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Dynamics of a System of N Atoms Interacting With a Radiation Field 
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The time-dependent behavior of an idealized laser is analyzed. The analysis avoids the use of the rate 
equations and includes iV-particle "superradiant" effects. Perturbation theory is not used; the dynamics of 
N two-level atoms interacting strongly with a single-radiation field mode yields four coupled nonlinear equa
tions which are integrated numerically for some special cases appropriate to lasers operating under ordinary 
power output as well as "Q-spoiling" conditions. Loss effects are grafted onto the dynamical equations 
phenomenologically. It is seen that under appropriate conditions, the laser is expected to emit one or more 
appreciable subsequent output bursts following an initial giant pulse, and that the subsequent emissions may 
be emitted by a population which is below inversion. 

I. INTRODUCTION 

THE continuing refinement of experimental tech
niques as well as of crystal growing techniques 

allows the mechanism underlying the production of 
coherent bursts of radiation, such as produced in lasers, 
to be probed in more detail. In the past, the analysis 
of the time dependence of a system of atoms coupled to 
a radiation field has most frequently been based on a 
rate equation, or energy balance approach.1'2 While 
this approach is satisfactory in many situations, the 
rate equations ignore phase effects between the dipole 
moment of the radiators and the radiation field. As 
will be pointed out below, a more complete analysis 
can lead to interesting effects in lasers under certain 
conditions; in particular, to the extraction of coherent 
radiation from a population which is below inversion. 

The model is essentially semiclassical, since the 
expectation values of products of field and atomic 
operators are factored into a product of field and atom 
expectation values. The results of this factorization do 
not differ significantly from the electrodynamic treat
ment for these purposes, and it is of some interest to 
note that "superradiant" spontaneous emission,3 

including the correct Einstein B coefficient, follows 
naturally from the resulting equations. 

Phonomenological terms are added to the basic set 
of equations, in a way familiar from the field of magnetic 
resonance, to describe the loss of radiation from the 
resonant structure, the "dephasing" of the total dipole 
moment and the effect of pumping radiation. The 
equations are cast into a form amenable to numerical 
solution and a three-level, ruby prototype laser is 
discussed under various conditions such as Q spoiling4 

and variation of the material parameters. 

* Present address: Physics Department, University of Cal
ifornia, Riverside, California. 
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II. MATHEMATICAL FORMULATION 

Consider an iV-atom system in which only two levels 
of each atom interact appreciably with the resonant 
modes of the electromagnetic (e.m.) field. In the dipole 
approximation, the Hamiltonian for the system, with 
zero-point energy of the e.m. field subtracted, is taken as 

i X 

+ E hKyJ{a^RJ+axR^). (II.l) 
x,? 

The operators Rz\ R±*, following Dicke's notation,3 in 
the space of the jth atom satisfy the commutation rules 

(II.2a) 

(II.2b) 

respectively, and the field creation and destruction 
operators a\+ and a\ of the Xth mode satisfy the com
mutation rules 

[tfx,aX'+]=5xv, (IL3a) 

t>x,0x']=O. (Ii.3b) 

The electric and magnetic fields are assumed to have 
the normal mode expansions 

E(x,0 = -Z(27T^x)1/2^x(x)ex(Gx-H-ax) > (H.4a) 

H(x,0 = -i E (2Thuxyi*Hx(x)hx(a}+--ax). (II.4b) 

The E\(x) and #x(x) are normalized so that 

(EX-O />£X(X)EX'(X)rf(vol) =5xx', (II.5a) 

4 (hx-hxO / Hx(x)Hi'(x)d(vol) =8Xx'. (H.5b) 

The electric dipole moment operator for the jth atom 
is taken as the odd operator 

VoP
i=vi(R+i+ R-W ( x - xO. (II.6) 
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We have defined the coupling constant 

i £xM2Wft ) 1 V' -ex£A(x) , ( I L 7 ) 

and have also denned the zero of energy as midway 
between the two levels of each atom so that Eij—E\j 

=ftG' and £ 2
7 ' +£ i ' ' =0 rVhere E2

3' and EJ are the 
energies of the upper and lower state of the 7 th atom, 
respectively. 

