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A theoretical model for the behavior of an optical maser is presented in which the electromagnetic field 
is treated classically, and the active medium is made up of thermally moving atoms which acquire nonlinear 
electric dipole moments under the action of the field according to the laws of quantum mechanics. The cor
responding macroscopic electric polarization of the medium acts as a source for an electromagnetic field. 
The self-consistency requirement that a quasistationary field should be sustained by the induced polariza
tion leads to equations which determine the amplitudes and frequencies of multimode oscillation as functions 
of the various parameters characterizing the maser. Among the results obtained are: threshold conditions, 
single-mode output as a function of cavity tuning, frequency pulling and pushing, mode competition phe
nomena including frequency locking, production of combination tones, and population pulsations. A more 
approximate discussion of maser action using rate equations is also given in which the concept of "hole 
burning" plays a role. 

1. INTRODUCTION 

THIS paper gives a theoretical description of the 
operation of multimode maser oscillators. The 

type of approach is particularly suitable for gaseous 
optical masers of the type suggested by Schawlow and 
Townes,1 and first realized experimentally by Javan, 
Bennett, and Herriott,2 but the equations should also 
find use in the description of some features of solid-
state optical masers. 

2. BASIS FOR CALCULATION 

We consider a high-Q multimode cavity in which 
there is a given classical electromagnetic field acting on 
a material medium which consists of a collection of 
atoms described by the laws of quantum mechanics. 
No attempt is made to consider noise due to spon
taneous emission and thermal, density, or quantum 
fluctuations. The high degree of spectral purity ob
served by Javan and co-workers3 suggests that these 
should be good approximations. 

The effect of the electromagnetic field on the atoms 
in the cavity is to produce a macroscopic electric 
polarization P(r,/) of the medium. This acts as a source 
for the electromagnetic field in accordance with Max
well's equations. The conditions for self-consistency 
(that the field produced should be equal to the field 
assumed) determine the amplitudes and frequencies of 
the possible oscillations. The calculations will include 
nonlinear effects, so that phenomena of frequency pull
ing and pushing, mode competition, frequency locking, 
etc., can be described. 

* This work was supported in part by the U. S. Air Force Office of 
Scientific Research. The main results of the paper were reported 
at the Third International Conference on Quantum Electronics, 
Paris, February, 1963. Lectures on some of the material were 
given at the 1963 Varenna Summer School. 

XA. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940 
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2 A. Javan, W. R. Bennett and D. R. Herriott, Phys. Rev. 
Letters 6, 106 (1961). 

3 T. S. Jaseja, A. Javan, and C. H. Townes, Phys. Rev. Letters 
10, 165 (1963). 

The thermal motion of an atom during its natural 
decay time may carry it several wavelengths through 
the standing wave pattern of the electromagnetic field. 
As a result, the atom "sees" Doppler-shifted optical 
frequencies which depend on its trajectory. This im
portant circumstance considerably influences the be
havior of the Javan-Bennett-Herriott maser. When, 
however, thermal motion is neglected the equations of 
the paper can be used in a model calculation for an 
ideal solid-state optical maser. 

We will assume that only two atomic states a and b 
contribute to the maser action. As a related simplifica
tion the vector character (polarization) of the electro
magnetic field will be ignored. In order to ensure that 
our analysis should apply, it would be desirable to 
have the optical configuration favor one plane of 
polarization, as with windows of the Brewster's angle 
type. The more complicated problem of a general state 
of polarization will be dealt with in another paper. 

A cavity of the Fabry-Perot type used by Javan, 
Bennett, and Herriott has, of course, a continuum of 
modes because it is not enclosed by reflecting walls. 
However, it follows from work of Fox and Li4 that 
there are discrete sets of quasimodes for which the dif-
fractive leakage from the tube is small. The cavity 
modes of highest Q are the even symmetric ones whose 
circular frequencies are given by 

£ln—imc/L, (1) 

where c is the velocity of light, L is the distance be
tween the reflecting plates (L^lOO cm) and n is a large 
integer, typically of order 2X106. Fox and Li have 
shown that the modes of next highest Q are those 
possessing odd radial symmetry, which, for typical 
geometry differ by about 1 Mc/sec from the former 
modes. Our discussion will be specifically, but not 
inevitably, aimed at the modes of highest Q. 

4 A. G. Fox and T. Li, Bell System Tech. J. 40, 61 (1961). 

A1429 



A1430 W I L L I S E . L A M B , J R . 

3. ELECTROMAGNETIC FIELD EQUATIONS 

We write Maxwell's equations in mks units as 

d i v D - 0 c u r l E = - d B / d * ( ) 

d i v B - 0 c u r l H - J + d D / d / , U 

where 
D = e 0 E + D , B=MoH, J - c r E . (2a) 

To an approximation whose validity will be dis
cussed in another paper, the array of excited atoms may 
be regarded as a medium with an electrical state de
scribed by a macroscopic polarization P(r,/) (electric 
dipole moment density). In order to avoid a complicated 
boundary value problem, it is convenient to assume the 
presence of a lossy medium with an Ohmic conductivity 
a adjusted to give the desired damping of a normal 
mode. The electric field then obeys a wave equation 

curl cm\E+fjio(7dE/dt+fjioeod2E/dt2^ ~fi0d
2F/dt2. (3) 

In the subsequent calculations the main effect of the 
space dependence of HL{x,y,z,t) comes from the motion 
of the excited atoms through the field which leads to 
amplitude modulation of the fields seen by the atoms. 
The analysis of Fox and Li for the even symmetric 
modes indicates that the electric field does not vary 
rapidly across the tube diameter. Accordingly we take 
only the axial variation of E into account. Then 
curl curlE is replaced by — d2E/dz2, where z is the axial 
coordinate, and E is the transverse electric field. For 
the nth normal mode (unnormalized), we have 
eigenfunctions 

Un(z)^m\Knz, (4) 

with wave number 
Kn~mr/L, (5) 

where n is a large integer. 
In the presence of a given polarization P(z,t), quasi-

stationary forced oscillations of the electric field can be 
expanded in normal mode eigenfunctions 

E(z,t) = ZnAn(t)Un(z), (6 ) 

where the amplitudes A n 00 obey a differential equation 
of a forced, damped simple harmonic oscillator 

d2An /a\dAn /l\(PPn(t) 

— + ( - ) — + Q n 2 A n = - ( - y — (7) 
dt2 \ej dt W dl2 

in which Pn(t) is the space Fourier component of 

2 rL 

Pn(t) = - dzP(z,t)smKnz. (8) 
LJo 

Since Pn(t) will be very nearly monochromatic at an 
optical frequency5 (o.f.) v, we replace its second time 

6 We adopt the convention that all symbols for frequencies 
should denote circular frequencies. A numerical value, e.g., 150 
Mc/sec, however, denotes an ordinary frequency. A decay con
stant like ya which denotes a reciprocal life time l / r« often plays 
the role of a circular frequency. Numerical values of ya will be 
given as ordinary frequencies. 

derivative by —v2Pn on the right side of Eq. (7). Ad
justing the fictional conductivity a to give the desired 
Qn of the nth mode, we write 

a=eov/Qn. (9) 
Then A n (t) obeys 

d2An / v \dAn /v2\ 
+ ( — ) + Q „ M „ = ( ~ ) P n . (10) 

dt2
 \QJ dt \ e 0 / 

In the typical gaseous optical maser, the separation 
of the principal modes A^150 Mc/sec is much larger 
than the cavity mode band width v/Q^l Mc/sec. 
Hence we may hope to neglect time Fourier components 
of A n (t) and Pn (I) which are at frequencies far from the 
cavity resonance frequency Qn, and write6 

An(t) = En(t) cos(vJ+cpn(l)), (11) 
and 

Pn(t) = Cn(t) C0S(VJ+(pn(f)) 

+Sn(t)sm(vJ+<pn(t)), (12) 

where the amplitudes En(t) and phases (pn(t)} as well 
as the in-phase and quadrature coefficients Cn(t) and 
Sn(t) are slowly varying functions of t which, together 
with the frequencies vn, are still to be determined. The 
expressions (11) and (12) are put into Eq. (10) with 
only the first time derivatives of En(t) and <pn(t) re
tained. Equating the coefficients of cos(vnt+(pn) and 
sin(vnt-\- (pn) separately to zero, and further neglecting 
small terms involving vnEn/Qny <pnEn and 

/Q 
and recognizing that vn+ <Pn is very close to S2n, we find 
the self-consistency equations 

(Vn+ <pn — ®n)En^ — \{v/^Cn ( 1 3 ) 

and 

En+l(v/Qn)En= -J(*/€o)S„, (14) 
which serve to determine the amplitudes, frequencies 
and phases of the o.f. radiation once the polarization 
state of the medium is known in terms of the En{t). 

4. POLARIZATION OF THE MEDIUM 

The maser action arises from the establishment of a 
negative temperature distribution for the two excited 
states a and b of the atoms constituting the medium as 
shown in Fig. 1. The ground state, far below a and b, 
is not shown. Consider what happens to an atom which 
at time to is excited by some process (electron bom
bardment, collision of the second kind, absorption of 
resonance radiation, decay from some higher excited 

6 The representation of an arbitrary function An(t) in the 
form (11) in terms of a variable amplitude En(t) and phase <pn(t) 
is not unique. Despite this, because of the use of the rotating 
wave approximation it seems possible through Eqs. (13) and (14) 
to determine both amplitude and phase. [The positive frequency 
part of (11) is a complex function very closely equal to An(

+)(t) 
= En{t) exp—fl'O'nH-<pn(t)) which does have a unique amplitude 
and phase. J 
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-state, e tc) into the upper maser state a. Let the atom 
be at position ro at /o, and have velocity v. For the 
present, we neglect collisions, so that at time t>to the 
atom will be at r = ro+v(/—to). If there is an o.f. 
electric field E(r,/) in the cavity, the atom sees a time-
dependent field E(to+\t—\to}t) for t>h. Associated 
with this field is a time-dependent perturbation energy 
whose matrix element is 

fiV(t)=~ g)E(to+\t-vt0) t), (15) 

where p (assumed real) is the matrix element for the 
electric dipole moment of the atom between states a 
and b. The perturbation causes the atomic wave func
tion to become a time-dependent linear combination 
#(0^«+^(0^&« The quantum-mechanical average value 
of the electric dipole operator for the atom is 
(a*H-a&*)p. 

To follow the time-dependent wave function (in the 
subspace of \j/a and ^&), we start from the equations of 
time-dependent perturbation theory 

id— Waa+ V(t)b~~^iyaa, 

ib=Wbb+V(t)a-hiybb, 
(16) 

in which the radiative decay of states a and b is de
scribed by phenomenological terms containing the de
cay constants ya and y& for the two states. Here fiWa 

and hWb are the unperturbed energies of states a and 
by and the matrix element of the perturbation V(t) is 
given by Eq. (15). 

If the motion of the atom were neglected, and if the 
maser were working in a single cavity mode, V(t) 
would be monochromatic, and the rotating wave ap
proximation would allow the Eqs. (16) to be integrated 
exactly. Even so, there are great algebraic simplifica
tions to be gained by going over to a density matrix 
description7 of an ensemble of atoms consisting of all 
those of a given category which are produced during 
all times to<t. A theory of maser action in this case 
has already been given8 which is valid when the signals 
are strong enough to fully saturate the transition a*->b. 
For multimode operation, such an exact solution can no 
longer be obtained. However, the simpler theory can 
help with the interpretation of our rather complicated 
equations, and it will be discussed in Sees. 16-20. 

When atomic motion through the electromagnetic 
field is taken into account an atom does not see a 
monochromatic perturbation even in single-mode opera
tion. The equations can only be solved in a perturbation 
expansion of the solution in powers of the En(t). I t is 
still advantageous to use the density matrix method, 
considering first only those atoms characterized by 

7 W. E. Lamb, Jr. and T. M. Sanders, Jr., Phys. Rev. 119, 
1901 (1960), especially pp. 1902-1903; L. R. Wilcox and W. E. 
Lamb, Jr., ibid. 119, 1915 (1960), especially p. 1928. 

8 W. E. Lamb, Jr., Quantum Mechanical Amplifiers, in Lectures 
in Theoretical Physics, edited by W. E. Brittin and B. W. Downs 
(Interscience Publishers, Inc., New York, 1960), Vol. II, espe
cially pp. 472-476. 

