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low temperatures, holes tend to congregate in these 
directions. 

If this conjecture is correct, the change in modulus for 
the^heavy-hole surface should follow that for germa
nium, as given by Eq. (12), while that for the light-hole 
surface should follow Eq. (8) with kT replaced by (10), 
for the low temperatures, giving 

16/7r\2/*m,*Nm& 

If we take an average value of 15 eV for the shear defor
mation potential d, the indicated change in modulus 
from Eq. (12)—using w*=0.49m0 and ^=0.85^0, i.e., 
2.12X1018 heavy holes—is 26.5X109 dyn/cm2, which is 
not out of line with the values of Fig. 8 (b) extrapolated 
to lower temperatures. For higher doping levels this 
effect disappears since the momentum differences for 
the various positions become smaller. 

Another piece of evidence that the light holes congre
gate along (100) positions at low temperatures is 
furnished by the nearly constant relaxation time of 

1. INTRODUCTION 

TN a monatomic crystal, the migration of a defect, 
-*• such as a vacancy or an interstitial atom, proceeds 
as a symmetric random walk1 on the crystal lattice. The 
rate at which mobile defects are annihilated or trapped 
at point sinks is proportional to the rate at which they 

* Work supported by the U. S. Atomic Energy Commission. 
1 In this discussion a symmetric random walk is one wherein 

the jump probabilities for each possible jump direction are equal 
and constant. The vacancy random walk in an alloy is in general 
asymmetric because of its ordering energy, i.e., the jump proba
bilities for each possible direction are not equal and also depend 
upon the position of the vacancy. 

Fig. 11 for longitudinal waves propagated along the 
(100) direction. The data of Fig. 12 show that ^-silicon 
with boron becomes degenerate for a doping of 3X1019 

atoms per cc. This is taken to mean that the impurities 
are near enough together to prevent any excited state 
orbits around the boron atoms. The smallest orbits will 
be executed by the heavy holes and hence they will 
reach degeneracy at a higher doping level than the light 
hole surface. With a mass ratio of 0.49 to 0.16 or 3.06, 
the radius will be this factor larger for the light-hole 
surface. Hence, this surface should become degenerate 
for a doping of 

3X 1019/(3.06)3= 1018 boron atoms per cc. (32) 

Therefore, the constant relaxation time of 4.2X 10~12 sec 
for a sample doped with 2.5X1018 boron atoms per cc is 
a confirmation that, at low temperatures, a longitudinal 
stress along the (100) axis actuates mostly light holes. 

If the relaxation time is due to scattering of light 
holes by impurities, calculations indicate that the 
scattering radius is about 5X 10~8cm,in good agreement 
with the value obtained for the degenerate heavy-hole 
surface. 

encounter fresh sites which have not been visited pre
viously. Damask and Dienes2 will treat the physical 
side of this process in a forthcoming book. On the basis 
of a Monte Carlo study, Beeler and Delaney3 concluded 
that the average number of distinct sites, B(n), visited 
by a point defect in either a symmetric or an asym
metric random walk of n jumps was of the form, 

_ 8(n) = An* (1) 
2 A. C. Damask and G. J. Dienes, "Point Defects in Metals" 

(to be published). 
3 J. R. Beeler, Jr., and J. A. Delaney, Phys. Rev. 130, 962 

(1963); J. R. Beeler, Jr., U.S.A.F. Report ASD-TDR 63-215 
(unpublished). 
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Distribution functions for the number of distinct sites S(n) visited by a point defect executing a symmetric 
random walk of n jumps on two- and three-dimensional lattices were computed using the Monte Carlo 
method. The square planar, simple cubic, bcc, and fee lattices were treated. In three dimensions, the normal 
distribution appears to describe S(n) for ^>10 4 jumps and at 104 jumps the derivative dS(n)/dn of the 
average number, B(n), of distinct sites is within 0.5% of the value given by Vineyard's exact asymptotic 
solution. The defect annealing rate was computed using the S(n) distribution in a simple example and this 
result compared with an analog Monte Carlo solution. The comparison indicated that fluctuations in the 
initial defect concentration must be considered in computing the initial annealing rate and the mobile defect 
concentration as a function of time. After 500 jumps the annealing rate, but not the concentration, can be 
closely approximated without accounting for fluctuations in the initial concentration. 
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for a two-dimensional lattice, and of the form 