The operator identity valid for any time-independent 
operator 0 

ih6=[p,Wl (II.8) 

is easily worked out and gives the set 

iR+i= - Q ' U + q - 2 L Kytay+Rj, (II.9a) 
x 

iRJ= +&RJ- 2 L K^axRJ, (II.9b) 
x 

iRJ= - E Kxi(ax+RJ-axR+i), (IL9c) 
x 

uh = axax+j:KrJRJ, (IL9d) 
i 

tdx+= - c o x a x + - E J W - ' . (H.9e) 
/ 

Normally, expectation values of these operator 
identities are taken over the complete density matrix 
of the system (atoms+field). Taking expectation 
values on the right-hand side of (II.9a), (II.9b), and 
(II.9c) gives expectation values of products of atom and 
field operators, e.g., (a^Rtf), etc. The problem is then es
sentially intractable, except in perturbation theory, for 
systems more complicated than a single atom interact
ing with a single mode. However, if we now assume 
that the density matrix of the system can be factored 
into the direct product 

P^Pf^Pa^Pa^'-Pa" (11.10) 

of atom and field density matrices, terms such as 
(a\Rz3) factor to the product of expectation values 
(a\)(Rz3). This is equivalent to phenomenological semi-
classical theory, or the "S.C.F.A." (self-consistent field 
approximation) of Willis.5 

I t is convenient to define the slowly varying complex 
quantities A\, rJ' by 

<ax>=^xer**«, ( I l . l l a ) 

<ax+>=i4x**w*S ( IL l lb ) 

(R+'^rie***, (II. l ie ) 

(RJ)=r**<r*u. (II. l i d ) 

In terms of these new variables, we obtain from (II.9), 
after taking expectation values with respect to the 
factored density matrix (11.10), the set of five coupled 

« C. R. Willis, Bull. Am. Phys. Soc. 9, 4, 399 (1964). 

equations 

£4x = E j r x V > V ^ - ^ S (II. 12a) 

ir>'= 2 £ K^A^e^-^tRJ, (II. 12b) 
x 

iRz]'= - E Ki'XAfr&e*"*-**)' 
x 

-A^rk-1^-^1), (II.12c) 

as well as their complex conjugates (where (R^) is 
written simply as Rz}). 

We digress somewhat now and consider a special 
case of (11.12) to point out some of Dicke's results 
using these equations. Suppose for the moment that 
0 ' = Q and K\*=K\y independent of j . That is, all 
atoms are identical, as well as being confined in a 
volume whose dimensions are small compared to a 
wavelength \c^2irc/tt. We can then define 

r = X > ' (II.13a) 
3 

and 
n=ZR*', (IL13b) 

i 

in which special case we find the first integrals of (11.12). 

E M x | 2 + ^ = const (II.14a) 
x 

and 
\r\2+n*=cons>t=R*. (II. 14b) 

(II. 14a) is, of course, an expression of the conservation 
of energy. In analogy to Dickers terminology, we would 
call (II. 14b) the conservation of "cooperation." In a 
discussion of permanent dipole moments (spins) 
(II. 14b) would be an expression of the conservation of 
total angular momentum. Here, however, we explicitly 
have in mind induced electric dipole moments. I t is 
convenient to represent a radiation process geomet
rically in a 3-dimensional space labeling the coordinates 
(1,2,3) following Feynman.6 '7 According to (11.14) we 
can picture this simple radiation process as the motion 
of a vector R on the surface of a sphere in this space, 
(which, incidentally, is real space when considering 
permanent dipoles). The projection of R onto the (3) 
axis is the value of n, the population difference divided 
by two, and the projection of R onto the (1) axis gives 
Re(r) which is proportional to the expectation value of 
the induced dipole moment. The value of the induced 
dipole moment is zero when all atoms are exactly in their 
upper or lower states n=±(N/2) and so we see that 
the maximum possible value of | R | = A^/2 (N is the 
total number of radiators), and it can have the (con
stant) values (N/2), (iV/2)—1, •• -0, depending on 
initial conditions of the problem. 