FIG. 1. Two excited energy levels a and b between which the 
maser action takes place. The levels have a resonance transition 
frequency co>0, and are given phenomenological decay constants 
ya and 76. The excitation of the states is described by the func
tions Xa(fo,2o,i>) which are introduced in Eq. (22). 

a, *Q, 'to, v. The density matrix 

/\a\z ab*\ 
p(a,r0,*o,v,0==( _ IT1 J 

\a*b \b\2/ 

/ Paa Pab \ 

\ Pba Pbb / 

(17) 

obeys an equation of motion 

p = - C ^ , p ] - i ( r p + p r ) , 

where T is the diagonal matrix 

•-f °) 
\ 0 yj 

and the Hamiltonian matrix 3C is 

jWa V(t)\ 

~\V(t) Wb ) ' 

(18) 

(19) 

(20) 

with V(t), as given by Eq. (15), having a complicated 
time dependence because of atomic motion. A solution 
of Eq. (18) which satisfies the initial conditions 

p(a,r0,/o?v,/0): C °) 
Vo o/ 

(21) 

is required. The average electric dipole moment corre
sponding to this density matrix p is $(pab+Pba)' 

To obtain the macroscopic polarization P(r,t) we 
have to combine the contributions of all atoms which 
arrive at r at time t, no matter when or where they were 
excited to state a, and also a similar contribution from 
atoms excited initially to state b. Let X«(ro,/o,v) be the 
number of atoms excited to state a~a, b per unit time 
per unit volume. We have 

P ( r , 0 = P L / dtQ I dio I dY\a(To,to,\) 
c^a.bj^ J J 

X[po6(a,r0,/o,v,0+P6a(a,r0,/o,v,0] 

X 5 ( r - r 0 - v ( / - / o ) ) . (22) 

In practice, X«(ro,/o,v) will be a slowly varying function 
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where 

Paai2) (ayX0)t0,V,tf) 

of r0 so that it can be replaced by /\«(r,*o,v). After where 
integration over ro 

P(r,t)= p x j dtjdy (23) = _ f ' ' ^ , ['' 
J to J to 

dt'"V(t")V(t'") 
J to J to 

X{exp[7a(f 

Similarly, we will have use for a density matrix de-

XAa(rAv)[p„>(a ; r - v ( < - / 0 ) , h, v, <)+conj.]. X { e x p [ 7 f f l ( r - 0 + ( 7 . * + ™ ) ( r - < " ) 

scribing an ensemble of atoms which arrive at r with a n c j s i m j i a r i y 

velocity v at time I regardless of their place ro, time h 
or state a—a, b of excitation. This will be denoted by pi,6(2)(a,r0,/o,v,/') 

p(r,v,/)= L ['dl0fdroK(ro,k,y) = + [ <*<" f dt'"V{t")V{l'") 
<x=a.,bj_M J J to J to 

Xp(a, r 0 , /o ,v ,0«(r - r o -v^+v/o) . (24) X { e x p [ 7 * ( ' ' W ) + ( 7 « 5 + * u ) ( / ' ' W ' ) 

The density matrix resulting from (24) by integration +ya(h—t,n)~]+cori).} • (32) 

over all velocities will be denoted by p(r,/j. ^ FIRST-ORDER THEORY 

5. INTEGRATION OF THE EQUATIONS OF MOTION i n order to convert the expression (29) for pab<» into 

The matrix equation of motion for the density matrix a macroscopic polarization, we must first calculate 

p(a,r0,/o,v,0 has components PabW(a,t,v,t) 

Pah= —iuPab — yabPab+iV(t)(paa — pbb) , „% 

Paa= -yaPaa+iV(t)(pab-pba) , (25) = / dt0pab
(l) (a, T0= T- Yt+Vt0y t0, V, t) (33) 

P65= —7bPbb — iV(t)(pab~Pba) , 
* /9,x as in Eq. (24). 

Pba — pab (26) 
The perturbation V(tr) acting at time t' on the 

where atom specified by r0, /o, v is — (p/fo)E(ro+y(tf —10), /')> 
7a6=J(T«+T&) (26a) but for Eq. (33) we require this for an atom char-

a n j acterized by ro=r—v£+v/o, v, to, for which the ef-

a = W*-Wh>0. (27) fective perturbation 

We consider first the case of excitation to the upper V(t')=- (<p/ti)E(x-\(t-t'), t') (34) 

maser state a. At t=to, paa= 1 and pbb=Pab=pba=0. The does not depend on t0. We may then perform the above 
solution to any desired order in the perturbation V(t) integration over h if we treat \a as a slowly varying 
can be obtained by iteration. There are contributions to function of t0 and evaluate it at t. For the first-order 
Pab^Pba* in first and third order, to pbb in second order, terms, we have to deal with an expression of the form 
and to paa in zeroth and second order. Thus, m zeroth 

OTder' p . w f e r ^ o a p - ^ M (28) / * • / « W V * < * - " > . 
J —oo J to 

and the first-order contribution to pab is . , « « • ! ^ ? • 
By an interchange9 of the order of integrations this 

P«6(1)(^ro,/o,v,0 becomes 

= i [ ^ F ( O e x p [ ( 7 « 6 + i c o ) ^ - / ) + T a ( / o - 0 ] , (29) f it I dtoF(t,t')ey*<*-''>= (l/ya) [ dl'F(tj). (35) 

while the third-order contribution is Let us assume now that the maser oscillator is running 
simultaneously in M cavity modes, so that 

pa^
3>(a,ro,/o,v,/) = i / dt'Vit') 

J to 

X[paa ( 2 )(^ro, /o ,v ,0"P^ ( 2 )(^r 0 , /o ,v ,0] 

M 

£ ( r , 0 ~ £ E*WM c o s ( ^ + ^ ( 0 ) , (36) 

9 In each double integral an integration is carried over the same 
Xexp(7a 6 +ico) (Jf—t) , (30) triangular area in the h, t' plane. 
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where Ep(t) and <pp(t) are slowly varying functions of 
time. We make a rotating wave approximation by keep
ing only exponential factors like expi(co—v^)t' and neg
lecting rapidly varying exponentials like exp£(co+*vX' 
Then pab

a)(a,r,\,t) = 

/p\rx«ww"i M r 
\fo/L ya JM^U-OO 

XU^t-vit-t')) e x p ~ i ( ^ + ^ ( 0 ) 

Xexpl-yab+iiv.-uftit-t'). (37) 

We also assume that the amplitudes E^t') and phases 
<£>„(/') do not vary much in a time l/7«6, so that they 
can be evaluated at time /. With a change of variable 
of integration from tr to r'^t—t', we find 

pa&
(1)(>,r>V) = 

-Ki) 
"X«(r,v,*)-] M 

E ^ M ( 0 exp—t(j/M/+^M(0) 

X / rfr'^Cr-vrOexp-CTaft+iCco-Oy. (38) 

The corresponding contribution to the polarization 
of the medium is 

P(i)(a,x,y,l) 

= ~4W*)[>«(r ,v ,0 /7«] 

X E E,(t) exp-*(V+*v) / dr'U^t-yr') 

Xexp-(7a6+i(w-^M))7*' | + c o n j . (39) 

Let us first assume that the excitation rate density 
has the form10 

\a(r,\yt) = W(y)Aa(ryi) a=a,b7 (40) 

where W{\) is the normalized velocity distribution 
function and Aa(r,£) is the number of atoms excited to 
state a per unit volume and time. Because we are 
assuming a spatial dependence of the electric field only 
on z, we may change over from a three- to a one-
dimensional description. Then the velocity distribution 
W(v) refers to the z component v of v, and r is replaced 
by z. 

I t will be noted that the quantity P(a,z,v,t) is pro
portional to Aa(z,t)/ya. When we now consider the 
contribution of atoms excited to the lower maser state 
b there is a complication which we did not meet in the 
case of a excitation. Spontaneous decay of atoms in the 
upper maser level a may be one of the excitation 

10 It would be easy to modify the theory to allow the atoms 
excited to state b to have a different velocity distribution from 
those excited to state a. 

mechanisms for state b. This could be plausibly repre
sented by replacing the excitation rate density \b(z,v,t) 
by \b(z,v9t)+fyapaa(z9v9t)9 where / is the branching 
ratio (decay from a to b)/ (total decay from a) and \& 
now describes only "external" excitation processes. 

In order to reduce somewhat the complexity of the 
subsequent equations we will now proceed as if / were 
zero. The effects of cascade excitation a—>b will be 
discussed by an approximate method in Sec. 20. With 
this simplification it turns out, as one would expect, 
that for b excitation Pty&vj) is exactly like (39) 
except for an over-all sign change and interchange of a 
and b. Hence, the total polarization P(z,v,t) = P(a,z,v,t) 
-\-P(b,z,v,f) is proportional to a quantity 

N(z,t) - [(A a(*,0/Y«)- <A*(*,0/7>)], (41) 

which we will call the "excitation density." This is 
simply the excess density of active atoms in a steady 
state in the absence of optical oscillations. 

The first-order polarization 

/

oo 

dvW{v)[_Pah^{a,z,v,t) 

+Pab^(b,z,v,t)+conj.2 (42) 

is also proportional to N(z,t). For use in Eqs. (13), (14) 
a spatial Fourier projection on the nth. cavity mode is 
next to be made 

iV»(*) = (2/L) [ dzPV(z,t)Un(z). (43) 
Jo 

The product Un(z)Utl(z—VT/) which occurs in (43) 
may be written as 

$mKnz s,iiiKll(z—VTf) 

= h(m{(Kn-Kp)z+Kj>T'} 
- § cos{ (Kn+KJz-K.vr'} . (44) 

The last term will not contribute appreciably to the 
z integration (43) because the excitation density N(z,t) 
changes little in an o.f. wavelength. Since the velocity 
distribution is normally an even function of v only 
that part of the remainder of (44) which is even in v 
will contribute to the polarization, i.e., 

J[cos(iTn~iTM)z] COSKVT' , 

where the subscript p, has been dropped in the last 
factor since all of the modes considered have very 
nearly the same wave number K=v/c. 

We find 

Pn(1)(t)= -¥(&2/k) E ^M e x p - i ( V + ^ ) y V n _ M 

/

oo 

dvW(v)l^(^-P,+ Kv)2+conj,J (45) 
-00 

where 
3D(ca) = l/(7a6+ico) (46) 
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is a convenient abbreviation for a frequently occurring 
denominator and where 

Nn^{t)-- = - / dzN(z,t) cos\ 
LJ o L 

dzN(z,i) cos (n—jj,)-
irz' 

(47) 

is a spatial Fourier component of the excitation density 
N(z,l). I t should be noted that (45) has a very simple 
interpretation in terms of Doppler shifts of the atomic 
transition frequencies by Kv due to the atomic motion. 
This simplicity will be lost when nonlinear effects are 
considered. 

For the following detailed calculations a Max-
wellian distribution 

W(v)= Or 1 ' 2 ) - 1 e x p - (v2/tt2) (48) 

will be assumed. The speed parameter u is related to an 
effective temperature T by the equation 

%rnu2=kBT, (49) 

where m is the atomic mass and ks is the Boltzmann 
constant. If it should develop that a Maxwellian dis
tribution is not realized in practice, some obvious 
changes in the later work can be made. 

With Eq. (48) the integration over v may profitably 
be done on (39) before that over r', and we find 

i > n ( 1 ) ( 0 = - * ( j ? 2 / * ^ « ) 

X #„_M ( / )Z0v-w) + conj.] , (50) 

where Z(v—co) is an abbreviation for 

Z{y—co, yah Ku) 

/.00 

= iKu I dr exp[i(v—U)T—ya.bT—\KHI2T2~] , (51) 

which is a complex function well known in the theory 
of Doppler broadening.11 The function Z is, in fact, a 
function of a single complex variable f 

Z(f) = 2f/" ^ e x p - ( m 2 ) , (52) 

where 

with 

and 
£= (v—oo)/Ku7 

rj==yab/Ku. 

(53) 

(54) 

(55) 

I t is fortunate that extensive tables12 of the real 
11 M. Born, Optik (Julius Springer-Verlag, Berlin, 1933), pp. 

482-486. 
12 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 

(llilbert Transform of the Gaussian) (Academic Press, Inc., New 
York, 1961). 

part Zr and the imaginary part Z4 of Z(^+irj) are now 
available. 

Pn
a)(t) is a linear function of the complex electric 

fields En(t) exp—ivpt—ivufy) of the cavity modes and, 
apart from amplitude modulation arising from a possible 
slow time variation of the excitation density N(z,t) con
tains the same frequencies as the cavity field. 