B(n) = B+Cn (2) 

for a three-dimensional lattice, where A, B, C, and k are 
constants for a given lattice structure. Their computa
tions pertained to vacancy migration in a binary alloy 
and describe the relation between S(n) and the rate of 
ordering (disordering) for ^<104 jumps. Migration on 
the square planar simple cubic, bcc, and fee lattices was 
investigated. Vineyard4 subsequently proved that the 
asymptotic form of S(n) for a three-dimensional 
symmetric random walk is 

lim 3(») = Cw. (3) 
n—»oo 

The Monte Carlo results of Beeler and Delaney for 
dS(n)/dn=C on the interval 10s<n< 104, in the case of 
zero ordering energy, agree closely with the exact 
asymptotic results given by Vineyard's analysis, the 
Monte Carlo results being about 1% larger than the 
exact asymptotic values. Vineyard also showed that 

S(»)=(8»)1/2A (4) 
in one dimension. 

In this communication we describe the distribution 
function F(S;n) for S(n), as given by Monte Carlo 
calculations, for the square planar (sp), simple cubic 
(sc), bcc and fee lattices. F(S;n) is the probability that 
a defect visits 5 or less distinct lattice sites in n jumps. 
Direct application of these distributions to defect 
annealing calculations is illustrated in a simple, yet 
physically significant numerical example wherein atten
tion is called to the effect of fluctuations in the initial 
defect concentration upon the initial defect annealing 
rate. This effect first came to our attention in a com
parison of the annealing rate predicted by F(S; n), on 
the basis of the macroscopic (average) defect concentra
tion, with that obtained directly in a separate analog 
Monte Carlo annealing calculation wherein fluctuation 
effects were automatically accounted for. The presence 
of fluctuations significantly increased the initial 
annealing rate relative to that obtained on the basis of 
the macroscopic concentration. 

On the interval 1000</*<5000, F(S;n) appears to 
start an approach to the normal distribution. A x2 

analysis indicated that F(S;n) is very probably normal 
for w>104 infthree-dimensional lattices, but gives no 
information on the convergence to a normal distribution 
in two dimensions. Up to »= 104 the density function 
/ ( S ; n) = dF(S;n)/dS is definitely skewed to the right. 
This feature enhances the increased initial annealing 
rate contribution arising from concentration fluctua
tions. The indicated increase is possibly large enough 
to be detectable in high-temperature quenching experi
ments and should exert a dominant influence during 
the initial stage of defect annihilation and clustering in 
irradiated specimens. 

< G. H. Vineyard, J. Math. Phys. 4, 1191 (1963). 

2. COMPUTATIONAL METHOD 

Distribution functions F(S;n) and density functions 
f(S; n) for each lattice were estimated by running 1000 
independent random walk histories of 104 jumps each 
using an IBM-7090 computer. The mean (£), mode 
(5*), median (Sm) and standard deviation (a) were 
computed at 10-jump intervals up to 100 jumps, 
100-jump intervals up to 103 jumps, and 1000-jump 
intervals up to 104 jumps. In each instance an expected 
tendency toward the normal distribution was monitored 
by performing an x2 test for 21 deg of freedom5 and 
computing the coefficients of skewness (71) and excess 
(72).6 S(n) and <r were computed using the first 500 
histories, the second 500 histories and all 1000 histories. 
The differences between the results given by each 
sample set were found to be negligible and on this basis 
we decided that the 1000-history sample size was 
sufficiently large to form a basis for annealing calcula
tions. In this regard, it is interesting to note that the 
difference between the presents results, based on a least-
squares fit to data from 1000 histories, and the original 
calculations of Beeler and Delaney, based on a least-
squares fit to the data from only 10 histories, is less 
than 0.5%. 

