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could lead one to conclude that the nature of the mag­
netic interaction that leads to these phenomena is of the 
same physical origin. Graphical analysis of the low-
temperature resistance characteristics of dilute Zn-Mn 
alloys, assuming the sum of two terms; one due to 
magnetic ordering and one due to resonance scattering 
results in a value of / in agreement with that derived 
from other transport phenomena. This then suggests a 
method of separating the resistance minimum from 

I. INTRODUCTION 

CRYSTAL field theory1*2 has had a long and varied 
history: when treated as a semiempirical theory, 

with the crystal field splitting 10 Dq considered as an 
adjustable parameter, it has been highly successful in 
fitting experimental data; when considered as a funda­
mental theory for the behavior of transition metal ions 
in crystalline fields, it has been strikingly unsuccessful 
in predicting, from first principles, the fundamental 
parameter 10 Dq. Following the pioneering computa­
tions of Van Vleck3 and Polder,4 a series of theoretical 
investigations5"9 succeeded in pinpointing the basic 

* Supported by the U. S. Air Force Office of Scientific Research. 
1 H. Bethe, Ann. Physik 3, 133 (1929). 
2 J. H. Van Vleck, Phys. Rev. 41, 208 (1932). 
3 J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939). 
4 D. Polder, Physica 9, 709 (1942). 
* W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952). 
6 H. S. Jarrett, J. Chem. Phys. 31, 1579 (1959). 
7 Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 11, 864 (1956). 
8 J. C. Phillips, Phys. Chem. Solids 11, 26 (1959). 

total resistivity in the presence of a resistance maximum 
produced by magnetic ordering. 
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shortcomings of the theory, and indicated the need for a 
multielectron many-center molecular approach. 

The recent work of Sugano and Shulman10 (henceforth 
denoted as S&S III), representing the most detailed 
computations undertaken to date, attempted to obtain 
a quantitative basis for the theory by including all the 
terms in the ionic model considered by their predeces­
sors, as well as the effect of metal ion-ligand covalent 
mixing. A cluster model consisting of the metal ion and 
its nearest ligand neighbors in an external Madelung-
like potential was invoked. Considering KN1F3, they 
obtained a theoretical cubic field splitting parameter 
(10 Dq) for Ni which gave the first quantitative indica­
tion that covalency plays an important role in the 
crystal field interactions of salts as highly ionic as 

9 A. J. Freeman and R. E. Watson, Phys. Rev. 120, 1254 (1960). 
This reference also contains a useful review of the theoretical 
investigations prior to the work of Ref. 10. 

10 S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963); 
henceforth denoted as S&S III . 
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The theory of covalency in crystal field phenomena is examined, using, as example, the Ni-F6 complex in 
KNiF3. The Hund-Mulliken-Van Vleck molecular orbital-linear combination of atomic orbitals treatment 
is followed. The role of the antibonding and bonding electrons in the complex is discussed from a multi-
electron point of view. The exact self-consistent one-electron Hamiltonian is discussed in some detail. 
Emphasis is placed on elucidating the source and nature of the covalent effects appropriate to the various 
physical phenomena. We find that it is the covalent mixing of those bonding electrons having no antibonding 
partners which contribute to all experimental observables (including the crystal field splitting 10 Dq, 
transferred hyperfine interactions, neutron magnetic form factors, and superexchange interactions). This 
view of covalency differs markedly from the one followed by Sugano and Shulman, in that the covalency of 
the antibonding electrons, which are assigned the sole role in their approach, is totally irrelevant. Quantita­
tive numerical estimates (using approximations to the exact Hamiltonian) are given for the two models 
of the covalent effects in KNiF3, i.e., "unpaired" bonding and antibonding; they are shown to differ strongly. 
The relative roles of overlap and covalency are discussed; covalency is found to play an important but 
by no means dominant role. Numerical agreement between the present inexact cluster theory and experi­
ment is found to be poor. The various sources of this disagreement are reviewed. 
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KNiF3 . In addition, they considered the role of the 
computed covalent mixing in the F19 transferred 
hyperfine interactions.11 

While the role of covalency in superexchange,12 and 
transferred hyperfine effects11,13~17 have been particular 
objects of study, overlap and covalent mixing signif­
icantly affect almost every observable in an iron series 
salt. Covalent behavior must be understood in detail 
before matters such as the theory of superexchange can 
be put on any sort of quantitative basis. 

