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A Born-von Karman model has been used to determine the frequency spectrum for a body-centered cubic 
lattice. The model used contains noncentral angular stiffness forces as well as central forces between nearest 
and next-nearest neighbors. Frequency distributions have been calculated for vanadium and compared with 
experimental frequency distributions available from slow neutron experiments. Qualitative agreement was 
found between the shapes of the experimental and theoretical distributions. The calculated maximum 
frequency for vanadium was within 2% of that derived from the experimental frequency distribution. Disper
sion curves for iron were also calculated, and were found to be in good agreement with experiment. 

INTRODUCTION 

TH E frequency distribution of a body-centered 
cubic lattice of identical particles has been 

investigated using the Born-von Karman model of a 
crystal lattice. The interatomic forces used include 
noncentral forces of the type introduced by Gazis, 
Herman, and Wallis1 in treating surface waves in a 
simple cubic crystal. These noncentral forces arise from 
the resistance to deformation of certain angles formed 
by three lattice points. Also included are central 
forces between nearest and next-nearest neighbors. 
Noncentral forces have been employed in recent 
calculations by Hendricks, Riser, and Clark,2 which 
appeared after our work was essentially complete; 
however, the noncentral forces considered by them are 
different from those used here. 

One of the primary aims of the investigation was to 
examine the effect of the inclusion of noncentral forces 
on the frequency distribution. Comparison between 
the central-force model and the model employed here 
was made for iron and for vanadium which is one 
of the more anisotropic body-centered cubic crystals. 
The central-force calculations for vanadium were 
available from the work of Clark.3 The calculations 
with vanadium were also compared with the frequency 
distributions obtained by the slow neutron experiments 
of Stewart and Brockhouse,4 and Eisenhauer et al.5 
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Dispersion curves along specified directions were 
calculated for iron and compared with the experi
mentally determined dispersion curves of Low.6 

LATTICE EQUATIONS OF MOTION 

Although the equations of motion for central forces 
appear elsewhere, for example, in DeLaunay,7 they 
will be repeated here in order to provide a continuity of 
notation. Taking a displacement vector with compo
nents u, v, and w in the x, y, and z directions, respec
tively, the force in the x direction on atom ( j , m, n) due 
to the central-force interactions of nearest neighbors is 
given by 

F^atUSu^^n+V+Wl, (1) 
where 

U= W + l , m + l , t t + l + % + l , m + l , n - l + % + l , ™ - l , n + l 

+ 
+ %-l,m-l,n+l+%-l,n-l,w-l) , 

V~ W+l,mi-l,n+l+fly+l,»»+l,n~l"~"fly+l,m-l,n-fl 

~-Vj+l,m-l,n-l— V- l ,m+l ,n+l—Py-l ,»n+l ,n-- l 

+ ^ y - l , m - l ( n + l + ^ y - l , m - l , n - l ) , ( 2 ) 

^ = ( ^ y + l , w + l , ^ - l - - W y + i | W H _ i > n _ _ 1 + 2 £ ; y + i , w _ l t n + 1 

~ Wy+i .w-i .w- i— W y - l , m + l , n + l + W y _ i , m + 1 > n _ 1 

~ - W y - l , m ~ l , n + l + W y - l , m ~ l , » - l ) , 

where a is the nearest-neighbor force constant. Similarly, 
the central-force interaction between next-nearest 
neighbors gives rise to a force on the atom (j,m,n) in 
the x direction given by 

Fx2 = fi\jlj+2,m,n+Uj.-.2,m,n—2Ujtm>n], ( 3 ) 

where /5 is the next-nearest-neighbor force constant. 
8 G. G. E. Low, Proc. Phys. Soc. (London) 79, 479 (1962). 
7 J. DeLaunay, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2. 
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For the noncentral forces examined here it is assumed 
that a change in angle is related to a change in potential 
energy by a Hooke's law force constant. If V is the 
potential energy and 8<t> a change in angle, one obtains 

v=hm\ (4) 
where 7 is the force constant. In this treatment two 
general types of angles were considered; 36 angles of 
the type <j>\ in Fig. 1 associated with a force constant 
71, and 72 angles of the type </>2 in Fig. 1 associated with 
a force constant 72. The expansion of the potential 
energy is quite tedious but straightforward, and the 
total contribution from the angles considered results in 
a force on the atom of interest, in the x direction, 
given by 

Fxz=yiZ—20uj>m,n+2U—V—W+4:(Uj+2,m,n+Uj^2,m,n) 

W , m + 2 , n + % , m — 2 , n + ^ y ( ™ , w + 2 + ^ / , m , n - 2 ) j 

-y2t-30uj>m,n+3U+UV+W) 
+ f fe,m+2,n+^y,w-2,n+%,m,n+2+^j,m,n-2)], ( 5 ) 

where U, V, and W are given by Eq. (2). These non-
central forces are invariant under rigid-body rotations. 