3. DISTRIBUTION FUNCTION RESULTS 

Selected plots of F(S; n) for n= 10, 20, 50, 100, 1000, 
and 10 000 jumps are given in Figs. 1-4 in terms of the 
ratio S{n)/n. This mode of presentation makes it 
easier to see how F(S\n) changes as n increases, than if 
the curves were plotted versus S(n). Let Si(n) be the 
largest S value such that F(S;n) = 0 and 52(») the 
smallest S wave such that F(S;n) = l. The range of 
the distribution is defined as AS(n) = Sn(n)—Si(n). In 
all instances AS(n)/n, S(n)/n, Sm(n)/n, and S*(n)/n 
decrease monotonically as n increases. S\(n)/n remains 
more or less constant in the two-dimensional case, the 
diminution in AS/n arising essentially from a mono-
tonic decrease in 52(w)/w. In the three-dimensional 

S(n)/n 

FIG. 1. Distribution function for square planar lattice. 

5 D. R. Evans, The Atomic Nucleus (McGraw-Hill Book 
Company, Inc., New York, 1955); see pp. 774r-777. 

6 H . Cramer, Mathematical Methods of Statistics (Princeton 
University Press, Princeton, New Jersey, 1954); see p. 183. 
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FIG. 2. Distribution function for simple cubic lattice. Vertical 
tick in Figs. 2-4 indicates Vineyard's asymptotic solution for 
S\n)/n. 
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FIG. 4. Distribution function for fee lattice. 

lattices, however, both S\{n)/n and Si{n)/n change 
as n increases, S\{n)/n tending toward S(n)/n from 
below and S<t{n)/n approaching it from above. The 
vertical tick defines the lower limit of B(n)/n given by 
Vineyard's calculations for n—•> oo. For all practical 
purposes, one can consider this asymptotic behavior to 
be attained at ^=104 jumps. Table I_ compares the 
1000-history Monte Carlo results for dS/dn at n=10A 

with Vineyard's evaluations for the asymptotic case. 
All distributions were skewed negatively for ^<104 

as shown by the coefficient of skewness listed in 
Table II. This skewness is evident from inspection of 
the curves in Figs. 1-4 for n<50. By definition,6 

7i==W°'3> (5) 

where fxn is the nth. moment of the distribution about 
the mean. A negative 71 means that the tail of the 
distribution for S<S is longer than the forward tail 
for S>S. If 7 i>0 the opposite is true and 71=0 for 
the normal distribution. A measure of how the shape of 
the density function f(S] n), in the vicinity of the mode, 

£. 0.8 

differs from that for the normal density function is 
given by the coefficient of excess6 

72 = /*4/cr4 (6) 

listed in Table III. If 72 <0, f(S; n) is more flat in the 
vicinity of the mode than the normal density function 
and more peaked if 72>0. In this regard 72<0 for the 
sp and sc lattices but 72 >0 for bec and fee lattices. This 
suggests that 71 is independent of the lattice coordina
tion number z but that 72<0 for z<zo where 6<ZQ<8. 

A x2 test was used to judge the over-all fit of a normal 
distribution to the Monte Carlo data. The averages of 
the x2 values obtained using 21 deg of freedom (23 
intervals) are given in Table IV over 500-900 jumps, 
1000-5000 jumps, and 5000-10 000 jumps for each 
lattice. A composite average for the bec and fee distribu
tions appears in the last column. According to Evans,5 

for example, given 21 deg of freedom, x2 in the range 
13<x2:<30 indicates that the data at hand is very 
probably described by the assumed distribution, i.e., 
the normal distribution in this case. On the other hand, 
either x2 < 10 or x2 > 36 indicates that it is very unlikely 
that the data represents a randomly drawn set of values 
from the assumed distribution. Excepting the sp 
lattice, x2 decreased with increasing n for ^>500. All 
X2 values were in the plausible fit range 10<x2<36 for 
^>1000. Both the distribution for the sc lattice and 
that for the bec lattice exhibited x2 values within the 

TABLE I. Values of C in S(n) =B-\-Cn given by (a) 1000-history 
Monte Carlo (MC) calculations at n — W and (b) Vineyard's 
exact solution f or n —> 00. 

