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for the effect of a nonvanishing value of / to be easily-
seen. 

When population pulsations are taking place there 
will be a correlated time-dependent excitation of the 
lower level by cascade. It is possible that more interest
ing consequences than those obtained would result, and 
it is hoped to explore this possibility in a later paper. 

21. OTHER SOURCES OF BROADENING 

For some kinds of line broadening, especially in 
certain solid-state optical masers, one could adopt the 
recipe proposed in Sec. 17, and rejected for the case of 
Doppler broadening. If the effect of environment could 
be described by a distribution function for the atomic 

I. LINKED CLUSTERS 

IN a previous paper,1 a set of coupled equations was 
derived for the ground-state wave function and 

energy of a finite system of interacting Fermions. The 
wave function was expanded in terms of multiple-
particle excitations on an uncorrelated zero-order state. 
The total energy E of the system appeared in the result
ing equations and it was pointed out that this restricts 
the application of these equations to finite systems; in 
general, the restriction is to systems of small N. In the 
equations, the amplitudes for one-particle excitations 
are coupled to those for two-particle and three-particle 
excitations. The two-particle amplitudes are coupled to 
those for one-particle, three-particle, and four-particle 
excitations, and similarly for higher particle excitations. 
It was mentioned in I that it might be reasonable to 
approximate four-particle excitation terms, for example, 
as products of independent two-particle excitations. 

It is shown here that four-particle terms involving 
two independently propagating pairs enter the equa
tions in such a way as to eliminate the dependence of 
the two-particle excitation equations on the total 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

i R P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 (1963), 
hereafter referred to as I. 

resonance frequencies co, an averaged nonlinear suscepti
bility could be used. This could also be done for the 
case of isotopic mixtures of the active atoms in gaseous 
masers. 

Although ya and Y& were introduced into our equa
tions to describe spontaneous radiative decay of the 
states a and b, it is plausible that such phenomeno-
logical decay constants might also describe certain kinds 
of collision broadening. In that case, the y's would be 
functions of the pressure.32 A more detailed discussion 
of collision broadening for a gaseous optical maser will 
be given in another paper. 

32 Evidence for such a dependence has recently been obtained 
by Javan and Szoke, Ref. 16. 

energy E, and similarly for the other excitations.2 

Explicit inclusion of products of independent excitations 
yields the equations of the linked cluster expansion. 
The resulting equations are shown to be the same as 
those obtained from many-body perturbation theory as 
formulated by Brueckner3 and by Goldstone.4 

In I, the ground-state wave function is expanded as 

\^=\^)+ZKk;a)vk
+Va\^) 

a,k 

+ L f(kk';ai3)vk+vk'
+vev«\$o)+---- (1) 

a,p,k,k' 

The unperturbed solution |<£o) is a determinant com
posed of the N single-particle states which are lowest 
in energy. 

Equations are then derived for f(k; a) and f(kk'; aft) 
by inserting |^) from Eq. (1) into 

H\4,)=E\t), (2) 

where 11 is written in the usual second-quantized form.1 

2 1 am indebted to Dr. A. M. Sessler for stressing the desirability 
of including products of independent pair excitations in the four-
particle excitations, so as to make the resulting equations more 
applicable to systems of large N. 

3 K. A. Brueckner, in The Many Body Problem, edited by 
C. DeWitt (John Wiley & Sons, Inc., New York, 1958). 

4 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
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In a previous paper a set of coupled equations was derived for the ground-state wave function and energy 
of a finite system of interacting Fermions. The equations are now modified so as to be more applicable to 
systems in which the number of particles becomes large. The resulting equations are shown to be equivalent 
to those obtained from many-body perturbation theory. 
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FIG. 1. (a) In perturbation theory 
two independent pair excitations 
factor when both time orderings are 
considered, (b) Typical terms which 
always link any two excited pairs. 
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An approximate solution for f(kk'; a/3) is given in Eq. 
(15) of I, in this paper referred to as Eq. (1.15), 

f(kk';a0)=(ea+efi—ek- -ek,-((aP)ex\v\ap) 

+E-EBP)((W)„\v\afi (3) 

If we neglect the term E—EHF, then this expression is 
that which is obtained from Rayleigh-Schrodinger per
turbation theory when we use a Hartree-Fock basis and 
include the first-order term and all higher order diagonal 
hole-hole interaction terms.5 '6 However, for large N the 
term E—EHF may become so large as to invalidate the 
equations of I. Such difficulties have been described by 
Brueckner in his comparison of Rayleigh-Schrodinger 
and Brillouin-Wigner perturbation theories.3 

We now show that the term E—EHF may be removed 
by considering the coupling of four-particle excita
tions in Eq. (1.11) for f(kkr)a$). In the equation for 
f(kk';af3), coupling with four-particle excitations adds 
the term 

ySJctrJcf" 

\k"kf")f(kk'k"k,";al3y8) (4) 

to the left-hand side of Eq. (2) or Eq. (1.11). The 
coefficients f(kkfk,rkt,f; afiyb) are composed of parts in 
which two pairs propagate independently and of 
remaining parts involving more complicated interac
tions among the four particles. 