Sugano and Shulman's modification of crystal field 
theory to include covalency in the cluster model may 
be viewed as an extension of the traditional approach 
to crystal field effects in ionic salts. In KNiF3 , the 
familiar triply (tzg) and doubly (eg) degenerate 3d 
orbitals, describing the Ni2 + ion in its ground-state 
configuration ( / tV^ t 2 ) , in the ionic model, become 
antibonding orbitals in covalent theory. These orbitals 
are shown schematically in Fig. 1. Also included are the 
bonding orbitals, which are formed predominantly from 
ligand 2s and 2p functions. Since their energy is lower 
than that of the antibonding orbitals, they are com­
pletely occupied. According to S&S, it is the covalency 
of the antibonding electrons which must be considered 
in order for the experimental observables to be repro­
duced. Thus, in the theory of the transferred hyperfine 
effects only the covalency of (spin) unpaired antibond­
ing 3d electrons of majority spin contribute, while the 
crystal field splitting is associated with the 3d antibond­
ing electrons of minority spin. Sugano and Shulman 
utilized the conventional approach of treating electrons 
of either spin identically and therefore obtained a 
common estimate of this covalent mixing for the two 
phenomena. In this approach, the bonding electrons are 
considered to play no role (other than to provide 
orthogonal partners for the antibonding electrons). 

In this paper, the theory of covalency in crystal field 
phenomena is examined using the cluster model for 
KN1F3 as example. We find the covalent mixing of 
those bonding electrons which have no antibonding 
partners, to be the appropriate manifestation of 
covalency in experiment. Unlike the antibonding version 
described above, it is the covalent mixing of the same 
(unpaired bonding) electrons (of minority spin in 
KNiF3) which contributes to both 10 Dq and the 

11 K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 
512 (1963); denoted as K, S&S II . R. G. Shulman and S. Sugano, 
ibid. 130, 506 (1963); denoted as S&S I. R. G. Shulman and 
K. Knox, ibid. 119, 94 (1960) [in particular, see the discussion 
between Eqs. (1) and (4)]. 

12 See, e.g., P. W. Anderson, Solid State Phys. 14, 99 (1963); 
of the references cited therein, see, in particular, J. Kondo, 
Progr. Theoret. Phys. (Kyoto) 18, 541 (1957). 

13 F. KefTer, T. Oguchi, W. O'Sullivan, and J. Yamashita, Phys. 
Rev. 115, 1553 (1959). 

14 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956). 
16 A. M. Clogston, T. P. Gordon, V. Jaccarino, M. Peter, and 

L. R. Walker, Phys. Rev. 117, 1222 (1960). 
16 A. J. Freeman and R. E. Watson, Phys. Rev. Letters 6, 343 

(1961). 
17 W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961). 
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FIG. 1. A schematic representation of the antibonding and 
bonding electrons grouped into bonding-antibonding pairs and 
unpaired bonding electrons. For each, the predominant atomic 
orbital, from which the molecular orbital is formed, is indicated in 
parentheses; the F~ ligand 2s, Ip^ and 2pr orbitals are denoted 
simply by s, pa, and pw. 

transferred hyperfine interactions and, in fact, to all 
experimental observables. The covalency (but not the 
overlap) of the antibonding electrons is entirely 
irrelevant because it is exactly compensated by the 
covalency of their bonding partners. This agrees with 
several features of the role of bonding electrons in 
transferred hyperfine theory which have been described 
in the context of the Heitler-London method by KefTer 
el alP and for the molecular orbital (MO) method by 
Clogston et al.n These matters are important for if we 
solve the Hartree-Fock equations for the two types of 
covalent mixing we find them to differ markedly. This 
difference does not imply different orbitals for different 
spin in the sense of unrestricted Hartree-Fock (UHF) 
theory, because the antibonding covalency (which has 
no physical or variational meaning) may have any 
value—including that appropriate to the unpaired 
bonding electrons. (We briefly discuss, for the case of 
Cr3+, the implications of "UHF covalent mixing.") 

Two basic aspects of this crystal field theory are 
considered in what follows: (1) the quantitative impli­
cations of the approximations made in the treatment of 
a Hamiltonian, its matrix elements and related matters; 
(2) the source and nature of the covalent and overlap 
effects appropriate to the various physical phenomena. 
We concentrate on the latter in some detail in the 
present investigation and leave some aspects of the 
quantitative calculations to a future paper. Our studies 
of covalency are described in terms of the occupied 
one-electron orbitals of the cluster. An alternate 
approach to crystal field problems consists of dealing 
with the unoccupied antibonding orbitals, i.e., the 
antibonding holes (which are associated with the 
unpaired bonding electrons). Such a treatment of 
covalent mixing, and the resulting estimates of 10 Dq 
and other experimental parameters, is exactly equi­
valent to that associated with the unpaired bonding 
orbital treatment provided that certain restrictions (to 
be discussed later) are maintained. For this reason, we 
will consider only one approach in detail but will make 
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brief contact with the unoccupied orbital prediction 
when describing results. 