6 R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth, 
J. Appl. Phys. 28, 49 (1957). 

7 Y. H. Pao, J. Opt. Soc. Am. 52, 871 (1962). 
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To obtain spontaneous emission (using the same 
restrictive assumptions ffl—Q, K^'—Kx), we simply 
perform a power-series expansion in powers of the 
coupling constant Kx 

Ax(t) = Ax*(i)+KxAxM(t)+---, 

r (0 = f ° ( 0 + ^ x f ( 1 ) ( 0 + - - ' . 

Inserting these into (11.12) and equating like powers of 
K\ gives 

£4xu) (/) = j £ x r * ( 0 ) ^ - ^ , (II. 15a) 

r°(0 = f°(O) = r(O). (ILlSb) 

A\°(t) = A\(Q) — Q for spontaneous emission. Integration 
of (II.9a) and insertion into (II.9c) leads to 

d sm2(a>x-ti)t/2 

For spontaneous emission from the small volume into 
a large box of volume V, we find, in the usual way8 

(replacing the summation by an integral) 

n~-2\r(0)\2p(tt)Kn2. (11.17) 
Using 

p(Q)=Vtt2/cz and <^2)sphere= 2TTOM7'MV (11.18) 

gives 
£ = - | r(0) 12/r= - ( £ 2 - w 2 ( 0 ) ) / r , (11.19) 

which is the desired result. Here r~l is the usual 
Einstein B coefficient 

T - ^ K O V / * * 8 ) -

Suppose the system is started off with all atoms 
exactly in the upper state, R2— (N/2)2. Then, according 
to (11.19), nothing happens. This is a point of unstable 
equilibrium in the semiclassical theory. However, if 
R2= (N/2)2, but N— 1 atoms are excited and one atom is 
in its ground state, then n— (N/2) — l, n= — (N— l ) / r , 
and the system emits "normally," that is, proportional 
to the number of excited atoms. But if we start off with 
R2= (N/2)2 and with half the atoms excited and half in 
their lower states, then »(0) = 0 and n= ~l(N/2)2/rJ 
The population then starts to decrease at a rate propor
tional to the square of the total number of atoms, and 
it is this situation that Dicke calls "superradiant" or 
"coherent" spontaneous emission. The situation is 
analogous to a physical pendulum which "radiates" at 
a very slow rate initially when aligned closely along the 
(3) axis but rather much more rapidly when in the (1-2) 
plane (when the electric field then sees a large dipole 
moment). 

We now return to consideration of the more general 
set of Eqs. (11.12). Interest is in casting these into a 
form describing an idealized laser operating in one 
mode; the resulting set of 4 nonlinear coupled equation 

8 L, I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955). 

will be cast in a form which will readily yield to numer
ical integration. 

Define the new variables m\, \px so that 

w x ^ = E Kyjr&e1^-^*, (11.20) 

which is the (complex) dipole moment which couples 
into the Xth mode; also define the e.m. field amplitude 
and phase ex and <j>x of mode X by 

Ax^exe^K (11.21) 

In terms of the new variables we have from (11.12) 

6x= —nix sin(^x-^x) , (II.22a) 

ex<i>\ = - m\ cos (<£x - <£x), (II.22b) 

mxe^+imxe^x 

= E 2iKxjKxjex>ei^'ei^-^tRJ 
X ' j 

+ * E Kxlrl*(<aK--Qi)ei<<*-*»t. (II.22c) 
i 

We now make the reasonable assumption that if we 
take an average of these equations assuming a random 
distribution of atomic sites x;', the modes will decouple 
due to the orthogonality condition (IL5a). That is, 
we now assume that 

(KxtKv%r= (27rcox/^F)((ii.ex)2)av^x^ 

^(2WftF)/ix2ftA<, (H.22d) 

taking u ^ y , for all j . JJLX is the component of the 
dipole moment which couples into mode X. 