(a) 
Monte Carlo 

(b) 
Vineyard 
in 0 (a)/(b) 

SC 
bec 
fee 

0.6641 
0.7216 
0.7472 

0.6595 
0.7178 
0.7437 

1.005 
1.005 
1.005 

FIG. 3. Distribution function for bee lattice. 
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TABLE II . Coefficient of skewness (71) for 
Monte Carlo distributions F(S; n). 

n 

10 
50 

100 
500 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10 000 

SPL 

-0.054 
+0.07 
+0.003 
-0.130 
-0.159 
-0.230 
-0.440 
-0.400 
-0.320 
-0.320 
-0.300 
-0.310 
-0.370 
-0.382 

Skewness 
SCL 

-0.386 
-0.286 
-0.333 
-0.270 
-0.238 
-0.350 
-0.330 
-0.310 
-0.320 
-0.350 
-0.280 
-0.230 
-0.200 
-0.169 

BCC 

-0.558 
-0.320 
-0.364 
-0.540 
-0.418 
-0 .40 
-0 .28 
-0 .26 
-0 .19 
-0 .20 
-0 .19 
-0 .21 
-0 .20 
-0 .19 

FCC 

-0.663 
-0.550 
-0.444 
-0.300 
-0.293 
-0.330 
-0.320 
-0.300 
-0.340 
-0.340 
-0.300 
-0.260 
-0.220 
-0.205 

very probable range for ^>6000 jumps. Because 71 and 
72 for the bcc and fee distribution behave similarly 
above ^=1000 we feel that a composite average of x2 

for these two lattices may be meaningful. This com
posite average is listed in the right-hand column. The 
X2 test indicates: (1) F(S;n) is not well approximated 
by the normal distribution for w<1000; (2) the normal 
distribution is a good approximation to F(S;n) for 
1 0 3 < ^ < 1 0 4 ; (3) F(S;n) is very probably normal for 
n> 104 in the three-dimensional case. 

A_ least-squares analysis gives the following results 
for S(n) and <r(n) on the interval 10 2 <^<10 4 : 

S(n) = B+Cn, 

cr(n) = Ank. 

0) 
(8) 

Values for the constants A, B, C, and k appear in 
T a b l e V. 

4. EFFECT OF FLUCTUATIONS ON THE 
INITIAL ANNEALING RATE 

The distributions described in the previous section 
were computed to supplement a separate analog Monte 

TABLE III . Coefficient of excess (72) for 
Monte Carlo distributions F(S;n). 

SPL 
Excess 

SCL BCC FCC 

10 
50 

100 
|500 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10 000 

-0.455 
-0.270 
-0.158 
-0.170 
-0.048 
-0.030 
+0.028 
+0.22 
+0.35 
+0.17 
-0 .05 
-0.001 
-0 .05 
-0.059 

-0.355 
+0.120 
+0.103 
+0.210 
-0.094 
-0 .01 
-0 .10 
-0 .08 
+0.006 
-0 .10 
-0 .13 
-0 .20 
-0 .20 
-0 .12 

Less slim 

-0.301 
-0 .14 
+0.339 
+0.56 
+0.388 
+0.76 
+0.40 
+0.16 
+0.13 
+0.04 
+0.07 
+0.11 
+0.13 
+0.13 