In Sec. II we describe the covalent mixing of interest 
to us. A discussion of the one-electron Hamiltonian 
appropriate to the system follows (in Sec. III). Sections 
IV and V discuss the covalent mixing appropriate to 
transferred hyperfine and crystal field splitting effects, 
respectively. The role of the unpaired bonding electrons 
becomes apparent in these sections. Throughout, the 
traditional (and incorrect) antibonding model is ex­
amined in parallel. In Sec. VI, we have cause to return 
to the matter of our Hamiltonian and the crucial role it 
plays in causing the two types of computed covalent 
mixing to differ. Since we use an approximate Hamil­
tonian, as in Ref. 10, certain "self-energy" problems 
arise which lead to serious internal inconsistencies in 
the results. The nature of these inconsistencies are 
explored. Their resolution requires the use of a better 
approximation to the true one-electron Hamiltonian, a 
matter reserved for the future. The various matrix 
elements appearing in our calculations are discussed, 
and their numerical values are reported, in Sec. VIII. 
Results, a discussion of their implications for other 
physical parameters, and conclusions follow. 

II. THE MOLECULAR ORBITAL APPROACH 

The molecular orbital approach is by now well known; 
hence, we will but briefly recapitulate some of the 
definitions and ideas required by us here. The antibond­
ing molecular orbitals are defined by 

^r/=iVe(^-X,X2s-X(rX23,<r), f • 

where the Ni are normalization constants, the <p's are 
Ni2+3d orbitals of I (xy, yz, and zx) and e (x2—y2 and 
3s2—r2) symmetry, and the %'s are appropriate linear 
combinations11 of 2s, 2p<r, or 2pw atomic orbitals (^/s) 
associated with the six nearest-neighbor F~ ions. The 
X/s are the covalent mixing parameters. The normaliza­
tion constants are given by 

^e-[l-2X s5,-2Xa5,+X s
2+Xa

2+2X sX,5 s ,]-1/2; 

iV,= Cl~2X.57r+X.2]-1/2, 

where an Si is the overlap integral between X; and the 
(f3d orbital with which it is being combined, and SSff is 
the overlap integral between X8 and Xa; it need not 
be zero valued, as is often assumed. 

One can alternatively speak of the covalent mixing 
associated with the bonding molecular orbitals, 

yeS
B = Nes'(x2s + ya<Pe+ys<rX2p<r) , 

*<rB = Nj(X2p9+y.<p0+y„Xu) , (3) 
^tB = N/(X2pir+yv<pt)) 

where 

NJ = Zl+2ysSs+2XSffSSff+2y8y&aSff+y2+y3J
i2~1/2, 

N„' = ll+2y,S,+2\„S„+2y9y9tS. 
+Y,2+7.*2]-1/2, (4) 

iV/ - [ l+2 7 .5 ,+7 , r 2 ] - 1 / 2 . 

The bonding and antibonding orbitals are to be ortho-
normal, so to lowest order 

K=ys+Ss, 

X<r=y<r+Say (5) 

K^yv+S*, 

y8<r~ y<rs i3<rs * 

The bonding and antibonding orbitals are to be 
eigenfunctions of the Hartree-Fock (H-F) equations 
for a (Ni—F6) cluster in KNiF3, i.e., they are to satisfy 

M ^ = e ^ , (6) 

where h is the one-electron self-consistent H-F Hamil­
tonian. In the present paper, we will follow Sugano and 
Shulman and approximate the effects of the crystal 
external to the cluster by an electrostatic Madelung-like 
potential Fext, i.e., we assume that there are no covalent 
or overlap effects, between the cluster and its environ­
ment, which significantly affect the metal-ligand 
covalency of interest here. This approximation is 
necessary in order to make the problem tractable. (One 
can improve on the approximation by making Fext the 
most accurate description of environmental effects 
obtainable with a local effective potential, but it is 
well to note that there are shortcomings in such an 
approach—shortcomings which are particularly signif­
icant when one considers superexchange or any other 
interaction between ions in different clusters.) The use 
of such a Fext is compatible with a self-consistent H-F 
treatment for the cluster itself. 

One automatic result of a self-consistent H-F treat­
ment is that a set of orthonormal one-electron eigen­
functions is obtained. We are thus supplied with a test 
of the seriousness of any approximation we make in our 
Hamiltonian (or in evaluating matrix elements) which 
causes us to fail to have a proper self-consistent theory. 
The test consists of independently obtaining an anti-
bonding orbital, tyA, and its bonding partner, tyB, and 
checking their orthogonality. We will see that the 
present approximate cluster theory does not always 
meet this orthogonality requirement. 