To determine amplitude and frequency (or phase) of 
the oscillations, we write out the contributions of Pn

a) 

to Cn and Sn of Eqs. (13), (14). These are 

S» ( 1 )= - (&*/hKu)NZi(vn-<a)En, 

Cn™ = - WflKu)NZr{vn-0>)En , 

where 

N=N0(t)=(l/L) dzN{zt) 
J o 

(56) 

(57) 

(58) 

which will be called the "excitation," is the average of 
the excitation density over the cavity. We have now 
reverted to the notation of Eq. (51) for the Z function, 
but to shorten equations have dropped the parameters 
yah and Ku which appear as arguments in (51). 

In this approximation, without nonlinear terms, we 
can only hope to obtain the condition for starting of 
oscillations and their frequency at threshold. Further
more, if the conditions are such that several modes can 
oscillate, they do so independently of each other and 
hence can be considered separately. The amplitude 
equation (14) gives 

En- -iWQn)E^(v/€o)Sn(X) (59) 

or for a steady state, for which 2?M = 0, 

(ffi/e&KuiNZifyn-a) = VQn. (60) 

To first order inr} = yab/Ku, we have 

Z ( ^ ) ~ ( l - 2 ^ ) - 2 ex2dx+iT] .1/2 <rt2-2iv. (61) 

Hence for pure Doppler line shape the condition (60) 
for the onset of oscillations in the nth mode may be 
written as 

27r1/2[<?2/(47reoM] 

X (@/e)2\N e x p - (*„-«)*/(2T«)a= 1/Qn, (62) 

where \=^2TT/K is the wavelength. In these units, 

e2/(47r€0fe)~ 1/137 (63) 

is the fine structure constant, so the left-hand side of 
(62) is the product of this and four other dimensionless 
factors: c/u, 2irl'\ exp-(vn~-^)2/(Ku)2 and (p/e)2\N 
which is the net number of active atoms in a cylinder 
of cross sectional area (p/e)2 and length X. As the fre
quency detuning vn—o3 increases, the excitation N re
quired to initiate oscillations increases in proportion to 
exp+(?/w — ai)2/(Ku)2. The frequency of oscillation is 



T H E O R Y OF O P T I C A L M A S E R A143S 

determined by Eq. (13) in which we may set <pn=0 nearer to the atomic frequency than it would be for 
without loss of generality. Using Eq. (57), we find linear pulling. To the next order in (Qn~u>)/Ku, but 

, . - 0 . + <y/2Kftit/«*K»)Zr(rn-a) . (64) S t i H fOT ^b<<Ku> W e find 

( , M - f i r e ) / ( c o - ^ ) ~ [ l + | ( O n - c o ) V ( i f « ) 2 ] S . (68) 
I t is convenient to use the threshold condition (60) to 
express N in terms of Qn. We find 7. THIRD-ORDER TERMS 

vn—tin — %(v/Qn)[Zr(vn—o))/Zi(yn—u>)~] (65) We now carry out a similar calculation for the third-
order quantity Pn^>(0 using Eqs. (8), (23), (30), (31) 

or in the approximation yab/Ku«l a n d (32). The integration of \a{zyv,h)pab{z){^h^) 
over times £0 of excitation involves integrals like 

vn—ton=—l — ) ( — ) / dxex\ (66) rt r t rt> rt> 

i //c/c\ • _ ~ ^ J 4-„ £„„4. _ J _ :~ h J - ° ° J '0 J ts J to 

dfj df'F(t/,f,f')exp-ya(f
,-h), 

If the integral (66) is expanded to first order in £w 

= (vn—co)/Ku we obtain which by a repeated interchange of orders of integra-
/ r > \ / r \ (\ 1 i/2\ / irw \ c r^\ tion can be reduced to 
(Vn — ttn)/ (0) — Vn) ~ W^'V (v/QKu) = S , (67) 

/

t /» tf /• t" 

dt' I df I df'Fil tf f f) 
J-oo J -*> 

amount o)~vn by which the oscillator frequency vn is 
removed from the atomic resonance frequency co. The Again, we keep only exponential factors in the time 
right-hand side of (67) (S= "stabilization factor"13) is integration which are able to have resonance, and find 
about 1/800 for typical values of the parameters used after changes of variables 
in Sec. 2. ^ ^ / — / — j ' / ' = /'—/" T'"-^t" — f' (69) 

The more accurate expression (65) indicates a anon- ' ' 
linear pulling'' such that the oscillator frequency is and some algebraic manipulations 

Pahm{^A^h^^N{z,t) E H E.E.EA [_ex$)-i(plit+<plx)+i(ppt+<pp)~-i(vfft+<pff)2 
M P <r I 

/•CO /»00 /»0O 

X dr' dr" dT'"U»(z-VT')Up{z-VT'-VT")U„{z-VT'-VT"-VT'") 
Jo Jo Jo 

X{zxv — [(yab—ivt+ivp—iv„+iu))T'+{ya+ivp—iv„)T 

+ [ e x p - i ( * y + <Pv) ~i(vPt+ (pp)+i(vj+ <pff)2 

/»00 / .00 /»CO 

X dT' dr"\ dT"'U„(z-VT')Up(z-VT'-VT")U,(z-VT'-VT"-VT'") 

Jo Jo Jo 

X\jtxv-[_(yab—ivy.—ivp+iv«+i(^ 

+ s a m e with a and b interchanged. (70) 

In calculation of the Fourier projection P n
( 3 ) (0 integrals of the form 

(-) j dzN(zt)Un(z)Ufi(z-VTf)Up(z-VTf~VT,f)U<r(z-VTf~VTff-VTfff) 

appear. The product of the four sine functions can be reduced to 

t [ c o s ( 7 T p ~ / C + / v M - ^ 

+cos(Kfi+Ka~Kp~Kn)zcosKv(Tf+2T"+T"')'l 

13 The term "stabilization factor" (^cavity band width/atom bandwidth) was previously used in a theory of the ammonia beam 
maser (Ref. 8, p. 460) where its numerical value was large compared to unity. 
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apart from rapidly oscillating terms and those odd in v. The integration over v may now be carried out, and we find 

^ ( ^ A * ^ ! E E £M^P^J[exp-i(v+^)+^(^+^)™^(M+^)] 
fx p <r [ 

•.00 1*00 /«0O 

X dr'l dr" rfr'T^(p-.+,--«)exp-K^«)2(r'''-r')2+iV(p_^+,oexp"i(ii:M)2(/''+r')2 

./ 0 •/ 0 •/ 0 

+A' ( , + ^_„) e x p - | ( J K : « ) 2 ( T ' + 2 T " + r " ' ) 2 X e x p - ( T ^ - i ^ + i ^ - ^ + w ) / 

— {ya+ivp—iv^r"— (yab+ico—tV^T'"]+[exp-i(^+ ^ ) — i(epH- pP)+*(»,*+ ?>»)] 
/.CO /.CO /»0O 

X / <*// <*r"/ dT'\N^+^n)exV-\{KuY(Tm-ry+N{^^n)txV-\(Kuy{rn,+ r'Y 
Jo Jo Jo 

+Ar(P+cr-M-^) exp —-H^)^ '+2r / / +T / / 0 2 ] [exp-- ia ab~iv p.—iv p-\-iv a-\-i(J)rr — (ya — ivp+iva)T" 

~ (jab—io)+iva)r
f,,'2 |+same with ya and Y& in terchanged+complex conjugate. (71) 

One of the most important characteristics of the third-order polarization is that it has constituents which 
oscillate at all possible frequencies vF^p-fciv The combination of signs appearing here is correlated with use of 
the rotating wave approximation. Terms with frequencies such as Vp,-\-vp-\-va (near the third harmonic) are 
thereby neglected. 

The formidable expression (71) can be simplified in either of two limiting cases: (a) no atomic motion («==0), 
or (b) "Doppler limit," i.e., Ku much larger than ya& and various frequency differences such as v^+vp—2vff9 etc. 
In the absence of atomic motion, one finds after some rewriting 

A ( 3 ) (*) = ^ ~ 3 1 E E E JEMEPE.[exp-i(v,t+ <pti)+i(vpt+ <pp) ~i(vj+ <*,)] 
fX p <T 

X [ A ( p _ < r + M _ ^ ) + A'(p-cr~M4-w) + A ( p + < r _ ^ _ n ) ] - X ) ( ^ p ~ ^ — Vff+0)) 

X[^a(^p-^ ) + % ( ^ p - ^ ) ] [ ^ ( c o ~ ^ + ^(^p-co)]+conjugate, (72) 

where 3D(co) was defined by Eq. (46) and 

£><x(a>)=l/(ya+ico), a=a,b. (73) 

The "Doppler limit" is appropriate for many possible gaseous optical masers, and for most of the remainder 
of this paper we will be dealing only with this case. Then 

exp-fO&) 2 ( r ' " - r ' ) 2 

acts like a delta function of T" ~r' and the integration over T" can be done in the form 

-oo pee 2T1/2 r00 

/ dr' drmG(Tfyff) exp-i(Kuy(T'"-Tfy~ / JT-'G(T',T') . (74) 
Jo Jo KuJo 

The other Gaussian factors do not have their full peaks in the range of integration, and give contributions which we 
neglect because they lead to expressions with higher powers of Ku in the denominator. Then, after performing the 
simple integrations over T and r", we find 

^ p <r 

X [ e x p - ; ( ^ - ^ + ^ - * ( ^ - < ^ ^ 

X[exp[—iivn+Vp— v<r)t—i(<Pn+(pP— ^)]]}+complex conjugate. (75) 

By interchanging p and cr in the second group of terms, this may be written more compactly as 

rn<iKt)=-hirliW(#K«n EHE E^pE9lexpl^i(v^pp+Vc)t-i(ip^^+^)J\ 

/x p & 

X [N(p-*+P<-n) ^>(o> — J ^ + | ^ p — Va) + AV~/H-<u~«) SD( — \ V^ \v,+ Vp)"][pa(vp—V^) + &b(Pp— P&)] 

+complex conjugate. (76) 
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8. SINGLE FREQUENCY OPERATION 

For this case, the triple summation over /*, p, and <r 
reduces to a single term 

Pn™ (0 = ih™1I2Nt&*/ (h*yaybKu)l 

XyabL£>(o)-vn)+£>(0)2EnW exp-i(vj+ <pn) 

+complex conjugate. (77) 

For use in Eqs. (13), (14) we need the in-phase and 
quadrature components of this 

C»<» (0 = iT1,2Nlpi/(^yaybKu)2 

Xyab(0)-Pn)^-Vn)En" (78) 

and 

5n(3) (0 = iTll2NZ&*/(WyaybKu)-] 

X [ l + 7 a &
2 £ ( c o - ^ ) ] ^ 3 , (79) 

where the Lorentzian function is denoted by 

£ ( a ) - y ) = [ 7 a 6 2 + ( a ) - ^ ] - 1 . («>) 

The amplitude determining Eq. (13) is then of the 
form14 

En=anEn-l3nEn*, (81) 

where 

«»= ~iWQn)+bNlp2/(eohKu)2Zi(vn-^, (82) 

£n = (v/16)w^Nl^/(e0¥yaybKu)2 
XCl+Ya^K-co ) ] . (S3) 

I t is useful to employ the starting condition (60) 
to express the coefficients an, j3n (and others which 
appear later) in terms of a ratio 

VI=N/NT (84) 

called the "relative excitation" where NT is the excita
tion required for threshold oscillations when the cavity 
frequency £2n is tuned to the peak co of the atomic 
resonance curve. We find 

a» = i ( " /e») .{C^fr»-«) /Z t - (0) ]9 l - l} (85) 

and 

Pn^Tvl!Kv/Qn)lKvy{WyaybZM)~] 
X [ l + 7 a &

2 £ ( ^ - o ; ) ] . (86) 

A stable steady state occurs for an intensity of 
oscillations 

En*=an/pn, (87) 

which is easily related to the relative excitation with 
the help of Eqs. (85) and (86). 

The frequency determining equation (again <£„ may 

be taken zero) is 

^»=On- i f r / ( co£» ) ) [C»»)+Cn w ] . (88) 

Since the frequency of oscillation vn will differ little 
from the cavity resonance frequency 12w, the right side 
of Eq. (88) may, to a sufficiently good approximation, 
be evaluated for j>„ = £2n. We may then write 

Vn^ln+Vn+PnEr?, (89) 

<Tn-&t<p2N/(e,fiKu)-]Zr(&n-u) (90) 
where 

and 

Xyab(Qn-i»)£(ttn-t0) (91) 

or expressing these coefficients in terms of the relative 
excitation (84) 

*n = i(v/Qn)VlZr(Vn-<*)/Zi(0) (92) 

and 

Pn-+^Kv/Qn)WL^i(h*yaybZim~] 
Xyab(ttn-u)£(ttn-a>) (93) 

so that 

pnEn
2=pnan/Pn 

= KV<3n){[^(^-C0) /Z i (0)]9l - l}7a & (O.-C0) / 

[27a62+(Ow-co)2]. (94) 

The frequency now depends on the relative excitation 
(and hence on the power level) as well as on the detun
ing, i.e., there is frequency "pushing" as well as 
"pulling." 