The equation for the force in the x direction on the 
atom (j,fn,n) due to the central and noncentral forces 
considered here may now be written as 

Fx=muj>mtn 

= -«y.m.»[8a+ 2/H-2O71+3O72] 
+ 08+471)(«jLf2,Wi»+«y-2fm.n)+( —7l+§72) 
X ( % , m - j - 2 , n + % , / n - 2 , n + % , m , n + 2 + % > m , n - 2 ) 

+ U(a+ 271+372)+ ( 7 + W) ( a - 7 i + ! 72), (6) 

where U> V, and W are given as in Eq. (5). The forces 
in the y and z directions on the central atom are found 
by a circular permutation of u, v, and w, as well as the 
increments of their indices j , m, n. 

SOLUTION OF THE EQUATIONS OF MOTION 

The solutions of the equations of motion are assumed 
to be plane waves, where the usual cyclic boundary 
conditions of Born8 are applied. The solutions for the 
motion of, say the nth, atom are written as 

un— X exp2xi(^+k« r n ) , 

vn— Y exp27ri(^+k-rn) , 

wn—Z exp27ri(y+k»rn). 

Here X, Y, and Z are the components of the plane-wave 
amplitude, and k is a propagation vector in the recipro
cal lattice whose magnitude is the reciprocal of the 
wavelength. The values of k are restricted to the first 
Brillouin zone, as discussed by Brillouin.9 Substitution 
of these solutions into the equations of motion gives 
three homogeneous linear equations in X, F , and Z. 

8 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Clarendon Press, Oxford, 1954). 

9 L. Brillouin, Wave Propagation in Periodic Structures (Dover 
Publications, New York, 1953). 

FIG. 1. Body-cen
tered cubic lattice 
showing primit ive 
(<£i) and secondary 
(02) angles. 
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A nontrivial solution requires that the determinant of 
the coefficients of X, Y, and Z vanish. This condition 
yields the secular equation 

where 

Ax-mu2 B C 
B A 2—mo)2 D 
C D Az-mo)2 

= 0, (7) 

Ai= (801+1671+2472) (1 — cos$i cos$2 cos$3) 

+4/3 sin2<I\— 27i(5 cos2<£,— cos23>i—cos2<S>2 

-cos2$3-2)+37 2 (2+cos2$i - -cos2$i 

-cos2<I>2-cos2$3), (8) 

B=S(a—7i+f72)cos(I>3 sin$i sin$2 , 

C = 8(a—7i+f72)cos<i>2 sin3>i sin<J>3, 

Z)=8(o;—7i+|72)cos<I>i sin<l>2 sin$3. 

In Eq. (8), 3>i=waki (i= 1,2,3) where a is the distance 
between next-nearest neighbors for the body-centered 
cubic lattice. 

Symmetry considerations allow a restriction of the 
values of ${ to points within 1/48 of the first Brillouin 
zone. The limits on the $ t are then given by 0<$I<^TT, 
0<$2<§7r, and 0<<£>3<7r. This reduces the values of 
&i to those within the region in <l> space bounded by the 
planes $i=(l>2, $ 2 = 0 , $i=<I>3 and <£i+#3=7r. 

For a cubic equation of the type resulting from the 
expansion of Eq. (7) Blackman10 has shown that 
maxima in mco2 can occur only when $1, $2, $3 have 
some combination of the values 0, %T, T. The point 
<l>i=i>2=^>3:=0 is excluded as moj2=0 at this point. 
Substitution of those values of $1, <E>2, $3 which are with
in the first 1/48 Brillouin zone showed that in most 
cases considered the maximum occurs at (§7r, 0, | x ) . 
This maximum frequency may be found directly from 
Eq. (7) and is 

mo)n = 4 ( 4 a + ^ + 5 7 l ) + 4 2 7 2 . (9) 

I t was found in actual calculations that the position of 
the maximum could be shifted to (0,0,7r) when certain 
values of the elastic constants, such as those for sodium, 
given by Quimby and Siegell,11 were assumed. In this 
case the maximum frequency is given by 

^ m a X
2 = 16(a+ 271+372) . (9a) 

10 M. Blackman, Proc. Roy. Soc. (London) A148, 365 (1935). 
11 S. L. Quimby and S. Siegell, Phys. Rev. 54, 293 (1938). 
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FIG. 2. Three calculated 
frequency histograms for vana
dium with 72/71 = 0.0 (upper 
curve), 72/71 = 0.5 (middle 
curve), and 72/71 = 1.0 (bottom 
curve). Note: For display 
purposes, while the scale of 
the ordinate is the same for all 
three curves, the origin for the 
middle curve is at 0.02 and is 
at 0.04 for the upper curve. 