We will solve Eq. (6) for ^ within a very limited 
function space, namely, one spanned by the molecular 
orbitals constructed from Ni2+ and ligand-free ion 
orbitals. (One well might wish to allow greater varia­
tional freedom in a future calculation.) However, what 
is important to us here, is that the limited nature of this 
space in no way effects eigenfunction orthogonality or 
the self-energy problem to be discussed in Sec. VI. Let us 
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now consider, in detail, the nature of the one-electron 
Hamiltonian. 

III. THE ONE-ELECTRON HAMILTONIAN 

We are interested in obtaining the exact one-electron 
H-F Hamiltonian, appropriate to Eq. (6), derived from 
a many-electron Hamiltonian consisting of kinetic and 
electrostatic terms, where the environment external to 
the (Ni—F6) cluster is approximated by a Madelung-
like one-electron electrostatic potential Fext (*%•)• The 
process is made trivial by the fact that the two H-F 
many-electron states of interest to us are single deter­
minants constructed from orthonormal one-electron 
orbitals (SH's and \I>s,s). For such states the one-
electron Hamiltonian /^, for electron orbital i} is simply 

A<(fi) = i V i 2 + £ 
( - - ) 

r i-Pi« 
+ V«t(n)+E %*(r2) %ir2)dr2 (7) 

J f\% 

in atomic units. The a summation (over nuclear 
potential contributions) is limited to the one Ni and 
six F nuclei for we have already introduced the potential 
accounting for all electrons and nuclei (presumed) 
external to the cluster. The P\2 operator permutes 
coordinates r\ and r2 giving us the interelectronic 
exchange terms, which occur only between electrons of 
common spin. The sum over interelectronic terms is 
limited to the cluster and consists of contributions from 
all electrons in the cluster including the ith electron 
itself. This is allowed in a self-consistent H-F theory 
because the ith electron Coulomb contribution is 
exactly canceled by its exchange term. We will have 
occasion to return to the matter of including or exclud­
ing an electron's self-energy contribution to Eq. (7) 
later. 

We now with to re-express the interelectronic po­
tential of h in terms of one-electron functions localized 
on the seven nuclei in the cluster, for it is in terms of 
these that the potential, of Eq. (7), can be evaluated. 
In this simple procedure the S '̂s are expressed as linear 
combinations of the local atomic orbitals (LCAO's), 
i.e., & is broken up into Ni <p and ligand Xt- orbitals 
[[with the Xt's themselves expressed in terms of local 
orbitals ftA/s) at the various fluorine sites], whereupon 
Eq. (7) may be written as 

*<(n) = - i V x 2 + 7 « t ( n ) + Vm(ri)+ VL(ri) 

+ VB™ ( r i )+ Vy(1) ( ' i )+V 8 ™ (n) 
+ VyV(r1)+VsL(r1). (8) 

As we shall see, the terms of the second line account 
for the important fact that the local one-electron 
functions of one center are nonorthogonal with those of 
another (i.e., S^O) and that there is covalent mixing. 

Let us now consider the individual terms separately. 
Vm: This term is simply the H-F nuclear and inter­
electronic Coulomb plus exchange potential for an 
isolated Ni2+ ion; 

r„(n) = + - z f 
i=a l lNi2 + J 

<Pj*(r2)-
1-Pi: 

-<pj(.r2)dT2. (9 ) 

electrons 
ri2 

VL'. These are similar contributions from the ligand 
ions; 

a = l + l flct i = all electrons 
on ion a 

/ * - ' 
(r2)~ 

1 - P l 

rw 

XH*WT*\. (10) 

The above terms would make up the interelectronic 
contributions coming from the cluster if there were 
neither covalent mixing nor any overlap between 
orbitals on different sites. The omission of overlap terms 
may be thought of as yielding a potential of the form 
one would have when the ions of the cluster are infinitely 
separated. I t is important to note that such a potential 
factually the full first line of Eq. (8)] was used by 
Sugano and Shulmah in their work. The consequences 
of this approximation will be discussed later. 

Next we consider the overlap contributions to the 
potential. Vs(l)(ri) a n d Vsi2)(ri): The most obvious 
overlap effects are associated with metal-ligand non-
orthogonality. In the case of zero covalency, this 
nonorthogonality is resolved by having X»-=5» while 
y ; = 0 for the bonding-antibonding pairs. Setting X* 
and yi to these values, we can inspect the overlap 
terms arising in Eq. (8). There are terms linear in S, i.e., 

/

i p 

Vi*(r2) -Xj(r2)dT2, ( 1 1 ) 

where the sum is over all bonding-antibonding pairs. 
Note that Eq. (11) is written in terms of the multicenter 
ligand molecular orbitals, Xy. There are also higher order 
overlap terms in Sj, i.e., 

' I J r12 

+ [xj*(r2)^^Xj(r2)dT2)+0(S*). (12) 
J r12 J 

These second-order terms are of the same order of 
importance as Vs(l) which involves an Sy times an 
overlap charge density. Note that a <pe appears twice 
in the summations in these equations to account for 
its two partners, X8 and Xa. Third and higher order 
terms are, of course, less important. 
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Ni2+ to F~. Densities are all in the same units, normalized such 
that J%<p3d2(*)dr=l; the free ion 5 value was used (see Table VII) 
and 5 + T was chosen so as to reproduce the experimental (Ref. 11) 
anisotropic F~ hyperfine term. 