The approximation of regarding f{kk,kffk,,r; a/fyS) 
solely as a product of two pair excitations has been 
discussed by Brenig and Sinanoglu.7 A justification for 
this decomposition is found in perturbation theory 
where the lowest order four-particle excitation is given 

«H. P. Kelly, Phys. Rev. 131 684 (1963). 
6 Hartree-Fock single-particle states are assumed, although 

they are not essential for this discussion. 
7 W. Brenig, Nucl. Phys. 4, 363 (1957); O. Sinanoglu, J. Chem. 

Phys. 36, 706 (1962). 

by the product of two pair excitations when we consider 
both possible time orderings as in Fig. 1(a). Those 
parts of f(kk'k"k"'; afiy8) in which two pairs of particles 
propagate independently should be written as products 
of f(kk''}afi). I t may be noted that there are always 
linked terms connecting any two excited pairs, however, 
as shown in Fig. 1(b). 

When product pairs such as f(kk";ay)f(k/k'";P8) 
are inserted into Eq. (4) and used in the equation for 
f(kk';at3), than linked terms result as shown in Fig. 2. 

When we consider the products 

these give us terms 

f{kkf J a0)E<7« I v | {k"k"')e*)f(k"k'" • yd) 

on the left-hand side of Eq. (2). 
In Eq. (1.8) it is shown that 

E-EHF= E (aP\v\(kk')ex)f(kk';aP). 

(5) 

(6) 

(7) 

>tll k' k l h 

FIG. 2. Diagram illustrating how H may couple two independent 
pair excitations wit^i a single pair excitation. There is also a 
diagram in which the time ordering of the first two interactions 
is reversed. This term enters the equation for f(kk'; ajS). 
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factorization when the 
two disconnected parts 
have one or more par
ticle or hole lines in 
common. The two sub
tracted diagrams are 
really linked diagrams 
as shown in (b). 

(b) 

Equation (6) is'then rewritten 

f(kk';aP)ZE-Esr- £ {ab\v\(k"k'")ex)(k"k'"-at) 
8,k",kfff 

- £ <T/S|»| ( * "* ' " ) . .> / (* "* ' "5 718) 
y^a,k"tkt" 

£ <7«I »| (**"')«.>/(**"'5 7«) 

£ <7«M (*"*').«>/(*"*'J7S)]. (8) 
krr^k; y^a,p; 8^affi 

When the term of Eq. (8) is added to the left-hand side 
of Eq. (Lll), f(kkf;aP)(E—EHF) cancels on both sides 
of Eq. (Lll). 

At this point we now have the linked cluster expan
sion for two-particle excitations.4 Equation (Lll) is 
also now nonlinear but in many cases this should not 
cause any difficulty.5 The remaining terms are not 
proportional to N like E—EHF] they will be given a 
simple physical interpretation. The denominators in 
Eqs. (1.15) and (1.16) are now modified by replacing the 
terms E—EHF by the summations in Eq. (8) with 
positive signs. For example, Eq. (LIS), an approximate 
equation for f(kk';al3), becomes 

/(**' ; o0) 

= [>«+ efi - £k ~ en - ((aff) ex I v I afi) 

+ £ (a8\v\(k"k"')eX)f(k"k"';a5) 
8,k",k'" 

+ £ <70M (*"*'") «>/(*"*"'5 70) 
y?±a,k" ,k'" 

+ £ <7«|f | (**'")«>/(**'"5 7«) 

+ £ <T« I »l (*"*').«>/(*"*'; 7*)]-1 

k"^k\ y?*a,0i 8?*a,p 

X{{kk')ex\v\a$). (9) 

The new terms appearing in the denominator of 

Eq. (9) which refer to states | a) and | /3) combine with 
the single-particle energies ea and e# and with the 
diagonal hole-hole interaction term ((a0)ex\v\af$)) to 
give an effective two-body energy for {aft). When the 
denominator also includes the particle-particle and 
exclusion principle violating (EPV) hole-particle terms 
of Eq. (1.17), then the denominator becomes approxi
mately the difference between the two-body energies of 
the states \afi) and \kk'). However, the two-body 
energy of | kkf) is not given so accurately as that of | a/3) 
because the interaction of the excited particles with 
unexcited particles is accounted for only in the Hartree-
Fock approximation. However, pair-correlation energy 
terms of a ground-state particle with the other ground-
state particles are now included. The last two terms in 
the denominator of Eq. (9) which refer to states | yd) 
account for the fact that correlation terms for ground-
state particles which involve excited states | k) or | kf) 
will be eliminated by the Pauli principle when there are 
other particles excited into | k) or (kf). 