RELATIONSHIPS BETWEEN ELASTIC CONSTANTS 
AND LATTICE FORCE CONSTANTS 

In the limit of long wavelengths, when the wave
length is much greater than the lattice spacing, the 
plane waves are effectively propagating as in a con
tinuous medium. This allows the identification of the 
lattice force constants with the elastic constants of the 
medium found from measurements of the velocity of 
sound. These relationships are obtained by expanding 
the displacement components such as Uj+p,m+g}n+r in 
a Taylor series about %,m,w, substituting into the 
equation of motion and matching the coefficients of the 
second order derivatives with those of the continuum 
equations of motion. The results are: 

ocii= 2 (a+/3+ 671+372) , 

acu=2(a—37i+f72), 

a£44=2(a:+7i+i72). 

(10) 

If 72=0, the above three equations determine the 
lattice force constants uniquely; otherwise, the force 
constants are determined assuming, for example, a 
given ratio of 72/71. The value 72/71 is used as a 
parameter in the sequel. The elastic constants for 
vanadium are those of Alers.12 I t may be observed that 
the maximum frequency when it occurs at (^irfl^w), 
as is usual, is a function of the elastic constants only 
and is 

wo)max
2= 2a(ci2+2cu+cn). (11) 

However, when the maximum frequency occurs else
where it is also a function of 72/71. 

12 G. A. Alers, Phys. Rev. 119, 1532 (1960). 

CALCULATION OF THE FREQUENCY DISTRIBUTION 

In order to obtain the true distribution of frequencies 
in a macroscopic crystal Eq. (7) would have to be solved 
for a very large number of points within the first 
Brillouin zone, equal to the number of degrees of 
freedom of the particles in the crystal. A systematic 
method was used for choosing a relatively small number 
of solution points within the first zone. I t is assumed 
that solution points are uniformly distributed such that 
an allowed point exists within a volume element in $ 
space, and further that the frequencies at all points 
within the element are equal to the value of the fre
quency at the center of the element. The values of 't
were chosen in a regular manner by stepping along the 
axes in intervals of O.OI71-. Thus the volume elements 
were cubes of volume 10~6 7r3. 

Some of the solution points were on the bounding 
planes and were not, of course, centers of a cube lying 
entirely within the first Brillouin zone. There was some 
question of the desirability of including these points 
without properly weighing their contribution to the 
frequency distribution in the first zone. A numerical 
investigation of the most extreme case, that of the 
frequency distribution obtained with all points on the 
bounding planes included with the same weight as the 
interior points, showed that the resulting frequency 
distribution was essentially the same as the distribution 
with no boundary points included. Due to this result 
only points in the interior of the first l /48th Brillouin 
zone were finally chosen. These considerations resulted 
in the inclusion of approximately 39 000 solution 
points in the l /48th zone. Histograms representing the 
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frequency distribution were prepared from the cal
culated frequencies by finding the number of frequencies 
contained in a given frequency interval. The frequency 
interval chosen was 1.0% of the maximum frequency. 

The cubic equation for the square of the frequency 
was solved using the Cardan method to find the first 
root, and the remaining quadratic to find the other two 
roots. A check on the accuracy of this method of 
calculating the frequency showed that six figures of 
accuracy were present for most cases. In the case of 
two equal roots the accuracy could be reduced to five 
figures; however, an error of this magnitude is not 
significant in the construction of the frequency histo
gram. The calculations were performed on an IBM-7090 
computer. 

RESULTS 

The elastic constants for vanadium at 300 °K are 
given by Alers12 as 

c n = 22.795 X1011 dyne-cm-2, 

ci2=11.870X10n dyne-cm-2, 

cu= 4.255 X1011 dyne-cm"2. 

The maximum frequency calculated from Eq. (11), 
using these elastic constants, is 8.87X1012 cps which 
compares well with the experimental value of 9X1012 
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FIG. 3. The experimental results of Eisenhauer presented with 
the frequency distribution of Clark and the model used here with 
72/71 = 1-5. The results are normalized such that the area under 
the curves are the same. 