In Fig. 2 we plot the overlap charge density, giving 
rise to the sum of the Vsa) and Vs(2) terms, along a 
metal-ligand axis, and for comparison, the charge 
density associated with an antibonding electron prior 
to the introduction of overlap and covalency [i.e., just 
I <£>*(*) I2]- We see that the antibonding charge density 
has been delocalized, by the addition of the overlap 
terms, in the sense that there has been a buildup of 
charge on the ligand (which is one of six so affected), 
but, there has also been an increase of charge on the 
metal as well. These increases have been compensated 
for by a decrease of charge due to the — 2S»[^/!s(r)Xl-(r)] 
term, in the region between the ions. In other words, 
one is not dealing with a shift in charge (or spin) simply 
from one ion to another but onto the ions from the 
region between. The often cited picture of overlap 
(and covalent) effects delocalizing charge and spin off 
the metal ion is, therefore, not valid, for we are dealing 
with a process which is more complicated. Whether the 
overlap effect acts as if there is a shift onto, or off, the 
metal ion, depends strongly on the nature of the 
operator whose expectation value is in question. 

VSL : These are additional overlap potential contribu­
tions due to the nonorthogonality between ligand 
orbitals. First, ligand-ligand (^—^) overlap enters into 
the evaluation of the second line of Eq. (12) (where we 
have X2), and elsewhere. We will include the latter 
terms as part of VSL but will not write them out 
explicitly. I t should be noted that the normalization of 
the X/s as defined in S&S I [Eq. (2.4)], is affected by 
this nonorthogonality; however, for the purposes of 
this paper, we assume their normalization covention. 
Secondly, Xs—Xa nonorthogonality leads to additional 
potential terms, the lowest order ones being of the 

form 

r r 1-^12 r i—P12 
SSA / X*(r2) Xc(r2)dr2+ j X8*(r2) Xs(r2) 

712 rn 

-2S> * X*(r2) 

J r12 

Xs(r2)dr2 (13) 

similar to what we have seen in Eqs. (11) and (12). 
Finally, the simultaneous nonorthogonality of <pe with 
Xs and Xa, which leads to terms involving the XaXi 

charge density, have been arbitrarily included in VSL. 
The lowest order term is of the form 

25. 
/

1 p 

X.*(r2) -X,(r2)dT2 (14) 
f l 2 

and is of higher order than the contributions written out 
explicitly in Eqs. (11), (12), and (13), i.e., it is the 
product of two overlap integrals times an overlap 
charge density potential. Finally we come to covalent 
contributions. F7

( 1 )(fi), Vy^fa): These are most 
simply obtained by evaluating the interelectronic term 
Eq. (8) for nonzero yj (with Xy=7y+5y), and sub­
tracting off the overlap terms already accounted for in 
Vs(1) and Vs(2)- One obtains linear terms of the form 

Vyv(n)-
r 1 - P 1 2 

= antibonding J T\2 
orbitals 

r 1 - P 1 2 
+ E '2y,jVj*(r^ Xiirddrt. (15) 

,• = bonding J f\2 
orbitals 

I t is immediately apparent that contributions from 
members of an occupied bonding-antibonding pair 
cancel one another, leaving us only with contributions 
coming from unpaired bonding orbitals, i.e., 

vy^(n) = + 
i = unpaired bonding 

orbitals 

» / 27; I <P*(f2)-
1 - P i 

XXj(r2)dr2. (16) 

Such cancellations also occur for the covalent mixing 
involving (a nonzero) yas in a ^S

B~SEv8 pair. A similar 
cancellation occurs in second order giving us 

tV2> (n) = + £ I yjf f <p* (r2) -Mdr 
j ^unpaired { L J 

bonding ru 

-f 
i p -i 

X / ( r 2 ) -Xj(r$dr, 
ru 

-2yA 
r i -Pu 

r/x/(r,) Xj(r2)dr2 ru 
+higher order terms. (17) 
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The cancellation illustrated in detail above follows 
simply from a well-known property of determinantal 
functions: Any linear combination of occupied orbitals 
in a Slater determinant leaves unchanged the expecta­
tion value of an operator—and hence does not affect 
the prediction of any physical observable. 