As a simple example of this result we consider the 
beryllium atom and let a, /3, 7, 8 refer to the 2S+, 2s~, 
ls+, and ls~ single-particle states, respectively. In 
Ref. 5 it was shown that the Is—2s interactions are 
small compared to Is—Is and 2s—2s interactions and 
so f(kk'; ls2s) is omitted in the denominators. Also the 
excited single-particle states used in Ref. 5 were all in 
the continuum and so the sums in Eq. (9) which do 
not run over both continuum states vanish because, as 
shown in Ref. 5, 2J= (Ro/ir)J'dk and continuum states 
have normalization (2/Ro)112. Equation (9) becomes 

X/(^T / / ;a /3)-6 f c -e ,0- 1X<(M , ) - rH^)- (10) 

In the denominator of Eq. (10) we have the effective 
two-particle energy for the state |o0). The term 
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— ((aft)e!t\v\aft) corrects for the inclusion of the Coulomb 
interaction of | a) and 10) in both single-particle energies 
€« and €/J. The term !>*'"<«0M (k"V")„)f{U'V"\aft 
accounts for second and higher order interactions 
among the particles in states | a) and | fi). In the calcula
tions of Ref. 5 it was found that omission of this term 
would have resulted in approximately a 10% error in 
the correlation energy among the two 2s electrons 
When there are bound "excited" states in the complete 
set of single-particle states then the energy denomina
tors will also include terms from the last two summa
tions in the denominator of Eq. (9). These correlation 
terms which we have been considering may be related 
to a type of "rearrangement diagram" considered by 
Brueckner and Goldman.8 

The equation for one-particle excitations f(k; a) also 
has the term E—EHF removed when coupling with the 
three-particle excitation term is considered. We write 

k',k"9*k,pty?*a 

+ •• (11) 

The result is that we replace (E—EHF) in Eq. (1.10) by 

£ (ay\v\(k'k")ex)f{h'k";ay) 

+ 23 (Py\v\(kk")**)m";py). (12) 

II. CONNECTION WITH PERTURBATION THEORY 

The results which we have just obtained may also 
be derived by a consideration of the perturbation 
expansion.3,4 We begin by examining the factorization 
of unlinked diagrams as shown in Fig. 3(a). The two 
apparently disconnected parts of each diagram are 
assumed to have one or more hole or particle lines in 
common and the two diagrams on the right of Fig. 3 (a) 
must not be considered as "unlinked." They are really 
"linked" as is shown in Fig. 3(b). The first term on the 
right-hand side of Fig. 3 (a) is eliminated by the usual 
cancellation of unlinked clusters.3,4 Similar factoriza
tions were considered in Ref. 5 where the two diagrams 
on the right of Fig. 3(a) were called third-class EPV 
diagrams. These diagrams were summed in an approx
imate way, although with sufficient accuracy for the 
numerical calculations of that paper. However, these 
two diagrams on the right of Fig. 3(a) may be summed 
exactly by noticing that both possible time orderings 
appear9 or by merely writing down the algebraic expres
sions and adding.8 For example, in the first subtracted 

8 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 
(1960). 

•H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 
129, 225 (1963). 

FIG. 4. Factorization of an unlinked diagram. It is assumed that 
all the disconnected parts have at least one hole or particle line 
in common so that there are correction terms (c), (d), (e), and 
(f) to the factorization (b). Diagrams (c) and (d) must be factored 
further. 

diagram of Fig. 3(a), shown in Fig. 3(b), the product of 
the energy denominators is (B(A+B)A)~1, where B is 
the denominator of the closed part considered separately 
and A is the denominator of the other part. The second 
subtracted diagram of Fig. 3(a) has the same matrix 
elements and a contribution (A(A+B)A)~1 from the 
denominators. The sum of these expressions is (A2B)~l, 
so the two subtracted expressions add to give a result 
which is the first correction term obtained in an 
expansion of the linked part with a shifted denominator. 
In other words, it is the second term obtained in an ex
pansion of the denominator of the following expression: 

(e«+ €6— ek— ek>+(bc | v \ (k"k"f)ex) (*b+ ec- ek» — ek»')~l 

X(k,,ki,,\v\bc))'H,(kk%x\v\ab). (13) 

The higher order terms are obtained from a considera
tion of the factorizations of diagrams of Fig. 4. Such 
factorizations were shown in more detail in Ref. 5. 
Correction terms resulting from the factorization of the 
diagrams in Figs. 4(c) and 4(d) and from the diagrams 
of 4(e) and 4(f) add to give the second correction term 
in an expansion of the denominator of Eq. (13) and 
the first correction term which would result from using 
the appropriately shifted denominator in the correction 
term of the denominator of Eq. (13). The result of such 
factorizations then gives the summation terms in the 
denominator of Eq. (9) or, in a more simple case, it 
produces the shift in energy denominators as shown in 
Eq. (10). 
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