FIG. 4. Dispersion 
curves for iron along the 
[101] direction, $i=3>3 
=<!>, $2 = 0 where $1 
= iraki, along with the 
experimental results of 
Low. and Low's best fit. 
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cps extrapolated from the curve given by Eisenhauer.5 

The two constant central-force model gives a maximum 
frequency of 7.07 X1012 cps. Thus the three constant 
model gives a better result for the maximum frequency. 
The calculated and experimental frequency distribu
tions are, however, quite different with regard to the 
location of the two major peaks, with the calculated 
frequency distribution having more widely spread 
maxima. The parameter 72/71 may be varied without 
destroying the good agreement with the experimental 
maximum frequency. Figure 2 shows the frequency 
historgrams for vanadium for ratios of 72/71 of 0.5 and 
1.0, along with the case for 72=0. Figure 2 indicates 
that increasing the ratio of 72/71 reduces the intensity 
of the first peak and moves the two maxima closer 
together producing better agreement with experiment. 
In view of those results, the frequency histogram for 
72/71= 1.5 was also calculated and a smoothed curve 
obtained from these results is shown in Fig. 3 together 
with the experimental curve of Eisenhauer. For 
comparison the smoothed curve for the central-force 
model of Clark is also presented. 

To indicate the effect that an uncertainty regarding 
the elastic constants might play in the determination 
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FIG. 5. Dispersion curves for iron 
along the [111] direction, $i=$ 2=^ )3 
=<£, where ^i = iraki along with the 
experimental results of Low. and 
Low's best fit. 
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of the frequency distribution, vanadium distributions 
were calculated using elastic constants varied by ± 1 0 % 
independently and assuming y 2 = 0. Briefly, it was noted 
that increasing cu and Cu by 10% tends to spread the 
peaks while increasing cu brings the maxima together 
slightly. I t was also apparent that increasing cu and 
cu by 10% increased the sharpness of the low-frequency 
peak while increasing cu had the opposite effect. None 
of these frequency distributions seem to fit the experi
mental one appreciably better than the distribution 
with the unchanged elastic constants, and the calculated 
maximum frequencies are all in the neighborhood of 
the experimental maximum. 

In addition to the frequency spectra discussed above, 
the model was used to calculate frequency dispersion 
curves. The calculations were compared with dispersion 
curves for iron as determined by Low.6 Using the 
elastic constants given by Low for iron at 16°C as 

c n = 2.332X1012 dyne-cm"2, 

ci2= 1.355X 1012 dyne-cm"2, 

c44= 1.180X 1012 dyne-cm"2, 

dispersion curves were calculated along the [101], 
[111], and [001] directions. For comparison the same 

calculations were performed using a two-constant 
central-force model. The results of these calculations 
are shown in Figs. 4-6 along with the experimental 
results of Low. These calculations showed that the 
maximum frequency of 9.735X1012 cps for the three-
constant model was higher than the maximum fre
quency of 8.711X1012 cps found for the two-constant 
model. Comparison with Low's curves shows that the 
three-constant model matches the experiment better 
than the two-constant model; however, both are, in 
general, well within the experimental error. The results 
of the three-constant model within the first zone, are 
essentially indistinguishable from the fit to the experi
mental data given by Low. The largest discrepancies 
occur for dispersion curves along the [111] direction, 
and even here the difference is apparent only for values 
of <£ outside the first zone. The inclusion of the angular 
stiffness terms has, in general, improved the agreement 
with experiment in this case. 

CONCLUSION 

The dynamical properties of a body-centered cubic 
lattice of identical particles have been investigated using 
the Born-von Karman model of a crystal lattice. The 
model employed contained noncentral as well as 
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FIG. 6. Dispersion curves for iron along the [001] direction, 
<£>i=<l>2 = 0, where 3>3=7ra&3, along with the experimental results of 
Low, and Low's best fit. 

central forces, namely, noncentral angular stiffness 
forces and central forces between nearest and next-
nearest neighbors. 

Frequency distribution histograms have been con

structed for vanadium and compared with the experi
mental frequency distributions available from slow 
neutron experiments. The calculated maximum fre
quency for vanadium was in good agreement with that 
derived from the experimental frequency distributions, 
an improvement over the results of the central-force 
model. Our model containing a single angular stiffness 
interaction (72/71=0) gives a frequency distribution 
which is very similar to that obtained by Hendricks 
et al? with their noncentral model. Both distributions 
yield a separation between the two major peaks which 
is significantly larger than that found experimentally. 
Inclusion of a second angular stiffness interaction into 
our model (72/71^0) gives a small improvement but 
not enough to produce agreement with experiment. 
The disagreement in the experimental and theoretical 
values of the separation between the two major peaks 
in the frequency distribution might possibly be removed 
by including additional interactions in the model. I t 
may well be; however, that short-range forces are 
inadequate, and that long-range forces are required. 
Since vanadium is a metal, the effects of the electron gas 
may be significant as discussed by DeLaunay.7 The 
recent calculation of Hendricks, Riser, and Clark,2 

however, indicates that the use of DeLaunay's model 
does not resolve this difficulty. Failure of the adiabatic 
approximation in a metal might also be a factor which 
should be taken into account. 
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