The first line of Eq. (17) is associated with an obvious 
physical effect, namely, the transfer of charge from 
ligand to metal ions due to covalent mixing. The 
number of electrons so transferred is simply 

N= £ 7 / . (18) 
/ =unpaired bonding 

orbitals 

Antibonding-bonding pairs do not contribute to this 
transfer because the covalency of one is compensated 
for by that of the other, as is required, to second order, 
by the orthogonality conditions [Eqs. (5)]. The third 
line of Eq. (17) is coupled with F 7

( 1 ) which is 27y times 
an overlap potential. The two terms represent a first-
order (in jj) shift of charge off the ligands into the space 
between ligands and the Ni2+ ion. I t should be noted 
that as the unpaired bonding orbitals are of minority 
spin, the covalent terms involve a shift of minority spin 
onto the metal ion, effectively reducing the net spin 
localized at the Ni2 + site. These covalent charge density 
terms are plotted for a bonding 2pcr electron in Fig. 2 
(their negative should be taken when considering spin 
effects) where y was chosen so as to reproduce the ex­
perimental11 anisotropic transferred hyperfine interac­
tion. This choice causes these covalent effects to be 
greater than the overlap terms for the same eg electrons. 
Such a dominance need not always occur. Note that 
there are also hg and Ni closed shell overlap charge, but 
not spin, density effects. The overlap and covalent eg 

terms act cooperatively in their contributions to the 
Ni2 + charge and F~ spin densities while making opposing 
contributions to the Ni2 + spin and F~ charge behaviors. 

We have seen a covalent shift of charge associated 
with unpaired bonding electrons and no such shift for 
bonding-antibonding pairs. This fact is of great interest 
to us for reasons beyond the mere matter of estimating a 
potential, for it indicates the profoundly different 
nature of the two types of covalent mixing. The mixing 
of a bonding-antibonding pair conserves the charge on 
the metal ion while that of an unpaired bonding electron 
involves the shift of charge from ligands to metal. This 
observation suggests that the computed covalent 
mixing, i.e., the 7*, differs for the two cases and is the 
reason for our preoccupation with bonding electron 
behavior in this paper. 

In the above discussion of the overlap and covalent 
contributions to the Hamiltonian, h, we deliberately 
neglected to specify exactly which orbitals were so 
involved. As covalent terms only occur in low order for 
unpaired bonding orbitals we need only consider those 
electrons which can enter into bonding with the open 
3d shell; i.e., the 2s, 2p, and Is shells of the ligands. 

The 2s and 2p electrons are expected to make small 
contributions, and the Is electrons insignificant contri­
butions, to F 7

( 1 ) and FT
( 2 ) . 

We also expect the overlap terms to make a 
more significant contribution to the potential terms 
than do the covalent terms. Now, any shell which 
significantly overlaps another ion shell should be 
included in Vsa\ Fs ( 2 ) , and/or VSL- Hence, when 
including overlap terms in the potential one must 
inspect terms other than the Ni 3d and ligand 2s 
and 2p electrons, to which consideration is normally 
limited. In particular, one should, at the minimum, 
explore the role of the Ni 3s and 3p shells since their 
overlap with the ligand electrons is only moderately 
smaller than that of the 3d orbitals. 

In the present paper we will follow the Sugano and 
Shulman treatment and mostly limit ourselves to a 
Hamiltonian (denoted by ho) consisting of the first line 
of Eq. (8) alone for two reasons. First, we believe it 
imperative to fully explore the implications of their 
approximations, approximations which at first glance 
seem to yield excellent agreement with experiment, 
before going on to a more complete (and more compli­
cated) treatment. Secondly, a more complete treatment 
appears to require far greater care in the numerical 
evaluation of matrix elements than does a treatment 
based on ho alone. Greater care is not only necessary in 
the handling of overlap and covalent terms but also in 
the evaluation of the ho matrix elements. Approxima­
tions which were apparently adequate for the simple 
case must be re-examined before one attempts the more 
detailed treatment; this is due, in part, to the severe 
numerical differencing which occurs in the course of 
evaluating matrix elements. Our reasons for being 
cautious on this matter will become obvious when we 
inspect the results of the present paper. 

As Sugano and Shulman have emphasized, the use of 
ho can be viewed as the first iteration of a self-consistent 
theory for the (Ni—F6) covalent mixing problem. This 
is so, providing that overlap as well as covalent terms 
are included in a later iteration. As we shall see, the 
results of Sec. VIII suggest that a proper evaluation of 
covalent effects cannot be had without the inclusion of 
the overlap and covalent terms in the Hamiltonian 
[i.e., the second line of Eq. (8)]. I t is our intention to 
investigate the effect of such terms in a future paper. 