Equations (89), (92), and (94) indicate that for 

(J2„ — C 0 ) 2 + 2 7 a 6 2 < — yabiSln — Co)Z,-(Q» — 0))/ 

Z r (a n -co) (95) 

an increase of excitation should move the frequency in 
the direction from co toward Qn. For small detuning the 
right side of (95) is approximately ^Tr1/2yabKu. 

The dependence of power level on excitation and 
detuning is given by Eq. (87). Using the value of 
Zi(^nyv) f ° r 9ft —0, this equation may be written ap
proximately as 

(pEny/(h*yayb) 

(S2„-co)2-] 
exp-

(Ku)2 
- 3 T [ l+7«62£(0,-co) ] . 

(96) 

14 I t is easy to see that the coefficient an is simply related to the 
gain (negative absorption) coefficient of the medium at frequency 
vn for small signals. However, the gain coefficient for a strong 
signal cannot be safely inferred from Eq. (81), since standing 
rather than traveling waves were assumed in its derivation. A 
theory of a traveling wave maser along the lines of this paper will 
be given later. 

This expression agrees with the linear approximation 
(62) in predicting threshold for relative excitation 

dl^N/NT^exp(Qn-~^)2/(Ku)2 (97) 

when there is detuning. Because of its derivation from 
a third order perturbation theory, Eq. (96) should not 
be trusted unless it predicts a value of the "saturation 
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FIG. 2. Relative intensity of oscillation as a_function of de
tuning. The solid curve, drawn for parameters N—2NT and Kit 
=4yab represents Eq. (96). The dotted curve indicates the Doppler 
gain profile of the numerator of (96). 

parameter"15 

In = UpEnY/(¥yayb) (98) 

much less than unity. 
The numerator in Eq. (96) has a peak for resonant 

tuning &n = w, but the denominator, which comes from 
the nonlinear term involving the coefficient /3n also has 
a peak when 12n = co. Under certain conditions, the 
over-all curve of Er?=an/&n versus detuning Q 
should have a flattened peak at resonance, or even a 
dip between two maxima. The condition for the appear
ance of two maxima is 

( 7 a & / ^ ) 2 < i { l ™ e x p - [ ( ^ * - c o ) 2 / ( ^ ) 2 ] } , (99) 

where 12̂ *—co is the detuning required to stop oscilla
tions at the given level of excitation. The double peak16 

(see Fig. 2) should thus be seen somewhat above 
threshold, i.e., for relative excitation 

31>1/[1-2(W0M) 2 ] . (100) 

Under this degree of relative excitation, the electric 
field at central tuning is given by 

/» = i (pEn)2/ (* V t t ) « 4(r .6/ (Ku) T« 1 (101) 

so that the neglect of higher orders of perturbation 
theory should not be too serious, provided, as we 
assume, that ya&<<C/£#. 

15 The significance of this quantity is shown more clearly in 
Sec. 18. 

16 This dip has recently been observed. R. A. McFarlane, W. 
R. Bennett, and W. E. Lamb, Appl. Phys. Letters 2, 189 (1963); 
A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963). 

TABLE I. This shows the twenty-seven possible values of the 
summation indices /*, p, a which appear in Eq. (76) for "three"-
mode oscillation. The fourth column gives the corresponding fre
quencies v^—v^Vff. The last column contains numerical values 
for the amount by which these frequencies exceed vi. We have 
taken *>2— 1̂ = 150 Mc/sec and 3̂— 2̂ = 151 Mc/sec in order to 
simulate (but greatly to exaggerate) nonlinear pulling effects. 

Vp—Vp+Vv 
Typical hv 
(Mc/sec) 

2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

PI 
V2 

Pd 
TLV\. — V<L 

V\ 
V\ + Vz—V2 

2v\ — vz 
vi-\-vi — vz 

V\ 

V2 

2vi~v\ 
v%-\-vi — v\ 

V\ 

V>2 

Vi 

Vl-\~V2~~V-l 

2P2~~V2 

P2 

V3 

V2~\rV3—Vl 
2vz — vi 

v\-\-vz — vi 

vz 
2v% — v<i 

V\ 

V2 

vi 

0 
150 
301 

-150 
0 

151 
-301 
- 1 5 1 

0 
150 
300 
451 

0 
150 
301 

- 1 5 1 
- 1 
150 
301 
451 
602 
151 
301 
452 

0 
150 
301 

The physical interpretation of the dip is discussed 
in Sees. 17 and 18 from several points of view. 

9. MULTIPLE MODE OPERATION 

As the excitation is increased beyond that required 
for threshold of single frequency oscillation, other fre
quencies appear in the output of an optical maser oscil
lator. We wish to use the expression (76) for the non
linear polarization in the electromagnetic field equa
tions (13), (14) in order to account for the observed 
phenomena. 

The first theory of an oscillator capable of multi-
frequency operation was given by van der Pol17 in 
1921-22. The necessary nonlinear features were pro
vided by cubic terms in the current-voltage character
istic of a triode vacuum tube. The tank had two R-L-C 
circuits with resonance frequencies 12i and Gfe. Van der 
Pol found that steady oscillations could occur only at 
frequencies near Oi or 122, but that simultaneous steady 
operation at the two frequencies was impossible. There 
were hysteresis phenomena, i.e., the choice of steady 
state of oscillation depended on the past history of the 
circuit parameters. 

Multicavity magnetrons provide very important 

17 B. van der Pol, Phil. Mag. 43, 700 (1922) and a review article 
Proc. Inst. Radio Engrs. 22, 1051 (1934). 
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TABLE II . This table gives various quantities needed for the evaluation of Eq. (76) for 
three-frequency oscillation as described in the text. 

M 

1 
1 
1 
2 
3 
2 

2 
1 
2 
2 
3 
1 
3 

3 
1 
2 
3 
3 
2 

P 

1 
2 
3 
2 
3 
3 

2 
1 
1 
3 
3 
2 
2 

3 
1 
2 
1 
2 
1 

cr 

1 
2 
3 
1 
1 
2 

2 
2 
1 
3 
2 
3 
1 

3 
3 
3 
1 
2 
2 

» 

2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

Vp—Vcr 

0 
0 
0 
A 

2A 
A 

0 
- A 

0 
0 
A 

- A 
A 

0 
- 2 A 
- A 

0 
0 

- A 

«•-* i^V+l^p— P<r 

W — *>l 

C O — ^ 1 2 

C O — P 2 

co — ?i 
co—v\ 
C O — ^ 1 2 

C O — ^ 2 

C O — ^ 2 

C O — ^ 1 2 

C O — ^ 2 3 

0)— Z>2 

C O — ^ 2 3 

C O — ^ 1 2 

C O — ^ 3 

CO— P 3 

co — vz 
C O — ^ 2 

C O — ^ 2 3 

C O — ^ 2 3 

— §"M~ \V<,+VP 

0 
JA 

A 
»A 
A 
A 

0 
- i A 
~JA 

*A 
*A 
"0" 
"0" 

0 
- A 

- J A 
- A 

- | A 
- A 

P^~"Pp-f-*V 

Pi 
^1 
Pi 
Pi 
Pi 

2j>2— P3 

P2 
P2 
P2 
P2 
P2 

P1 + P3—P2 
P1 + P3—P2 

P3 
P3 
P3 
P3 
P3 

2^2--PI 

p—<r-{-/z—n 

0 
0 
0 
2 
4 
2 

0 
- 2 

0 
0 
2 

- 2 
2 

0 
- 4 
- 2 

0 
0 

- 2 

<r—p+jtt—-W 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

examples of oscillators capable of multifrequency opera
tion, and here again the normal pattern is that an 
oscillation existing at one frequency tends to suppress 
one at another frequency. 

There is, of course, a very close connection between 
van der PoPs work and ours. Where he dealt with a 
nonlinear triode characteristic for a vacuum tube, we 
are concerned with the nonlinear response of an as
sembly of atomic systems which obey the laws of 
quantum mechanics. A one-to-one correspondence can 
be set up between the two problems. The Fabry-Perot 
cavity modes correspond to the resonant constituents 
of van der Pol's plate circuit. As we will see, however, 
the effective tube characteristics of the optical medium 
differ qualitatively from that assumed by van der Pol, 
and hence the optical maser behaves in a very different 
fashion with respect to multifrequency operation than 
the oscillator in van der Pol's original model. 

Rather than deal next with the case of two-frequency 
operation, it will perhaps save space to consider first the 
more general case of three-frequency operation. Prob
ably most of the interesting phenomena for optical 
gaseous masers can be understood without dealing ex
plicitly with more than three frequencies. After the 
more general equations have been obtained, we can 
easily drop terms and discuss two frequency oscillation 
as a special and simpler case. 

We consider the expression (76) for the third-order 
polarization, in which the indices /z, p, <r, and n can each 
take on values 1, 2, and 3. I t is useful to have the 
ingredients of the summands in tabular form. The 
entries in the fourth column of Table I give the fre
quencies of the various summands in P n

( 3 ) identified 
by the /z, p, and a values in the first three columns. I t 
will be noted that besides the three frequencies vi, V2, 
and vz assumed in the cavity excitation, there are nine 

additional frequencies present in the polarization of the 
medium. Hence there must be fields in the cavity at 
these new frequencies, and the desired self-consistency 
for three-frequency operation is in jeopardy. However, 
under certain conditions which will be determined later, 
the fields at the new frequencies do not produce appreci
able effects, even though the frequencies lie close to 
cavity resonance, so that the calculation can be made 
as planned. 

As is already apparent from the single-frequency case, 
the oscillation frequencies vn are typically very close 
to the cavity frequencies Qw, which are equally spaced 
and separated by 

A** 150 Mc/sec. (102) 

Hence three of the new frequencies: 2v%— v%, vi+vz—v2, 
and 2^2—^1 are very close to the three main frequencies 
vi, V2, and v$, respectively, and the corresponding terms 
are carried along in the calculations. The remaining fre
quencies can be ignored as long as the oscillator is appre
ciably below threshold for four-frequency operation. 

Any pulling of vn from Q,n is typically measured in 
kc/sec and hence the vn are not detuned from 12n by an 
appreciable fraction either of the cavity bandwidths 
v/Qn which are about 1 Mc/sec, or of the radiative 
decay constants ya, 76, or yab which may be 10 Mc/sec 
or more. The entries in columns 5, 6, and 7 of Table I I 
occur in the frequency denominators in Eq. (76) and 
are there to be combined with imaginary numbers — iya, 
~iyb, or —iyab- We have neglected the small terms 
arising from frequency pulling. Thus v2—v\ is freely 
replaced by A of Eq. (102), etc. A symbol like vn de
notes a frequency halfway between v\ and V2, etc., 

^12=1(^1+^2), etc. (103) 

The entries in the last two columns of Table I I are the 
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integers characterizing the spatial Fourier components tribution near vi. Each summand has a product of two-
(47) of the excitation density which are needed for the resonance denominators. The dominant terms are 
evaluation of the contribution to (76) arising from the (1,1,1), (1,2,2), and (1,3,3) since they do not necessarily 
indices n, p, <r, and n. contain inverse powers of A. The other terms have at 

The combinations (n,p,a) which contribute third least one power of A in the denominator. All terms will 
order polarizations at frequency vi are (1,1,1), (1,2,2), ultimately be expanded to order 1/A2. 
(1,3,3), (2,2,1), and (3,3,1) while (2,3,2) gives a con- We find 

+E1EiW(yab/(yayb)X£>(o>- m)+ a)(A/2))+£1£^(7rt/(T.7»))(3)(»- "2)+»(A)) 
+£22£i[fiV22}(W- Kx)+iiVa)(A/2)]COB(A)+Sih{A)-]+EiElhNM<*- *i)+iffs>(A)] 
XC»«(2A)+»4(2A)]}exp-*(vi<+*.i)+i£i«£^»5D(«-»'i0+^»(A)][S).(A)+O6(A)] 

Xexp—i((2c2— v-i)t— (2<p2— p3))]+complex conjugate. (104) 
The in-phase coefficient 6Y3) is then 

< V 3 ) = W L p n V K u y i E t R i t i k / t o J n ) ) ( « - n)£ ( « - n)+E1E2W(yab/(yayb))l(U- v12)£ (co- *i2)+ (2/A)] 
+ E I B * W ( W ( ™ » ) [ : ( M - "2)£(co- ?2)+ ( l / A ^ + E ^ E x i V ^ a ^ - n+A)£ (co- ^)/A2 

+i£3
2£1iV47a6(w- yi+2A)£(to- !>i)/A2+.E22£3A-2{iYr27«!)(co- *<i2+A)£(co- y12) cos^ 

+ C^2(Ta62- ( c o - ^ A ^ c o - ^ - i V ] on*}], (105) 
where the "relative phase angle" ^ is denned as 

r{>= ( 2 J » 2 — V\— vs)t+ (2<p2— <PI— <pz). (106) 

The quadrature coefficient Si(3) is given by 
S i ( 3 ) = i x ^ y ( f t 3 ^ ) ] ^ ^ 

+£1£3W[Ta62£(co-P2)+7o6
2A-2]/(ToT6)+£22£1A-2[iV2(Ta62-(co-J'i)A)£(co-yi)-2iV] 

+i£32£iA-2[^4(7a6
2-2(«- n)A)£(co- PI)-2Af]+JE2

2£3A-2[[Af2(T<»!,
2- (co- *<i2)A)£(co- J - 1 2 ) - ^ ] cos^ 

-7V27a!.(co-yi2+A)£(co-f'i2) sin^]}. (107) 

There are similar expressions for the other coefficients which appear in the self-consistent field equations (13) 
and (14). 