The second term on the right of (II.22c) would 
vanish if l2/==0=cox. I t represents a dephasing of the 
total dipole moment due to different local environments 
giving rise to a spread in natural frequencies about ft. 
We wish to take this term into account in a way 
familiar from nuclear resonance theory by saying that 
when ex^O, its effect is to cause the magnitude nix to 
decay exponentially to zero at a rate j \ . Then we write 

mx+yxnix= ~2Texn sin(0x—<Ax), (11.23) 

\pxmx=2Yexn COS(^X~^A) , (11.24) 
with 

^ = E # 3 ? " (11.25) 
j 

and 
r=27ra>xMxW. (11.26) 

From (II. 12c), (11.20), and (11.21), we have that 

n=exntx sin^x—i/oO+E «X'W\' sin(0X'—tfv). (11.27) 

The sum Ex> runs over all those modes, except mode X, 
which are at approximately frequency o>x but which 
are appreciably more lossy than the mode designated 
by X. For instance, this term represents the losses of 
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radiation from the sides of a lasing crystal due to 
spontaneous emission. The usually small stimulated 
emission into these modes which are characterized by 
high loss (free-space-like modes) will be neglected. 

If we add a phenomenological mode loss rate term to 
(II.22a), and collect equations, we have finally the set 

(d/dt) (ex
2)+2pex

2= -mxex sin0x, (II.28a) 

(d/dt)mx+yxmx= -2Yexn sin0x, (II.28b) 

(d/dt)n=exmx sin0x+!£ ex>mx> sin0x>, (I1.28c) 

mx(d/dt)fo=21^ cos0x, (II.28d) 

ex(d/dt)<j>x= ~mx cos0x, (II.28e) 

0x^«x-^x. (11.29) 

From (II.28a), (II.28d), and (II.28e) we note the first 
integral 

exmx cos0x= (exmx cos0x)oe~(^+7*)' y (11.30) 

which states that if mx, ex, or cos0x were ever zero, then 
cos0x=O for all time for a nontrivial solution to exist. 
Otherwise, cos0x will approach zero at a rate /3x+7x-
Cos0x=O implies sin0x=±l. It must be noticed, 
however, that sin0x as a function of time takes on the 
two values + 1 or —1, since by inspection of (II.28a), 
(II.28c) the sign of sin0x determines whether the atomic 
system is emitting or absorbing radiation. 

If in (II. 28b) we assume that mx<^Kxtnx, then we 
may neglect mx, solve for mx, and insert its value into 
(II.28a) and (II.28c). This gives, by use of (11.30) with 
cos0x=O, 

(d/dtW+2faa*= (2Y/yx)ex
2n} (II.31a) 

(d/dt)n= - (2T/yx)ex
2n- (n+N/2)/r. (II.31b) 

The term (n+N/2)/r has been used as an approxima
tion for the last term of (II.28c); n+ (N/2) is simply 
the population of the excited state and r - 1 is the 
spontaneous rate. The two coupled equations constitute 
the well-known rate equation approach to radiation 
dynamics.1 The absorption rate (per atom) for mode X 
is given by ax=T/2yx=Ta)Xfj,x

2/fiVyx. 
At the other extreme from the rate equation approxi

mation (11.31), the completely "coherent" description 
of radiation into a single mode is afforded by dropping 
all terms in (11.19) which describe losses, that is by 
setting 7x=iSx=S ex'^x'sin0X/ = O. In this case, by 
denning the angle variable ® in the mx/(2T)ll2

y n plane 
as ®=tan~1[(2r1/2)wx/^] we find the equation of 
motion for ® 

(d2®/dt2)+ (2r)sin@ = 0, (11.32) 

which is simply the equation of motion of a spherical 
pendulum. The initial conditions are determined from 
d®/dt*= — (2T)U2e\>. The solutions are elliptic functions 
and become sinusoids when ex(0) gets large (>10). 
The case ex(0)=0 appropriate to spontaneous emission 

leads to the same general results as in Eq. (11.19) 
concerning the rate of spontaneouse mission as a 
function of N. Keeping only the mode loss rate in 
(11.28) results in the equation 

(d2@/dt2)+/3x(d®/dt)+2T s inO-0 , (11.33) 

easily recognized as the equation for a damped physical 
pendulum. 