In going beyond the use of ho, one is involved in an 
ever increasing commitment to details of the cluster 
model, details which do not reflect the situation in 
the actual crystal. The use of ho and the MO's as 
defined earlier for the cluster already imply a strong 
commitment. 

IV. UNPAIRED SPIN COVALENCY AND 
TRANSFERRED HYPERFINE EFFECTS 

We now consider the role of covalent mixing in 
transferred hyperfine effects. In doing this, we assume 
that the orthogonality relations of Eq. (5) hold and 



A1532 R. E . W A T S O N A N D A. J . F R E E M A N 

that orbitals differing in spin may have different 
covalent parameters. 

The isotropic F19 hyperfine parameter is considered 
to be primarily associated14,11 with the unpaired 2s 
spin induced by nonorthogonality and covalency on the 
F~ site. After a variety of other contributions16,17-11 are 
accounted for, the parameter is written as the product 
of the hyperfine constant associated with a single F~ 2s 
orbital times the fraction, fs, of induced unpaired 2s 
spin character at the F~ site. Making the standard 
assumption of constant covalency for electrons of 
either spin, the value of fs in KNiF 3 is 

/ s = X5W,2/3 (19) 

and arises from the antibonding electrons alone. The 
| accounts for the fact that X is defined in terms of 
molecular orbitals and that we are interested in the 2s 
character induced on a single F~ site (via both antibond­
ing e\ orbitals). The anisotropic hyperfine interaction 
is complicated by the presence of (1) both pa and pv 

conbributions and (2) a substantial correction for 
classical spin dipolar effects (which must be made 
prior to estimating covalency from experiment). The 
^-electron interaction is entirely spin dipolar (i.e., not 
orbital) and given the experimental covalent hyperfine 
parameter, the fractional difference (fff—/T)between 
induced pa and pv behavior can be inferred. 

The coventional assumption of common covalency 
for either spin leads to fv = 0 for KNiF3 since all t 
orbitals are occupied in the ground state. Experiment, 
therefore, would seem to yield information concerning 
the 2s and 2pa covalent mixing in the antibonding e\ 
orbitals from the observed isotropic and anisotropic 
interactions. 

The above discussion assumes that the transferred 
hyperfine interaction is entirely due to the spin density 
associated with a ligand's \p orbitals. However, the tails 
of the free ion Ni <pza (and neighboring ligand) orbitals 
overlap into the region of a F nucleus and contribute16,17 

to the spin density and hyperfine interaction via the 
(p2 and cpx terms. These terms are not negligible.16 

Unfortunately the use of free ion orbitals is inappro­
priate for this evaluation since these orbitals do not 
take account of the presence of neighboring ion nuclei. 
We will encounter similar problems, introduced by 
inappropriate orbital tail behavior, when discussing 
orbital reduction effects in Sec. IX. These matters will 
be ignored in the remainder of this section. 

Let us now consider how the picture changes when 
one accounts for all covalent mixing while maintaining 
the necessary orthogonality of bonding and antibonding 
orbitals to second order in Si, Xi, and 7*. We will again 
consider the 2s effects as they are the least complicated. 
The implications for anisotropic effects will then be 
immediately apparent. 

Consider the contributions to fs from the bonding et 
and e\, and antibonding e\ electrons. Writing out the 

normalization constant in Eq. (17) and making use of 
Eq. (5), the antibonding contribution becomes 

/ s t 4 = M^2+2547,t+7.t2}+0(53). (20) 

(We will henceforth use superscripts A and B to denote 
antibonding and bonding, respectively, whenever 
appropriate for clarity.) In the absence of covalent 
bonding and Xs~X? overlap, the /., contributions are 
+ 1 for spin f and —1 for spin j , and hence cancel. 
Covalency affects these / , contributions via (1) the 
normalization of the ^re$

B orbitals [cf. Eq. (4)] and 
(2) the X2S term of ^e*

B- With differing covalency, these 
contributions need no longer cancel. The individual 
spin contributions are 

fsi
B=WeS+W*t2y*st2 

= ±{l-2ystSs-y8S+SsS}+0(S*)+' • • , (21) 

/ 5 ^ = - | { l - 2 7 , i 5 £ - 7 ^ 2 + 5 5 , 2 } + 0 ( 5 3 ) + - • •. (22) 

Combining all these contributions results in 

fs=USs2+2ysiSs+7si2}+0(Sz). (23) 

Similarly, one obtains 

fa=US,2+2Sffy^+yn2}+0(S"). (24) 

In other words, if bonding and antibonding orbitals of 
one spin are simultaneously occupied, there will be an 
Si2 overlap contribution, but their covalent terms cancel 
exactly. Hence, it is the covalency of the bonding esi

B 

electrons which contribute to the isotropic transferred 
hyperfine interaction in KNiF3 , and if there is any 
question as to the constancy of 2s covalent mixing 
within the set of e orbitals, it is the mixing estimated 
for the eiB electrons which must be compared with 
experiment. 