The generalization of Eq. (81) takes the form 

E1=a1E1-p1E1
3-612E1Eii-0uEiEs

2- (Vn cos^+fe smp)E£Es, 
$2= a2£2-/32£2

3- 02i£2£i2- dnEiE?- fois cos^+ £23 sin^)EiE2£3, (108) 
£3=a3£8-/33£a3-e3lJE3£i2-032£3£2

2- (T?2I cos^+fci sintfEiEi. 

The coefficients an and /?„ were already calculated in the single-frequency case, and are given by Eqs. (82) and 
(83). The other coefficients are given by 

^ j ^ ^ V M ^ X i W f r c Y ^ ^ (109) 

flia^xVM^VM3^)^*^^ (HO) 

rm=&*ll2v(®*/{<:<WKu&)){N£yab*-(«-^i0A]JB(«-vu)-^} , (HI) 

&.= - &*wv pit&Ku&yWrtrtiu- *12+A)£(co- viO, (H2) 

&i=A^vg>4(eo^3is:#)-1{ATTai,
2(7a76)-1[£(«- vij+4A-*}+-Ni*-*Ey*t+ (co- p2)A]£(co-1-2)-2#A-2} , (113) 

fe= 1 ^ 7 r 1 / V ^ ( € 0 ^ i : W ) - 1 { i V - 7 a i . 2 ( 7 a 7 6 ) - 1 C £ ( w - ' ' 2 3 ) + 4 A - 2 ] + ^ 2 A - 2 [ T a f t
2 - ( « - ? 2 ) A ] £ ( c O - J - 2 ) - 2 ^ A - 2 } , ( 1 1 4 ) 

?i3=-^r1 / 2^4(eo^3^A2)-W2Ta6[(w-v2 3-A)£(W- J '2 3)+(co-> '12+A)£(W-^2)] , (115) 

Vu=<^vf?WKu&y-1{N&*t+(u-yu)A]£(u-v»)+N£y*t- (o>-v12)A]£(co-P12)+2A^} , (116) 

flai^Tr^M^-HA^a^^^ (117) 
^2=Ax1/2^4(€0^3iT#)-HA^T«62(7a76)-T£(«-^3)+4A-2]+^2A-2[Ta6

2+(co-^)A]£(co-y3)-2i^^^ (118) 

i72i=^1/2^4M3^A2)-1{iV2C7a i,
2+(co-v23)A]£(co-I,2s)-AT} , (119) 

&i= - ^TT^up^ieo^KuA^-Wnabioi-PM- A)£(co-p23). (120) 
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The frequency and phase determining equations are of the form 

Vl+ <pi=tt1+*l+p1E1*+T12E2
2+TnEz*+E22EzEr1(mz s i n ^ - f e « * * ) , (121) 

V2+ <p2==ti2+<r2+P2E22+T2iEi2+T2zEz2+EiEz(riu sin^— £i3 cos^) , (t2f2) 

v,+ ^=nz+az+pzEz2+Tz1E1
2+Tz2E22+E22E1Ez'-1(r}2i sin^-^21 cos^), (123) 

where the coefficients <rn and pw are already given by Eqs. (90) and (91), and the ri's and £'s by Eqs. ( I l l ) , (112), 
(115), (116), (119), and (120). The remaining coefficients are 

ri2= - A 7 r ^ 4 ( € o ^ ^ ^ ( 1 2 4 ) 

ri3= - o ^ / V ^ M ^ - H ^ , (125) 

T2i= - ^ / ^ M 3 ^ ^ ^ , (126) 

r 2 3 = ~ i V 1 / 2 ^ 4 M 3 i ^ ) ^ , (127) 

r 3 i = - i ^ ^ M 3 # ^ (128) 

r 3 2 = - i ^ z V M 3 ^ ^ . (129) 

10. TWO-FREQUENCY OPERATION 

We may here drop all terms referring to the third 
frequency v%. There are now no "combination tones" in 
near resonance with 121 and 122. The amplitudes E\ and 
E2 are determined by the differential equations 

E1=a1E1-/31E1s-d12E1E22, 

E2= a2E2-62iE2E1
2'-p2E2Z, 

where the coefficients an, fin, #12, and 621 are now given 
by Eqs. (82), (S3), (109), and (113). 

Introducing the squared amplitudes 

X=Ei2 and Y=E2
2, (131) 

Eqs. (126) become 

Z = 2 X ( a i - / ? 1 X - ^ 1 2 F ) , 

F = 2 F ( a 2 - 0 2 i X - / ? 2 F ) . ( } 

The condition for a steady state of oscillation is 
X = o , F = 0 and may represent graphically in an X - F 
plane by the point of intersection of the two straight 
lines 

Ln foX+duY-a!, 

L2: 0 2 i X + 0 2 F = a 2 , 

if there is one in the first quadrant, together with the 
single-frequency solutions 

X = a i / / ? i , F = 0 and X = 0 , Y=a2/^. (134) 

The differential equations (132) allow us to follow the 
temporal behavior of the state X, Y of oscillation in the 
phase plane X, F. Through any point in this plane (ex
cept stationary points) there passes a curve which indi
cates the path followed by the representative point 
(X,F) on its way to a stable state of oscillation. The 
parametric equations of the curves are X = X(t), Y~ Y(t) 
with the time t as parameter. From the differential 

equations it is seen that each curve has a vertical tan
gent when it crosses the first of the straight lines (133), 
and a horizontal tangent when it crosses the second 
straight line. This principle facilitates a very simple, if 
qualitative, graphical integration of the differential 
equations (132) for the paths of the phase points in the 
cases discussed below. 

The various possibilities are depicted18 in Figs. 3-5 
where it is assumed that both «i and 0:2 are positive, 

FIG. 3. Phase curves showing the transient behavior of two-
mode oscillation. The straight fines L\ and L2 of Eq. (133) are 
taken to have coefficients ai = l, «2 = 0.4, /?i=£2 = 2, 0i2=02i = l . 
The slope of a phase curve is zero when it crosses line L2 and in
finite when it crosses line L\, Although both modes are above 
threshold, the favored X oscillation is able to quench the Y 
oscillation. 

18 The phase paths of Figs. 2-4 were kindly integrated on an 
analog computer by Dr. B. Wise of the Engineering Science 
Laboratory, Oxford, to whom the author is very indebted. 
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FIG. 4. Diagram similar to Fig. 3, except that the gain pa
rameter for the second mode has been raised to or2=l. Simul
taneous oscillations at both frequencies occur at the single stable 
steady state. Both Figs. 3 and 4 correspond to "weak" coupling. 

so that the two modes are individually above threshold. 
The coefficients 0„ are necessarily positive if the optical 
medium is an active one, and while the mode competi
tion coefficients 6 could conceivably have the opposite 
sign, they have been assumed positive (and equal to 
each other) in drawing the figures. 

Figure 3 applies when mode 1 is well above threshold, 
but mode 2 is only a little above its threshold, either 
because the cavity resonance frequency ft2 is detuned 
from the atomic transition frequency a> or possibly be
cause Q2<Qi- It is clear that the point (ai/pifl) repre
sents a stable state of oscillation, while (O,a2/02) 
corresponds to an unstable steady state. Hence there is 
a range of operation above threshold of modes 1 and 2 
where oscillations in the favored mode 1 are able to 
inhibit oscillations at the second frequency. One might 
say that the effective gain for the second mode 

a2' = a2— 6X=(X2—Oai/Pi 

is being made negative by the presence of oscillations 
at vi. From Eqs. (109) and (113) it is seen that the in
hibiting effect is enhanced when j>i2=«, or when the 
two cavity modes are on opposite sides of the atomic 
transition frequency, and approximately equally far 
from it. The physical interpretation of this effect which 
clearly involves o.f. saturation will be brought out more 
clearly in Sec. 18. 

As the excitation increases, a2' will eventually become 
positive, and the relevant diagrams are Figs. 4 and 5. 
The former applies when /?i£2>02 (weak coupling) and 
the latter when /?i£2<02 (strong coupling). 

The two cases of weak and strong coupling give very 
different behaviors. For weak coupling the point of 

intersection of the two straight lines gives stable 
steady-state operation, while the single-frequency oper
ating points are unstable. The optical maser oscillates 
simultaneously at two frequencies under these condi
tions. For strong coupling, on the other hand, the point 
of intersection of the two straight lines represents an 
unstable steady state and would not be realized in 
practice. All other points in the state diagram evolve 
into one or the other of the single-frequency operation 
points. Which of the two is reached depends on the past 
history of the state of oscillation. In other words, there 
is hysteresis. 

In the Doppler broadened gaseous optical maser 
Eqs. (S3), (109), and (113) indicate that the case of 
weak coupling is naturally favored, since /?i/?2 tends to 
be greater than BvaPn- Hence, with possible exceptions 
such as the one discussed in the next section, double 
frequency operation is preferred. However, when van 
der Pol's theory of a double resonance feed back triode 
oscillator is transcribed into our notation, one finds 
that in his case 6= 2/3. This results from his assumption 
of a term (Ex cosvxt+E2 cosv2t)

z in the triode output 
current. After discarding terms which have frequencies 
far from v\ and *% this becomes 

|(E1
3+2£1£2

2) c o s ^ f ( £ 2
3 + 2 & £ i 2 ) cosprf, 

which leads to the stated relation 0=2/3. The van der 
Pol oscillator prefers operation at a single frequency and 
exhibits hysteresis phenomena, as in the case of strong 
coupling. Evidently the atomic medium of an optical 

FIG. 5. Phase curves showing the transient behavior of two-
mode oscillation when the straight lines Lx and L2 of Eq. (133) 
are taken to have the coefficients a\ — ai = 1, /3i = 02 = 1, 0i2=#21 = 2 
(strong coupling). There are two possible stable steady states, 
each corresponding to single-frequency operation. The particular 
state reached depends on the initial conditions. Hysteresis phe
nomena would occur if the parameters characterizing the oscil
lator were slowly changed. 
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maser differs from van der Pol's triode oscillator be
cause the nonlinear response of the atoms to frequencies 
v\ and v^ has a resonant character not assumed of the 
triode. I t will become clearer from the discussion of 
Sec. 18 that two groups of atoms with different velocity 
are driving the two oscillations with only a limited 
degree of interference. One could easily make a com
parable model of the van der Pol type with two triodes 
each with its own tank circuit. A small amount of 
coupling between the two oscillators would produce 
intermode effects described by the 6 coefficients in the 
weak-coupling case. 

There is also a further case in which the two straight 
lines coincide, i.e., whenai/a2=Pi/6=0//32- In that case, 
there is a neutral steady state for the representative 
point lying anywhere on the line within the first quad
rant. In practice, the state of operation when this 
condition is nearly satisfied should be very sensitive to 
microphonic disturbances. 

11. INTENSITIES AND FREQUENCIES IN 
TWO-MODE OPERATION 

The two-mode steady-state solution of (130) is 
given by 

£ 2 2 = (^2-021^)/(^2-612621) , 

where, as explained before, the right-hand sides may be 
evaluated for ?>i=12i and ^2=^2 without appreciable 
error. The frequencies are obtained by dropping in
applicable terms from Eqs. (121)—(123). We may set 
(Pi— <P2 without loss of generality, and find 

^1=12i+cri+pi£i2+ri2^22 , . 