The "perfectly coherent" process is one which 
describes a circle in the n, mx/(2T)112 plane. The solu
tions to the rate equation, on the other hand, are 
restricted to one quadrant in this plane. Since mxc^Texn/ 
Yx, n=0 implies that mx=0, and thus the only crossing 
point of the axis n=0 is the improbable point ^=0 , 
?wx=0, in the rate equation approximation. 

In order to facilitate numerical integration of this 
set of equations, we define the new variables 

I^ex
2/2Ny (II.34a) 

tn^fnx/N(2ryt2, (II.34b) 

f = ~mex sindx/(2N)1^, (II.34c) 

A=n/N, (II.34d) 

a=(NTyt2. (II.34e) 

The equations (11.28) then take the form 

1+201=a?, (II.35a) 

dm2/dt+2ym2= 2<tf A, (IL35b) 

dt/dt+ (/H-Y)f =a(m2+2IA), (IL35c) 

A = - « r - [ ( A + i ) / r ] - P ( A - £ ) , (IL35d) 

where we have suppressed the subscript X, written the 
term J^x> ex>mx> sin0x> as (A+f )/r, and added a term 
to the equation for the rate of change of the population 
difference A (normalized to 27V") to describe the effect 
of a "pump" which takes atoms from the ground state 
and puts them into the upper state. We are thus 
assuming an infinitely fast transition from the pumping 
band to the upper laser level, as well as an optically 
thin material so that the pumping is uniform throughout 
the volume V. We can allow P (the pumping rate) as 
well as 0, the cavity mode loss rate, to be functions of 
time; the numerical solutions below, however, only 
include the case of a time varying (3. 

III. RESULTS OF NUMERICAL INTEGRATION 

The set of Eqs. (11.35) were integrated on a high
speed digital computer for several values of a (constant) 
pump rate P, and the coupling parameter a, and the 
dipole moment dephasing rate y. The function 0 is 
taken to be a "Fermi function" of time 

£(<)= C(ft~/5/)/(l+^'-'o) /A0]+/5/, (IIL1) 

and will represent approximately the "Q switching" 
by a Kerr cell or similar apparatus, to will be chosen as a 
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10M COSli/(DIPOLE MOMENT) 

(b) 

FIG. 1. Laser behavior with constant pump and constant cavity loss rate under conditions which would be well approximated by 
the rate equation approach. Parameter values are /3=107, Y = 108, P = 103, a=109 and r - 1 = 3X 102, all in sec-1. t = 0 is chosen from 
computed data near the start of significant behavior, (a) Intensity dependence on time, (b) Dipole moment versus population inversion. 

time somewhere just before the populations A reach a 
threshold determined by ft. 

Figure 1 shows the "relaxation oscillations" for a 
laser operating under conditions of ordinary power 
output.9 Both the intensity / a s a function of time as 
well as the corresponding phase diagram of {m cos^) 
versus A is shown for each case. The dots in the phase 
diagrams correspond in time to the peaks in the 

intensity diagram. In Fig. 1(b), the entire phase 
diagram is seen to lie in the first quadrant and the 
solution is very well predicted by the rate equations, 
since the rate y is much greater than the fractional 
rate of change of m. The intensity / is shown in units 
of photons/iV, where N is the effective number of atoms 
participating. By changing the cavity loss rate to a 
larger value we see in Fig. 2, as expected, that the 

15 X 16-*| 

t 

k J\ l\ IX A\ J\ A ZAJ 
0 1 X IO'5 Z 3 K 5 X 1 0 - 5 

(a) 

0 1 X 10-3 5 x 1 0 -3 

10M COSIj>(DtPW.E MOMEMT)-

(b) 

FIG. 2. Same as Fig. 1, except for higher cavity loss rate, j8=108 sec""1. 