-0.055 
+0.12 
+0.216 
+0.150 
+0.043 
+0.29 
+0.16 
+0.21 
+0.11 
+0.27 
+0.34 
+0.39 
+0,11 
+0.12 

More slim 

TABLE IV. 
Xc2 is 

An 

500-900 
1000-5000 
6000-10 000 

Average x2 

the average 

sp 

27.6 
34.8 
33.0 

values over An ranges indicated. 
: of columns three and four. 

sc 

39.8 
34.4 
22.1 

bcc 

47.5 
26.8 
24.7 

fee Xc2 

38.8 42.0 
32.2 31.1 
32.2 26.3 

Carlo study on defect annealing in cubic crystallites 
containing up to 2 X106 lattice sites. In order to obtain 
even approximate agreement between the initial 
annealing rate given by the analog Monte Carlo7 

calculations and that computed using F(S;n), it was 
necessary to consider the effect of fluctuations in the 
initial defect concentration within the crystallite. In 
this section the number of mobile defects remaining 
after an average of n jumps per defect is computed 
analytically in two ways. In the first instance the defect 
encounter probability is computed using F(S;n) and 
the average concentration over the crystallite; in the 
second, it is computed using F(S;n) and the average 
concentrations in each of N c noninteracting crystallite 
subvolumes populated according to the random distri
bution law for Mo defects in Nc boxes of equal volume. 
The two expressions are then applied in a numerical 
example for M0= 100 initially mobile defects in a fee 
crystallite containing 5X105 sites and the results 
compared with those obtained in the Monte Carlo 
solution for this system. 

A. Average Concentration Approach 

Let there exist MQ mobile defects randomly distri
buted on 2 lattice sites and Mc defects contained in 
randomly distributed stable, immobile defect clusters 
at time / = 0 . Assume that the sole mobile defect 
removal process is association with other defects at 
contact. A pair of defects will be taken as stable and 
immobile in this example. Further, assume that the 
association probability e at contact is the same when 
one member of the contact pair is a cluster member as 
when both defects were mobile just before contact. Mn 

will denote the number of mobile defects remaining 
after n jumps per defect. Let a = 1 / 2 . The probability 

TABLE V. S(n) and a(n) given by a least 
of the Monte Carlo data. 

S(n) 
B 

Spa 
sc 16.27 
bcc 16.90 
fee 15.84 

= B+Cn 
C 

0.6642 
0.7217 
0.7473 

-squares analysis 

<r(n)=Ank 

A k 

0.194 0.799 
0.414 0.608 
0.385 0.604 
0.308 0.635 

»S(n) = 0.7648»°-8935. 

7 N. R. Baumgardt and J. R. Beeler, Jr., Bull. Am. Phys. Soc, 
9, 294 (1964). 
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that a mobile defect will encounter a cluster member on 
the nth jump is 

a£Mc+M0-Mn-{]p*(S; n-1)/(5; n-1), (9) 

where p*(S;n—l) is the conditional probability for a 
defect visiting (5+1) distinct sites on the (n+l)th 
jump provided it had visited exactly 5 distinct sites in 
n jumps. The probability that a mobile defect will 
contact another mobile defect is 

a[Mn^-!]#*(£; n-1)/(5; n-1). (10) 

Contact with a cluster leads to the removal of one 
mobile defect but contact between two mobile defect 
leads to a depletion of two mobile defects; hence, the 
difference equation for Mn is 

Mn==Mn-l-ae[Mc+Mo-Mn-l] 

X Z [ J f _ i / ( S ; » - W ( . S ; » - l ) 
S=Si(n~ 1) 

- 2 a e [ M „ _ 1 - l ] 

£=£2(n- l ) 

X £ [ M ^ i / ( S ; » - 1 ) # * ( 5 ; » - 1 ) ] . (11) 
S=Si(n—1) 

By the definition of / ( 5 ; w) the summation reduces to 
Mn-.i(p*(n—l)). Equation (11) leads to the differential 
approximation 

dM/dn££-a€M(p*(n))ZM+ (M c+M"0-2)] . (12) 