V2:=&2+<T2+P2E22+T2lEl2 , 

where the right-hand sides are to be evaluated for 
Vn—^n, and the En

2 are as given in (135). 
These equations are fairly complicated, and probably 

can be used in full generality only for a numerical 
analysis19 of very detailed data on optical maser opera
tion. Such a study would be simplified if the values of 
the E's could be inferred experimentally, since that 
would effectively reduce the dependence of Eqs. (136) 
on cavity tuning. For the present we will merely work 
out the frequencies for the important case of "mid-
tuning" where Pi2—i(vi+V2) — c*>, co—J>I=§A and 2̂—co 
= JA. If we regard A as being much greater than the 
Y'S, we then may approximate the coefficients appearing 
in Eqs. (135)-(136) as follows: 

ff1^/32^e12^02i^^^2pW(e0fi
zKuyayb)-

1==l3y (137) 

P2~-p i=27 a 6 A- 1 / 3=p , (138) 

Tl2— — T21— —p , (139) 

19 Such an analysis is being made by Dr. R. L. Fork and Dr. 
M. A. Pollack. The author is very grateful to them for helpful 
discussions on this and other parts of the manuscript. 

and assuming Qi—Q2=Q, the gain parameters become 

a1~a2^ivQrT1{VltZi(iA)/Zi(0)l-1} - a . (140) 

The intensities are Ei2=E2
2= i<x/P, and the frequencies 

are 

*>2=fi2+0-2+pa/p, 

so that the beat frequency is 

V2—?i^A+ (cr2— (7i)+4ya&a:/A. (142) 

I t will be seen that in the approximations of Eq. 
(137) we have ^1^2=^12^21, and hence in order to decide 
whether the coupling is "weak" or "strong" it is neces
sary to evaluate the coefficients @ and 6 more exactly. 
In case of exact midtuning, one finds that 02—62 has 
the same sign _as N+N2. Ordinarily this would be 
positive since N must be positive for oscillations to 
occur. However, it is possible in principle to arrange to 
have N>0 and N2<—N by having N(z)>0 in the 
middle two quarters of the tube length, and N(z)<0 
in the end quarters. In practice the last requirement 
could be met by adjusting the gas discharge conditions 
near the ends so that the lower maser atomic level is 
more populated than the upper one. In He-Ne masers 
an increase of tube diameter near the ends might be 
helpful in this respect. Diffusion of Ne metastables to 
the walls is thereby reduced, and electron excitation of 
the lower maser level is increased. 

12. NORMAL THREE-FREQUENCY OPERATION 

Equations (108) and (121)—(123) are fairly compli
cated, but can be readily used to discuss a number of 
special cases, as indicated in the following three sections. 

In general, unless care is taken to adjust the cavity 
tuning very accurately, the three frequencies vi, V2, and 
vz will be such that the relative phase angle \f/ of Eq. 
(106) is a linear function of the time. Then the last 
terms in Eqs. (108), (121)—(123) are periodic functions 
of time, and in some approximation their effects average 
out. If we neglect these terms, we can get a steady-state 
solution for the intensities Ei2, E22, Eg from the system 
of inhomogeneous linear equations 

a1-=fi1E1
2+e12E22+61zE,2, 

a2=02E22+O2iE1
2+d2zE32, (143) 

O l 3 = / W + 0 3 l £ l 2 + 0 3 2 £ 2 2 , 

and for the frequencies J>I, V2, *>3 from 

Vl= O i + ( 7 i + P i £ i 2 + T i 2 £ 2
2 + TisEz2 , 

V2 = Sl2+(r2+P2E22+T2lE1
2+T2zEs2, (144) 

J>3= 03+<T3+P3E32+ TziEi2+ T32&2 , 

again taking ^>i= ^2= ^3=0. Since the coefficients in 
Eqs. (143) and (144) are slowly varying functions of 
frequency, it will suffice first to determine the En

2 from 
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(143) and then to calculate the *>n's from (144). The 
equations are a fairly obvious generalization of those 
for the two frequency case. I t will be noted that opera
tion with Ei23^0, E2

27*0 can inhibit normal oscillation 
at vz until, with increasing excitation, 

a^az-BzxEJ-dztEf (145) 

becomes positive. 
Further discussion of pulling, pushing, and mode 

competition for this case will be left to readers requiring 
a numerical analysis of their data. 

13. COMBINATION TONES 

As mentioned in Sees. 7, 9, the third-order polariza
tion Pn

is)(t) of the active medium has constituents 
which oscillate at all possible frequencies of the form 
Vfi—Vp+Vc Even for "two"-frequency oscillation, there 
are additional frequencies 2v2—v\^vz and 2vx— V2^VQ 
in the polarization which are very close to resonance 
with the principal cavity modes just above and below 
the two 121 and ft2 of main interest. As a consequence of 
Maxwell's equations, fields at frequencies vz and VQ 
necessarily exist in the cavity and can appear in the 
output. Well below the threshold for normal three-
frequency oscillation, Ez (and also JEO) will be much 
smaller than E\ and E2. We also assume yab<^^<^Ku 
and i>2—w so that 

7 7 2 1 ^ ^ — ^ ^ 2 v ^ e ^ K u A 2 y i \ _ N + 2 N 2 ] , (146) 

£21^0. 

For a steady state, the third Eq. (108) then gives 

Ez^r)2iE22E£az-dziE1
2-6z2E2

2Jr1 cost£. (147) 

The relative phase angle \p is determined by Eq. (123) 
to have sin^c^O, whence | c o s ^ | ^ d , and 

Ez~ -^^2v^(e0¥KuA2)~l 

Xlaz-dziE1
2-ez2E2

2T1\N+2N2\E2
2E1. (148) 

This expression is intended to be used under excitation 
conditions for which the denominator is negative. When 
the excitation increases, and the factor involving a3 

turns positive, the neglected nonlinear terms in Ez 
would have to be taken into account in order to de
scribe the previously discussed normal three-frequency 
operation. 

In order to obtain the combination tone {2v2— v\) 
experimentally, one should adjust the cavity tuning so 
02 is slightly above the atomic transition frequency o>, 
thereby making Oi a little nearer resonance than O3. 
The excitation should be increased until "two"-fre-
quency operation is obtained, but not yet genuine 
three-frequency operation. 

Under these conditions, the 0's in Eq. (148) contain 
a factor A~2 and to simplify the discussion they will 
now be neglected. Equation (148) then has a factor in 
its denominator 

at**-WQ*)/G*> (149) 

where the gain factor G$ is given approximately by 

G ,« [ 1 - (N/NT)(Zi(*)/zm)yi, (150) 

if one is not too near to threshold for normal three-
frequency operation. Equations (148)-(150), within 
their domain of validity, indicate that E 3 is smaller 
than Ei by a factor 

Ez/E1^\irli2^E2
2{e,¥KuA2)-lQzGz\N-\-2N2\. (151) 

Using Eq. (62) for n=3, this can be expressed in a 
convenient form 

Ez/E1=i^(&E2)
2/(h2yayb)2l(yayh)/A

2lGz 
X 11+ (2N2/N) I e x p ( A / i ^ ) 2 , (152) 

which shows how the amplitude of the combination 
tone depends on Gz, and on the saturation parameter 
as given by Eq. (96) for n=2. I t should be noted that 
Eq. (152) could vanish if the spatial distribution of the 
excitation density is such that 2 ^ 2 + ^ = 0 . (If the ex
citation is confined to the central region of the Fabry-
Perot tube, N2 and N, by Eqs. (47), (58) have opposite 
signs.) An experimental study of the above phenomena 
might facilitate determination of some of the quantities 
which enter into our equations but for which direct 
experimental values are not yet available. 

14. FREQUENCY LOCKING PHENOMENA 

I t has been observed by Javan20 and by Fork19 that 
when the cavity tuning is gradually changed in normal 
three-frequency operation so that the separation of the 
beat notes v2—v\ and vz~-v2 approaches a small value 
(typically of order 1 kc/sec), a frequency jump occurs. 
This phenomenon can be easily understood by refer
ence to Eqs. (121)—(123). For simplicity, we neglect 
the small frequency pushing associated with the terms 
involving pnm and rnm, since the nonlinear pulling 
terms <rn already give sufficient generality to the fre
quency relationships. By subtracting the sum of Eqs. 
(121)-(123) from twice Eq. (122), we find a differential 
equation for the relative phase angle \p of Eq. (106) in 
the form 

t^a+A s i n ^ + 5 cos^, (153) 

where 

a—2(T2—ai—azy (154) 

and A and B are slowly varying quantities which de
pend on the En, %nm, and r)nm. We evaluate the %nm and 
Vnm with the usual approximations yab<£A<£Ku. Then 

^ 2 3 ^ 2 1 ^-^7r 1 /Vg> 4 (€o^^A 2 ) - 1 {iV+27V 2 } , 

r1lz^iT1/^P4(^KuA2){N-2No} , (155) 

Because of the nearly symmetrical tuning of v\ and v?t 

20 A. Javan, private communications for which the author is 
very grateful. 
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we may set E\^E% and find 

X{(N+2N2)E2
2+2(N-2N2)E1

2}, (156) 

The differential equation 

yp= a+A sm\{/+B cos^ (157) 

has an implicit solution 

l(\f/)= j dx/(a+A mix+B cosx) r (158) 
J $0 

where ^0 is the value of \f/ at /=0. The character of 
the function ^(/) depends critically on whether 

(A2+B2)^<\<r\ or (A2+B2y2>\a\. 

In the first case, the integrand of (158) has no singu
larities in the range of integration, and one finds that 
as \f/ approaches infinity so does t. Asymptotically, 
apart from pulsations, one has ^~cr/+ const. On inser
tion of this value in Eqs. (121)—(123) one finds that the 
frequencies are given by 

Vn^ttn+Vn (159) 

apart from pushing effects and pulsations of phase <pn, 
in agreement with the results of Sec. 6 with the approxi
mations made here. 

In the second case, (A2+B2)>cr2, the integral di
verges, i.e., /—>oo when \f/ reaches the value —sin-1 

X(<r/(A2+B2)112. In other words, \f/(t) approaches this 
value asymptotically. The disappearance from \f/ of 
any linear dependence on t forces 3̂— 2̂= 2̂— 1̂ and 
frequency locking ensues, with a definite relative phase 
angle 2<£>2— (pi~<pz. 

Let us suppose that the maser is in normal three-
frequency operation with two distinct beat notes va—P2 
and v2—vi near to A~150 Mc/sec, i.e., cr= (*>3— v2) 
— (*>2—*>i) is somewhat greater than (A2+B2)112. As the 
middle cavity frequency 122 is tuned closer to the atomic 
resonance frequency a>, the separation of beat note fre
quencies \<r\ decreases. There should be some pulsa
tions in phase which would increase in amplitude as 
symmetrical tuning is approached. When |<r| reaches 
(A2+B2)112, a quick transition to the locked state 
should be made, and only one beat note should be 
observed. Under the additional simplifying assumption 
E£$>Ei^Ez> and with use of the starting condition 
(60) for single-frequency oscillation, the separation of 
the two beat notes which could be attained just before 
locking occurs should be given by 

k l =K(N+2N2)/NTl(pE2/hA)WQ} (160) 

which is conveniently expressed as a small fraction of 
the cavity bandwidth. 

It might be pointed out that the above phenomenon 

is very closely related to one discussed by van der Pol21 

in 1924-27. He considered a self-sustained triode oscilla
tor, capable of oscillation at frequency v\. If an external 
signal at v is injected into the tank circuit, it may be 
possible lo detect a beat note at | v~vx\ using a square-
law detector. If, however, v is tuned gradually towards 
*>i, a very sudden jump occurs, after which oscillations 
occur only at v and the beat note disappears. The width 
of the "quiet" frequency range depends approximately 
linearly on the amplitude of the injected signal, when 
this is small. In the case of the optical maser, we can 
think that an oscillator at v\ is being perturbed by an 
"external" signal at the combination tone frequency 
v= 2v2—vz which arises from the third-order polarization 
2V3)(0 induced in the nonlinear active medium. 