9 For all the following figures, the quantity (e\nt\ cos0\)o was taken as zero. [See Eq. (11.30).] Moreover, for convenience in 
graphing, the same discontinuous properties are attributed to \p and <f> as are exhibited by 9 = 4>—xl/. That is, sin<£ and sin^ as 
functions of time are made to alternate between the values + 1 and —1 in such a manner that sin0(/) takes on the correct values and 
the functions m cosi£ and e sin<£ are continuous. 
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10 X 70'3f 

A (POPULATION INVERSION) 

cost// 
(DlPOLE MOMENT) -

4 X 10-7 

FIG. 3. Same as Fig. 1, except for a larger pump P=10 4 sec-1, a smaller dephasing rate 7 = 107 sec x, and the addition of Q spoiling 
with cavity loss rate initially ft = 109 sec"1 changing to a final cavity loss rate of 0/ = lO7 sec-1 in a time A/ = 2.5.10~8 sec. 

spiking is almost continuous; clearly the radiation taken as 3X10~3 sec in all computations.) Figure 3 
almost completely escapes from the cavity before the shows a case of "Q switching" [Eq. (III.l)], where 
pump can again bring the population over threshold, parameters are chosen to exhibit a rather extreme situ-
At=/3y/2a2

y and the process simply repeats itself. (The ation (in present day practice) of very low y and /?. 
parameter r, the spontaneous emission time has been The second, third, etc., spikes in Fig. 3(a) are seen 

3.0 X TO"2!— 

FIG. 4. Same as Fig. 3, 
except that final cavity 
loss rate /?/=108 sec-1 

and Q spoiling occurs 
over time At = 5.10~9 sec. 

2.0 X 10-2 

A (POPULATION INVERSION) 
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to occur when the populations are below inversion, 
A < 0 . This is strictly a possibility inherent in this 
analysis and not in a rate equation description. Figure 4 
again exhibits the same phenomena; the second spike 
occurs totally when A < 0 . 

In both Figs. 3(b) and 4(b) the initial and final 
threshold values At

(i) and At
u) are shown. Notice the 

difference in scale between Figs. 1, 2 and 3, 4. Figs. 1(b) 
and 2 (b) would appear as diffuse dots near the A axis in 
Figs. 3(b) and 4(b). A case has also been run under 
"normal" circumstances (no Q spoiling) with a low 
threshold (A f« 0.001) in which the output / versus / 
appeared as a series of almost random spikes. Ap
parently, a great variety of solutions is possible here as 
compared to the rate equation approach. 

These results are intended to serve as illustrative of 
some possibilities in coherent device dynamics. The 
case of a "two-level" device akin to a ruby laser has 
guided the discussion. However, one expects that the 
laser line in ruby is homogeneously broadened, and at 
room temperatures the parameter 7 would be ~ 10 u cps, 
the full time width of the Ri transition. If this is the 
case then the rate equations would be expected to as 
adequately describe the dynamics as the full set, 
(11.35) and secondary pulses as described above would 
not be possible unless one operated as a much lower 
temperature, <70°K. However, if the laser line is 
inhomogeneously broadened even at room temperature, 

(which appears unlikely in ruby), then such "hopping' ' 
might occur, since 7 would be expected to be a good bit 
smaller. The above set of equations should approxi
mately describe the dynamics of such a system where 7 
would be determined by the cavity parameter fi and 
the effective number of atoms participating in the 
radiation process into a single mode would be roughly 
(7V)eff~(Acoc/Aco)iVr, where AOJC is the cavity linewidth 
(presuming this is what governs the linewidth in this 
case) and A« is the full laser atomic linewidth. 

I t may be pertinent to point out that one cannot 
expect to see such "superradiant" hopping effects by 
"Q spoiling" a gas laser such as the helium-neon, 4-level 
laser of Javan.10 The point is simply that due to the 
very rapid emptying of the terminal laser state into a 
metastable state compared to the time width of a giant 
pulse, one can never achieve a condition of A < 0 with 
any appreciable population in the lower laser state; 
that is, these equations do not describe such a device 
even over the time interval of a giant pulse. 
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