Integration gives 

lnZM/(M+Mc+M0-2)lon 

= -ae(Mc+Mo-2)j (p*(n))dn. (13) 
Jo 

Collecting terms, one obtains 

M(n) = M0ZMe+Mo-2y{Z2(Mo-l)+Mel 
XtxpZae(Mc+MQ-2)Pn]-Mo}, (14) 

where P n= J* (p* (n))dn. Because (p*{n)) is closely 
approximated by dB(n)/dn, we will use 

-'o 
ldB/dn\dn=S{n). (15) 

M(n) was evaluated for the particular case a= 2X 10~6, 
M"o=100, Mc=0, and €=1. The results are discussed 
in Sec. 4C. 

B. Consideration of Fluctuations 

In the estimation of M(n) outlined above one con
sidered (Mc+Mo) defects in a cell of 2 sites and 
computed the contact probability from the average 
concentration 

C= (Me+Mo)/Z (16) 

TABLE VI. Probability g(k) to find k defects in a sub volume of 
5000 sites when the macroscopic defect concentration is 
C=2X10~4 defects per site. Ck is the associated cell average 
concentration. 

k 

0 
1 
2 
3 
4 
5 
6 

i(k) 

0.366032 
0.369730 
0.184865 
0.0609992 
0.0149417 
0.00289778 
0.0046345 

CaXlO* 

0 
2 
4 
6 
8 
10 
12 

defects per site. The effect of fluctuations in the initial 
defect concentration upon the annealing rate can be 
estimated by introducing the density function g(k) for 
finding exactly k mobile defects (&=1,2,- • -,ilfo) in a 
given subvolume of a collection of Nc equal subvolumes 
with atomic-scale linear dimensions. Let M(n) be the 
number of mobile defects remaining after n jumps, 
computed on the basis of {g(k)} rather than (7, and 
set Mc=0. M(n) then is 

M(n) = ZMk(n). (17) 

The quantity Mn(k) is obtained by substituting 
Mok=kg(k)Nc for Mo, and ak=l/g(k)2 for a, in 
Eq. (14). The result is 

Mk(n) = Mok(Mok-2)/{2(Mok-l) 
Xexplak€(M0k-2)P n]-Afo*>. (18) 

M(n) was evaluated for the particular case 
a=2X10-6, _M"o = Nc=100 and e=l , using8 

g(k) = M0l(Nc-l)
M°-k/kl(Mo-k)\Nc

M<>. (19) 

Values of g(k) for k<6 are given in Table VI along with 
the associated subvolume concentrations. The average 
value (k)=l corresponds to an average concentration 
of 2X10-4 defects per site over the entire crystallite, 
the concentration used in computing M(n). 

C. Comparison with Monte Carlo Solution 

In Fig. 5, M(n), M(n) and Monte Carlo solution, 
Mmc(n), are compared for a=2X10~6, if0=iVc=100, 
and €=1 for w<1000. We will assume that Mmo is a 
physically more realistic solution than either M or M 
because one would expect that it better describes the 
association of initially closely spaced defects. It will be 
used as the reference in all discussion. The curves 
become nearly parallel at ^=500, and although it is 
not shown in the figure, they remained nearly parallel 
up to n= 2000, the point at which the Monte Carlo runs 
were terminated. It appears, therefore, that dM/dn is 

8 W. Feller, An Introduction to Probability Theory and Its 
Applications (John Wiley & Sons, Inc., New York, 1957), 2nd ed., 
p. 34. 
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a good approximation to the true annealing rate for 
n > 500 even though M itself is too large. Rapid associa
tion of defects, initially closely spaced, accounts for the 
more rapid falloff in Mmo for n<500 relative to that 
exhibited by M and M. The Monte Carlo method 
enables one to easily describe the removal of these 
initially close defects during the early annealing stage, 
a process only crudely described by M. It would seem 
that a rigorous analytical description of fluctuation 
effects in the association of randomly walking defects 
on a lattice would be somewhat complicated. 