15. POPULATION CHANGES AND PULSATIONS 

In the absence of o.f. oscillations, the density of 
atoms in one of the two maser states, say a, can be 
determined by suitable integrations from paa(0) (a,zoA> V) 
as given by Eq. (24). When oscillations set in, there are 
contributions of second order which can be calculated 
from pao

(2) (a,Zo,to,v,t) using Eq. (31) for a=a and a 
similar equation for a—b. One has 

P«afe/)= / dv I dta I dzo8(z—ZQ—vt+vto) 

X L ^a(z^v)paa(ayZ^k,V,t) . ( 1 6 1 ) 
oc==a,b 

It will suffice merely to give the result. One finds, with 
obvious approximations 

P«a(«,0 = CAa(a,0/7«]+{CAa(«,0/Ta]-[A5(2;,0/76]} 

Xi(P2/Ku) £ £ {E»Ep®a(v,-vp)iZ(a>-vp) 
H p 

XexpC(*v-*v)H- (<̂ V~ <Pp)]+ac.} 

Xcos[(^M—np)irz/L~] (162) 

apart from terms with rapid spatial oscillations. 
For single-frequency operation, one finds 

P«a(M)=[AaOM)/Ya] 
~{[AaM/7a]~[A & M/7 & ]} 

Xl(&E1)
2(yaKu)~lZi^-v1), (163) 

which contains the lowest order effects of o.f. saturation. 
In some cases, the density could be monitored by ob
servation of the decay radiation emitted from state a 
(or b) in transition to some lower level. (Of course, if 
trapping of resonance radiation were involved, the 
interpretation would be somewhat complicated.) The 
change produced by o.f. radiation in paa(z,t) might 
serve to aid in the determination of parameters like 

21 B. van der Pol, Phil. Mag. 3, 65 (1927) and the review article 
cited in Ref. 17. 
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7a, Ei2, etc., which enter into all our equations, but 
which might not otherwise be known. 

For two-frequency operation of the optical maser, 
paa has a pulsating constituent at a frequency near A 
besides a dc part. If we assume Ya&^7a^>A<*C& 

Paa(z,t) 

= [ A a M / 7 a ] - { [ A a ( 0 , O / T a ] - [ A 6 f e O / 7 6 ] } 

Xi^&2{Kuya)~
l[_E^ e x p - ( c o - ^ ) 2 / ^ ) 2 

+E2
2 e x p - (co~,2) 2 / (^ ) 2 ]+{[A a /7a] -CA & /7 & ]} 

X i ^ ^ ^ C ^ A ^ E ^ C e x p - (a-v^/iKu)2 

+exp— (u--P2)2/(Ku)2~] co$(wz/L) $m(y2—v1)t. 

(164) 

From this expression one sees that the amplitude of the 
pulsations at frequency near A, relative to the dc 
change in population due to o.f. oscillation, should be 

2E1E2(E1
2+E2

2)~1(ya/A) cos(irz/L), 

if, for simplicity, we neglect the Gaussian exponentials. 
Here again, it might be useful to use this phenomenon 
as a diagnostic tool while undertaking a systematic 
study of two-frequency operation. 

16. CONNECTIONS WITH PREVIOUS CALCULATIONS 

The basic paper in this field is, of course, that of 
Schawlow and Townes1 who give expressions for thresh
old equivalent to (62). Townes22 has also given an equa
tion for linear pulling, as has Javan23 for nonlinear 
pulling. 

Oscillations of an optical maser involve the propaga
tion of radiation in a nonlinear medium. Several papers 
have recently appeared which deal with this subject. 
For various reasons, these do not apply very closely to 
our particular problem. Thus, Bloembergen et al.u and 
Franken and Ward25 treated harmonic generation which 
plays a relatively minor role for us. Teng and Statz26 

discussed low-order nonlinearities in a gaseous medium, 
but, as will be discussed below, their treatment of 
Doppler broadening is not adequate for our purposes. 
Also our model for radiation damping is more realistic 
than theirs which involves just one relaxation time r, 
while our equations contain two decay constants ya 

and 76. To be sure, the combination 7a&=2(Ya+7&) 
enters most equations, and this might be identified 
with T~\ 

Among other publications which deal with maser 
theory are those of Wagner and Birnbaum27 and of 

22 C. H. Townes, Advances in Quantum Electronics, edited by 
J. Singer (Columbia University Press, New York, 1961), pp. 3-11. 

23 A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 
96 (1962). 

24 J. A. Armstrong, N. Bloembergen, J. Duelling, and P. S. 
Pershan, Phys. Rev. 127, 1918 (1962). 

25 P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963). 
26 C. L. Tang and H. Statz, Phys. Rev. 128, 1013 (1962). 
27 W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185 

(1961). 

McCumber.28 These papers consider to some extent 
the quantum nature of the electromagnetic field. They 
differ greatly in spirit and content from ours, and we 
will not attempt to make a comparison here. The work 
of Haken and Sauermann29 and of Davis30 seems much 
closer to ours, but there are significant differences in the 
models used, and in the appearance of our equations. 

As mentioned in Sec. 4 an earlier calculation8 appli
cable to an optical gaseous maser neglected complica
tions arising from the atomic motions and multimode 
oscillation. I t was then possible to work with a density 
matrix p(r,0 characterizing an ensemble7 of atoms at 
position r at time / which were excited at any time to <it. 
This obeyed 

fp=[ae,p]-(f/2)(rP+pr)+fA, (165) 
which differs from (18) by the term containing a source 
matrix A describing the (slowly varying) rate densities 
of excitations Aa and A& 

/A« 0 \ 
A = ( ) . (166) 

\ 0 Aft/ 

(In most applications A will be a diagonal matrix.) 
I t is possible to carry the calculation to higher order 

in the En for multimode oscillation without atomic 
motion by an iterative procedure in which we begin by 
neglecting any time dependence in the population dif
ference Paa—pbb. In the rotating wave approximation, 
one of Eqs. (25) then gives a quasisteady-state solution 
for pab{z,t) 

Pab(z,t) =-&($>/%) E EyXJpty&ba-v^ 

X (paa—pbb) exp—i(vlit+ tpp). (167) 

Inserting this in another one of Eqs. (25) and again 
making a rotating wave approximation we find rate 
equations 

Paa— —7apaa+i^(p6&~Paa)+A a , / I ,CQ\ 

Pbb~ — 7bPbb-\-R(paa— P&&)+A&, 

where 

X [ 3 ) ( c o " ^ ) ( e x p i ( ^ - ^ ) ^ + ^ ( ^ x - ^ ) ) ' + c . c . ] . (169) 

The "rate constant" R has pulsations for cases of multi-
frequency operation, and through Eq. (168) these would 
lead to pulsations in the populations paa and p&& at all 
beat frequencies vx—v^ If it were deemed necessary to 
continue the iteration procedure the pulsating popula
tion difference paa—pbb could be approximately evalu-

28 D. E. McCumber, Phys. Rev. 130, 675 (1963). 
29 H. Haken and H. Sauermann, Z. Physik 173, 261 (1963); 

176, 47 (1963). 
30 L. W. Davis, Proc. Inst. Elec. Engrs. 51, 76 (1963). 
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ated from Eq. (168) and put in Eqs. (25) to obtain an 
improved Eq. (167). 

If we neglect the pulsations in R, we obtain 

R^(p/hyyab^E^U,(z)J^--v,), (170) 

which is a plausible generalization of the rate of transi
tions previously obtained. In a steady state, the popula
tion difference implied by (168), (170) is 

Paa — pbb= [(Aa/Ya)— (A&/7&)] 

X[l+(27a&-R/(7a7&))]-1, (171) 

which shows clearly the effect of o.f. saturation. 
Since the rate constant (170) depends on position z 

through normal modes Un(z), the population difference 
(171) also depends on position, and may be said to 
have "holes" burned in it. Consequences of this for 
mode competition can be discussed along the lines fol
lowed in Sec. 10. Under most conditions the behavior 
will correspond to the weak-coupling case, although if 
the excitation density were such that — iVY were larger 
than N the strong coupling case might be realized. 

Combining Eqs. (165), (167), (171), and (41) we 
obtain a polarization 

P(z9t)=p(pab+Pat*) (172) 

and the coefficients Sn and Cn which enter the amplitude 
and frequency determining Eqs. (13) and (14) are 

2 
Sn= (<@2/flhab£(03 — Vn)En 

(173) 

X [ ^[^n(^)]2iVfeO[l+(27^(2))/7aT&)]-1 

J 0 

and 
C»=C(a)-^„)/7«6]5n. (174) 

These expressions depend nonlinearly on the mode 
amplitudes En because of saturation. However, since 
we have already neglected the beat frequency pulsa
tions of Paa—pbb which lead to terms with A in the 
denominator, it might not be consistent to keep any 
terms in R which are off-resonance by more than about 
|co—^|~(7a&A)1/2. 

We will now consider only single-frequency operation, 
for which our Eqs. (173)-(174) are essentially exact. 
Then a single summand n=n contributes to R and we 
find 

2 rL 

Sn= fp2h->yabEn dz[yn(z)jN{z)lyah*+{o>-vny 
L Jo 

+yJ(pEn)*£Un{z)J/(ify*y*)T-K (175) 

The integral may be easily calculated if N (z) is a slowly 

varying function of position, and we find 

Sn=- p2fT1yabN£(a>--vn)f(w)En, (176) 
where 

' w=[(pE„)V'(^yfl76)]y«62£(«-i'„) (177) 
and 

/(w)= (2 /w)[ l - (1+w)-1 '2]. (178) 

If Eq. (175) for Sn is expanded to third order in En, 
we obtain a result in agreement with that given by Eqs. 
(56), (72) for the single-frequency case with no atomic 
motion. It should be noted that whether (175) is ex
panded or not, the amplitude of oscillation has a maxi
mum for resonant tuning and falls off monotonically 
with detuning. There is no indication here that the 
double maximum of Sec. 8 might be a spurious one which 
arises from the neglect of fifth or higher order terms. 

17. DISCUSSION OF DOPPLER BROADENING 

The effect of atomic motion upon our equations is 
rather curious and warrants discussion which, for sim
plicity, will be given for single-frequency operation. As 
we have seen in Sec. 16, the optical properties of the 
medium may be described by a nonlinear susceptibility 

X ( « - * » , En) = Pn/'(eoEn). (179) 

It would perhaps be plausible to hope that the following 
simple recipe would take atomic motion into account. 
Because an atom moving with velocity v sees a Doppler 
shifted frequency, in the laboratory frame of reference 
it effectively has its resonance frequency shifted by 
a)v/c. The effective susceptibility ought then to be 

Xeff = j dvW(v)x(o>-a>(v/c)-vny En) , (180) 

which can easily be expressed in terms of the Z(f) 
function which is disc- ;ed in Sec. 6. The effective 
damping constant becomes 

yabtl+(pEny/(Wyayb)JI* 

instead of yab, and when this is much smaller than the 
Doppler parameter Ku, the line shape should be 
Gaussian with a normal Doppler width. 

The above prescription is incorrect except to the 
first order in En if standing waves rather than running 
waves are involved in any way. This follows from a 
study of Eq. (70) contributing to the third-order polari
zation which involves a threefold integration over times 
r', T", and r". For single-frequency oscillation, the 
integrand contains 

Un{z-VTf)Un{z-VTf-VT")Un{z-VTf-VT"-VTf"y 

Xexp[— i(co—vn)r'~] exp[d=i(co—J^)/"]. 

Each of the Z7w's is a standing wave which can be ex
pressed as the sum of two running waves like 
expzLi(Kz—VT'), etc. The physical interpretation is 
that in order to contribute to Pw

(3) at time t an atom 
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has to interact three times with the o.f. field: first at 
tf» = t-T'-T"-T"', then at / " = / - r ' - r " , and finally 
at tf^t—rf. At each of these interactions the atom has 
a "choice" of interacting with one or the other of the 
two running waves. The r dependence of a typical term 
of the integrand of (71) is then 

exp—yab(rf+Tf,f)~~yaT
ff expi(yn—o))(Tfdzrfff)±:iKvTf 

±iKv(T'+Tf')±iKv(T'+T"+T'") . 

The physical consequence of the appearance of terms 
involving zkKv in the exponent is that each interaction 
involves a Doppler shift. Since we are interested in the 
case of a large Doppler width Ku, such a shift can take 
a given interaction very far from resonance even if 
a? = vn- This is expressed by the destructive interference 
of contributions to the integral at various value of r', 
r", and T". The interference will be least when the 
accumulated Doppler phase angle 

±Kvrf±Kv ( / + T")±KV ( T ' + T " + T ' " ) 

is zero. In order to obtain a nonvanishing spatial Fourier 
projection (8) for i V 3 ) , the choices ± can not be all 
alike. The six remaining possibilities for the phase 
angle are 

±Kv[/+ ( r ' + r") - ( r ' + T " + r " ' ) ] = ±Kv(r'~ / " ) , 

± ^ [ r / - ( r / + r / / ) + ( T , + r / / + r , / / ) ] = ± & ( r , + 0 ) 

and 

±KvZ- r ' + ( r ' + r") + ( r ' + r " + T'")> 
±KV(T'+2T"+T'"). 

