bir and A. Tursunov, Fiz. Tverd. Tela 4, 2625 (1962) 
[English transl.: Soviet Phys.—Solid State 4, 1925 (1963)]. 

15 P. Csavinszky and N. G. Einspruch, Phys. Rev. 132, 2434 
(1963). 

TABLE I. Values of Acu at 1.5°K for various dopings. 

Gallium 
Boron doping doping 

Doping 3X1019 10» 2.5X1018 5X1017 1.5X1018 

AC44XIO-9 17.9 12.4 13.5 10.5 17.2 

Table I shows measurements for Acu at 1.5 °K for 
different dopings for boron and one value for gallium 
doping. 

In the degenerate region from 1019 to 3X1019 boron 
atoms per cc, the variation is proportional to the one-
third power of the doping level in agreement with Eqs. 
(29) and (30). Taking m* as 0.44m0 as an average value 
for the two surfaces, the deformation potential values 
are 

d= 17.2 eV (Keyes); (30) 

d= 10.1 eV (Bir and Tursunov). 

A third calculation has recently been made15 which 
yields values close to the value given by Keyes. 
Csavinszky and Einspruch15 have considered the spin-
orbit coupled band in addition to the two degenerate 
bands but have assumed spherical symmetry of the 
bands. For doping up to 1019 boron atoms per cc, the two 
upper bands are sufficient for the calculation and the 
result obtained is 

l /87r\2 / 3d2 

A*44o=—( — ) -\mvlN^+mV2N^~], (33) 
5 \ 3 / h2 

where mvl=OA9mo is the heavy hole mass and mV2 

= 0.16wo is the light hole mass. Since 

N1/N2= (mvi/mv^
2= 5.35, (34) 

^ 1 = 0.85^0 and #2=0.15^0. Hence, for a doping of 
1019 boron atoms per cc, the value of d= 15.4 eV. 

However, the larger values measured at the lower 
dopings at 1.5°K—for which asymptotic values have not 
been reached—and the large variation with temperature 
shown by Fig. 8(b) cast doubt on the validity of these 
calculations. I t is conjectured that there is a tempera­
ture variation of the position of the holes on the energy 
surfaces and at low temperatures it seems likely that the 
heavy holes collect near the (111) positions while light 
holes collect near the (100) positions. As seen from Fig. 
6, lower part, which shows the cross sections of the 
energy surfaces a constant distance below the origin, 
the heavy-hole (111) positions and the light-hole (100) 
positions are farthest from the origin and require elec­
trons of higher momentum to reach the surface. Hence, 
if momentum is equalized in all directions, the surfaces 
near the origin should be filled up to a level higher than 
those far away and hence the (111) positions for the 
heavy-hole surface and the (100) positions for the light-
hole surface should have the lower energies. At very 
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low temperatures, holes tend to congregate in these 
directions. 

If this conjecture is correct, the change in modulus for 
the^heavy-hole surface should follow that for germa­
nium, as given by Eq. (12), while that for the light-hole 
surface should follow Eq. (8) with kT replaced by (10), 
for the low temperatures, giving 

16/7r\2/*m,*Nm& 

If we take an average value of 15 eV for the shear defor­
mation potential d, the indicated change in modulus 
from Eq. (12)—using w*=0.49m0 and ^=0.85^0, i.e., 
2.12X1018 heavy holes—is 26.5X109 dyn/cm2, which is 
not out of line with the values of Fig. 8 (b) extrapolated 
to lower temperatures. For higher doping levels this 
effect disappears since the momentum differences for 
the various positions become smaller. 

Another piece of evidence that the light holes congre­
gate along (100) positions at low temperatures is 
furnished by the nearly constant relaxation time of 

1. INTRODUCTION 

TN a monatomic crystal, the migration of a defect, 
-*• such as a vacancy or an interstitial atom, proceeds 
as a symmetric random walk1 on the crystal lattice. The 
rate at which mobile defects are annihilated or trapped 
at point sinks is proportional to the rate at which they 

* Work supported by the U. S. Atomic Energy Commission. 
1 In this discussion a symmetric random walk is one wherein 

the jump probabilities for each possible jump direction are equal 
and constant. The vacancy random walk in an alloy is in general 
asymmetric because of its ordering energy, i.e., the jump proba­
bilities for each possible direction are not equal and also depend 
upon the position of the vacancy. 

Fig. 11 for longitudinal waves propagated along the 
(100) direction. The data of Fig. 12 show that ^-silicon 
with boron becomes degenerate for a doping of 3X1019 

atoms per cc. This is taken to mean that the impurities 
are near enough together to prevent any excited state 
orbits around the boron atoms. The smallest orbits will 
be executed by the heavy holes and hence they will 
reach degeneracy at a higher doping level than the light 
hole surface. With a mass ratio of 0.49 to 0.16 or 3.06, 
the radius will be this factor larger for the light-hole 
surface. Hence, this surface should become degenerate 
for a doping of 

3X 1019/(3.06)3= 1018 boron atoms per cc. (32) 

Therefore, the constant relaxation time of 4.2X 10~12 sec 
for a sample doped with 2.5X1018 boron atoms per cc is 
a confirmation that, at low temperatures, a longitudinal 
stress along the (100) axis actuates mostly light holes. 

If the relaxation time is due to scattering of light 
holes by impurities, calculations indicate that the 
scattering radius is about 5X 10~8cm,in good agreement 
with the value obtained for the degenerate heavy-hole 
surface. 

encounter fresh sites which have not been visited pre­
viously. Damask and Dienes2 will treat the physical 
side of this process in a forthcoming book. On the basis 
of a Monte Carlo study, Beeler and Delaney3 concluded 
that the average number of distinct sites, B(n), visited 
by a point defect in either a symmetric or an asym­
metric random walk of n jumps was of the form, 

_ 8(n) = An* (1) 
2 A. C. Damask and G. J. Dienes, "Point Defects in Metals" 

(to be published). 
3 J. R. Beeler, Jr., and J. A. Delaney, Phys. Rev. 130, 962 

(1963); J. R. Beeler, Jr., U.S.A.F. Report ASD-TDR 63-215 
(unpublished). 
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Distribution Functions for the Number of Distinct Sites Visited in a 
Random Walk on Cubic Lattices: Relation to Defect Annealing* 

J. R. BEELER, JR. 

Nuclear Materials and Propulsion Operation, General Electric Company, Cincinnati, Ohio 
(Received 17 January 1964) 

Distribution functions for the number of distinct sites S(n) visited by a point defect executing a symmetric 
random walk of n jumps on two- and three-dimensional lattices were computed using the Monte Carlo 
method. The square planar, simple cubic, bcc, and fee lattices were treated. In three dimensions, the normal 
distribution appears to describe S(n) for ^>10 4 jumps and at 104 jumps the derivative dS(n)/dn of the 
average number, B(n), of distinct sites is within 0.5% of the value given by Vineyard's exact asymptotic 
solution. The defect annealing rate was computed using the S(n) distribution in a simple example and this 
result compared with an analog Monte Carlo solution. The comparison indicated that fluctuations in the 
initial defect concentration must be considered in computing the initial annealing rate and the mobile defect 
concentration as a function of time. After 500 jumps the annealing rate, but not the concentration, can be 
closely approximated without accounting for fluctuations in the initial concentration. 