If one accepts Mmc as being more realistic than either 
M or M, our results indicate that the use of M in 
interpreting defect removal data would cause one to 
overestimate the number of jumps per defect required 
to attain a given removal fraction.9 Table VII lists the 
number of jumps n(M) and n(Mmc) given by M and 
Mmc, respectively, required to remove a given fraction 
of mobile defects. Extrapolation of the straight line 
log-log plot of n(M)/n(MmC) versus the removal frac
tion, gave a limiting value of ~1.1 for this ratio. In a 
strict sense, the ratios listed in Table VII should be 
regarded as lower bounds, especially when they are 
associated with ^>1000. Although each defect was 
initially contained within a cube of 5X105 sites, in the 
Monte Carlo calculations, some defects migrated out 
of the cube into a defect-free environment during the 
annealing process. These escaping defects served to 
increase S a maximum of 2.4% at ^=1000, i.e., a 
maximum of 1.2X104 sites outside the 5X105 site cube 
were visited. This caused dMmc/dn to be slightly smaller 

100 

u 
U_ 
UJ 
O 

80 

60 

40 

20 

M GIVEN BY EQ. (14) 
M GIVEN BY EQ. (17) 
Mmc IS MONTE CARLO SOLUTION 
M™« 100 AND a « 2 x 10" 6 

FCC LATTICE 

200 400 600 800 

JUMPS PER EXTANT MOBILE DEFECT 

1000 

FIG. 5. Comparison of extant number of mobile defects after n 
jumps as given by M} M, and Mmo for a fee lattice. 

TABLE VII. Comparison of the number of jumps n(M) and 
n(Mmc) per extant mobile defect, given by M and MmC) respec
tively, required to remove a given fraction of mobile defects when 
M 0 = 1 0 0 a n d a = 2X10-6. 

Fraction 
removed 

0.1 
0.2 
0.3 
0.4 
0.5 
1.0 

n(M) 

340 
770 
1350 
2300 
3300 

n(Mmc) 

60 
200 
520 
1070 
2000 

n(M)/n(Mmc) 

5.7 
3.8 
7.6 
2.2 
1.6 

~1.1 

9 After completion of this article, experimental evidence sup
porting this conclusion was found in a paper by F. Dworschak, 
K. Herschbach, and J. S. Koehler, Phys, Rev. 133, A293 (1964). 

than it would have been had all defects remained inside 
the 5X105 site cell. At /z= 20002 was increased a 
maximum of 3.5% by escaping defects. 

Twenty-five Monte Carlo runs of 2000 jumps per 
extant mobile defect were made to obtain Mmc Five 
independent runs were made for each of five inde
pendent, randomly sampled initial defect distributions 
in a cube of 5X105 sites. A x2 analysis of the five initial 
distributions showed that they were consistent with the 
density function g(k) of Eq. (19). 

5. SUMMARY 

The calculations described above indicate: 

(1) F(S\n) is not well approximated by the normal 
distribution for n<S000 jumps. However, F(S;n) 
appears to approach the normal distribution on the 
interval 5000<»<10 000 and to be normal for ^>104 

in three-dimensional lattices. 
(2) Our results give no conclusive evidence that 

F(S;n) either does or does not approach the normal 
distribution in two-dimensional lattices. 

(3) The use of Vineyard's asymptotic result for S(n), 
and the assumption that F(S',n) is normal [using 
Table V for <i(n)~] should give a very good approxima
tion to the distribution of S(n) for ^>104. 

(4) A computation of the mobile defect concentration 
and the initial annealing rate must account for the 
effect of fluctuations in the initial defect concentration.9 

Apparently, however, the annealing rate after the 
initial annealing stage can be well approximated by 
considering only the average defect concentration. 
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