As seen in Sec. 7, only the first two possibilities are 
able to lead to vanishing interference, and then only 
w h e n r ' = r w . 

Physically, one may say that a dominant type of 
process involves three interactions: first, one with a 
right (left) running wave at t,h', then one with a left 
(right) running wave at t", and finally one with a left 
(right) running wave at t', with the time intervals 
obeying t—it^t,t—tt,r so that the accumulated Doppler 
phase angle 

dzZKv(t~t')+Kv(t-t'')-Kv(t-t'//)'] 

cancels out at time /. 
The above cancellation of Doppler interference would 

not occur if waves running in only one direction were 
present. The nonlinear terms are much less broadened 
and weakened by Doppler effect for a standing wave 
maser oscillator than would be inferred from a study of 
nonlinear propagation alone. The double peak in the 
power as a function of tuning met in Sec. 8 can occur 
only because /3n (saturation) is not as much Doppler 
broadened as an (linear gain profile). 

18. HOLE BURNING 

In his discussion of maser action Bennett31 has made 
use of the notion of "hole burning." Since it aids the 
physical understanding of the rather complicated equa
tions, we will now show how this phenomenon is de
scribed in the present work. As Bennett's treatment 
does not bring in the population pulsations of Sec. 15, 
we will base our discussion on the simplified theory of 
Sec. 16 in which pulsations of population were neglected. 

In Sec. 16 the atoms had zero velocity. I t is possible 
to generalize the discussion for the case of atoms having 
a velocity distribution W(v) at the cost of further fairly 
plausible assumptions which are no worse than approxi
mations already made. We deal first with those atoms 
which have a definite velocity v and which were excited 
at z0 at time to. The perturbation experienced by such 
an atom is 

V(t) = - ( p / h ) £ E . U . i z o + v i t - t o ) ) c o s ( j y + <p») (181) 

so that instead of seeing fields at frequencies v^ the 
moving atom sees fields at twice as many frequencies, 
i.e., VpdzKv. The rate concept approach of Sec. 16 can 
not be used since the atoms characterized by different 
values of %o and to experience different perturbations, 
i.e., the phases are not the same for the various members 
of the ensemble of atoms arriving at z at time /. I t is 
plausible, however, to estimate the effect of saturation 
on the population difference paa(v,t)—pbb(v,t) by using 
an equation like (171) with a perturbation V(t) given 
by (181) but with the terms involving z0 and to omitted. 
The replacement for the velocity-dependent rate con
stant R(y) is then plausibly 

R(v) = hai(p/hY E E*t£fa-<*+Kv) 

+ £(^-co-JK:v) ] . (182) 

If 0=0, this reduces to the space average of Eq. (170). 
The corresponding population difference for atoms hav
ing velocity v is then 

Paa(v,t) — pbb(v,t) 

= W(v)Z(Aa/ya)-(Ab/yb)-] 

Xll+2yahR(v)/(yayb)l~\ (183) 

A plot of (183) against v would show the assumed ve
locity distribution with "holes" burned into it due to 
o.f. saturation effects. These holes would be appreciable 
whenever R(v) became comparable to yayb/(ya+yb) 
which could occur near iTz)=±(^—co), so that two 
holes could be burned for each cavity mode in oscilla
tion. At a resonance, where n̂==co, the two holes for 
the fzth mode would merge and reinforce one another. 
The holes in the velocity distribution would have been 

31 W. R. Bennett, Jr., Appl. Opt. Suppl. 1, 24-61 (1962), 
especially pp. 58-59. It should be noted that the holes are in first 
instance burned in the curve of population difference versus ve
locity, and only indirectly in a curve of gain versus frequency. 
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seen in Sec. IS if the integration over velocities had not 
been carried out so soon. 

With the above approximate expression for paa(v) 
—pbb(v) we may use Eqs. (25) to calculate a pseudo-
firs t-order value of pab(z,v,t) and P(z,v,t) in the manner 
of Sec. 16. The result will be the same as before, but 
with a velocity dependent reduction factor 

Cl+27a^W/(7a7&)]-1 

to express the effect of saturation, where R(v) is given 
by (182). There are similar reductions in the related 
functions Sn(v) and Cn(v). The coefficients Sn and Cn 

which enter the equations of self-consistency [^(13),(14)]] 
result from integration of these quantities over velocity. 
Thus 

Sn= ~ &*trlRyabEn [ dvW (v) £,(<*-vn+Kv) 

Xll+2yahR(v)/(7ayh)T
l. (134) 

For single-mode operation, the rate R(v) in the de
nominator of (184) contains the two terms given by 
Eq. (182). If an expansion is made to first order in 
R(v) the integration over v can be done easily for a 
Maxwellian velocity distribution in the limit of large 
Doppler width Ku, and one gets results equivalent to 
those of Sec. 8. The possible dip in output power as a 
function of cavity tuning in single-mode operation can 
be interpreted as a consequence of the merging of the 
two holes at Kv= ± (vn—oo) —> 0. 

For multimode operation a similar calculation can 
be made with the complete expression (183) for R(v). 
This will give the dominant terms of the equations of 
Sec. 9 for a Maxwellian velocity distribution and large 
Doppler width. However, the frequency locking terms 
involving \{/ will be missing. 

For two-mode oscillation, (184) leads to especially 
strong mode competition attributable to hole burning 
when Kv=v2—01=00—PI, i.e., the traveling wave along 
+ 2 for mode 2 and the traveling wave along —z for 
mode 1 are both in approximate resonance with the 
atomic transition frequency for an atom having ve
locity v. This effect can be correlated with the peak in 
6 for oo=vi2 mentioned in Sec. 10. 

19. APPROXIMATE HIGHER ORDER THEORY 
FOR SINGLE MODE OPERATION 

I t would be possible, but quite tedious, to extend the 
calculations of the text to fifth and higher order for the 
single-frequency case. The simpler approximate pro
cedure outlined below may serve in the absence of such 
calculations. I t was mentioned above that an expansion 
of (184) to first order in R(v) reproduces the equations 
of single-mode operation correct to third order in En-
If this expansion is not made one may hope to have 
equations which are valid for stronger signals. The v 
integration is complicated, and we will content our
selves here with two special cases (a) Ku5> \ vn—oo |^>Y«& 

and (b) vn=o), Ku^>yab* In the former case, one finds 
approximately 

Sn^-TT^^NEn/ 

(fiKu)ll+l((pEny/(¥yayb)Jl*, (185) 

while at resonance, when Vn=o), 

Sn=~^pWEn/ 
(hKu)ll+i(&EnY/(¥yayb)J/\ (186) 

and the merging of the two holes shows up in a simple 
manner through the doubling of the term expressing 
the effects of saturation. I t will be remembered that a 
similar doubling of the coefficient fin took place in 
Sec. 8 and was responsible for the possible dip in maser 
output versus cavity tuning. Although the more general 
behavior of output versus tuning implied by Eqs. 
(185)—(186) should be qualitatively correct, it must be 
remembered that rather uncontrolled approximations 
have been made in their derivation. 

20. EXCITATION OF LOWER MASER LEVEL BY 
SPONTANEOUS DECAY OF UPPER 

MASER STATE 

I t was mentioned in Sec. 6 that the lower maser level 
could, at least in part, be excited by spontaneous emis
sion from the upper. For the present this complication 
will be treated only in an approximation in which the 
rate concept is valid. For simplicity we ignore atomic 
motion, although the work of Sees. 16 and 19 suggests 
how this could be allowed for approximately. We write 
rate equations like (168) 

Paa= — YaPaa+-R(p&fe—Pao)+Aa , , ws 
( 1 R 7 ) 

Pbb~ ~~ybPbb-\~R{paa~p6&) + Ab+/7aPao, 

where the extra source term fypaa describes the effects 
of radiative cascade excitation of b from a assuming 
that a fraction / of the decays from a are to b. The A's 
describe the uncorrelated excitation of the two levels. 
In a steady state one finds a population density 
difference 

Paa-pbb= [(Aa/ya)(l—f(ya/yb))- (A&/7&)] 

X [ l + i ? { 7 « ( l - / ) + 7 6 } / ( 7 a 7 & ) ] - 1 , (188) 

which should be compared to Eq. (171). I t will be seen 
that the effect of a nonvanishing branching ratio / is 
merely to change the unsaturated population difference 
(obtained for R=0), and also to modify the value of R 
for which a given degree of saturation would be ob
tained. The saturation parameter of Sec. 8 will be 
modified in an obvious fashion. Thus if / = 0 , a value 
of rate R=^yayb/yab would cause 50% saturation, 
while if / = 1 the value would be R=ya. I t should be 
recalled that the dominant part of the third-order 
terms Sn

m and Cw
(3) are direct manifestations of satura

tion phenomena. At the present state of maser art, the 
decay constants ya and yb are not well enough known 
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for the effect of a nonvanishing value of / to be easily-
seen. 

When population pulsations are taking place there 
will be a correlated time-dependent excitation of the 
lower level by cascade. It is possible that more interest
ing consequences than those obtained would result, and 
it is hoped to explore this possibility in a later paper. 

21. OTHER SOURCES OF BROADENING 

For some kinds of line broadening, especially in 
certain solid-state optical masers, one could adopt the 
recipe proposed in Sec. 17, and rejected for the case of 
Doppler broadening. If the effect of environment could 
be described by a distribution function for the atomic 

I. LINKED CLUSTERS 

IN a previous paper,1 a set of coupled equations was 
derived for the ground-state wave function and 

energy of a finite system of interacting Fermions. The 
wave function was expanded in terms of multiple-
particle excitations on an uncorrelated zero-order state. 
The total energy E of the system appeared in the result
ing equations and it was pointed out that this restricts 
the application of these equations to finite systems; in 
general, the restriction is to systems of small N. In the 
equations, the amplitudes for one-particle excitations 
are coupled to those for two-particle and three-particle 
excitations. The two-particle amplitudes are coupled to 
those for one-particle, three-particle, and four-particle 
excitations, and similarly for higher particle excitations. 
It was mentioned in I that it might be reasonable to 
approximate four-particle excitation terms, for example, 
as products of independent two-particle excitations. 

It is shown here that four-particle terms involving 
two independently propagating pairs enter the equa
tions in such a way as to eliminate the dependence of 
the two-particle excitation equations on the total 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

i R P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 (1963), 
hereafter referred to as I. 

resonance frequencies co, an averaged nonlinear suscepti
bility could be used. This could also be done for the 
case of isotopic mixtures of the active atoms in gaseous 
masers. 

Although ya and Y& were introduced into our equa
tions to describe spontaneous radiative decay of the 
states a and b, it is plausible that such phenomeno-
logical decay constants might also describe certain kinds 
of collision broadening. In that case, the y's would be 
functions of the pressure.32 A more detailed discussion 
of collision broadening for a gaseous optical maser will 
be given in another paper. 

32 Evidence for such a dependence has recently been obtained 
by Javan and Szoke, Ref. 16. 

energy E, and similarly for the other excitations.2 

Explicit inclusion of products of independent excitations 
yields the equations of the linked cluster expansion. 
The resulting equations are shown to be the same as 
those obtained from many-body perturbation theory as 
formulated by Brueckner3 and by Goldstone.4 

In I, the ground-state wave function is expanded as 

\^=\^)+ZKk;a)vk
+Va\^) 

a,k 

+ L f(kk';ai3)vk+vk'
+vev«\$o)+---- (1) 

a,p,k,k' 

The unperturbed solution |<£o) is a determinant com
posed of the N single-particle states which are lowest 
in energy. 

Equations are then derived for f(k; a) and f(kk'; aft) 
by inserting |^) from Eq. (1) into 

H\4,)=E\t), (2) 

where 11 is written in the usual second-quantized form.1 

2 1 am indebted to Dr. A. M. Sessler for stressing the desirability 
of including products of independent pair excitations in the four-
particle excitations, so as to make the resulting equations more 
applicable to systems of large N. 

3 K. A. Brueckner, in The Many Body Problem, edited by 
C. DeWitt (John Wiley & Sons, Inc., New York, 1958). 

4 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
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In a previous paper a set of coupled equations was derived for the ground-state wave function and energy 
of a finite system of interacting Fermions. The equations are now modified so as to be more applicable to 
systems in which the number of particles becomes large. The resulting equations are shown to be equivalent 
to those obtained from many-body perturbation theory. 