The coventional cancellation associated with spin 
pairing has been lost, but the more fundamental pairing 
cancellation between bonding and antibonding orbitals 
has been seen. The immediate effects of this for the 
anisotropic F~ hyperfine interaction are (1) that t\ and 
t\ electrons cannot contribute, no matter what their 
respective covalencies, since antibonding-bonding pairs 
of both spins are occupied; (2) that there will be S2, but 
no 7 contributions from the majority spin e\B and e\A 

electrons; and (3) that covalent contributions come 
solely from unpaired eiB electrons of minority spin. 
I t is clear from the identical form of Eqs. (20) and 
(23) that the usual phenomenological approach, 
which uses the antibonding expression [Eq. (20)], 
actually determines15 the unpaired bonding covalent 
mixing parameter. 

Complications occur for almost empty d shell ions 
such as Cr3 +(/tA)3 which has but three antibonding 
d-like electrons. There are no eA electrons in the ground 
state and differences in e\B and eiB covalent mixing 
can lead, for example, to an isotropic F~ hyperfine 
term which would be zero in the traditional analysis. 
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Transferred hyperfine effects have been observed18 in 
K^NaCrFe; the isotropic term is almost zero valued. 
This either implies that the eB covalency differences are 
very small here or that an accidental near cancellation 
of a number of contributions has occurred. Neutron 
diffraction experiments on such a system could test for 
e electron character in the cluster's spin density. 

It must be stressed that any computed differences in 
etB—e\B covalency, for this case, come from a different 
source than do the differences between the covalency of 
an occupied Ni2+ bonding-antibonding pair of one 
spin and that of an unpaired bonding orbital of the 
other. The covalent "unpairing" of the Cr3+ orbitals 
has its source in the unbalanced exchange terms of the 
open 3d shell. By this we do not mean the HF exchange 
polarization of the F~ ion by the 3d shell, a matter 
discussed elsewhere.19 Instead, we mean the imbalance 
in covalent mixing caused by the imbalance in 3d 
exchange contributions to ho and, in turn, the various 
matrix elements appropriate to the determination of 
the covalent mixing. Although these exchange terms 
also contribute to the Ni2+ case, a more fundamental 
role is played by the intrinsic differences in the character 
of the antibonding-bonding pair covalency, on the one 
hand, and that of the unpaired bonding electrons on 
the other. Note that the unbalanced exchange terms 
cause the single determinant description of the Cr3+ 

cluster to be an improper eigenfunction, and of the 
Ni2+ cluster, to be a proper eigenfunction, of the spin 
operator (S2). The Ni2+ description preserves its 
symmetry because of the presence of unpaired bonding 
orbitals of but one spin.20 

V. THE CRYSTAL FIELD SPLITTING 

We use the conventional definition of the crystal 
field splitting, namely, 

10 Dq^ Sl(t*A)*(e*A)*l- <S[(^)6(^)2], (25) 

where the latter is the energy of the ground state and 
the former is the energy of the excited state (hence the 
superscript E to designate this state) obtained by 
replacing the t(xy)iA electron of the ground state by an 
e(x2—y2)iA electron. If we make the common, but often 
unjustified,21 assumption that all electrons but the 
promoted one maintain constant orbital behavior in 
the cluster states, we have 

10Dq=e£e(tf-f)iBAl-elt(xy)iAl, (26) 

where the e's are the eigenvalues obtained with Eq. (6) 
for the one-electron Hamiltonian appropriate to the 

18 R. G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960). 
19 A. J. Freeman and R. E. Watson, J. Appl. Phys. 34, 1032S 

(1963); and (to be published). 
20 This observation is subject to the restriction that the ^ ' s be 

constructed from a set of free ion <p's and ^'s having a single 
radial function per shell (although different <pe and <pt radial 
behavior is allowed). 

21 For example see, R. E. Watson, Phys. Rev. 118, 1036 (1960); 
in particular Tables V-VIII and related text. 

particular cluster state involved. To second order, 

et
A = (<pt\h\<pt)-2St(<Pt\h\Xt)-2yt{<pt\h\Xt) 

+ {LSt+ytJ(Xt\h\ Xt)+ZSt
2-yt

2J<pt\k\ <pt)} , (27) 

which is obtained by multiplying Eq. (6) from the left 
by ^ , reexpressing the ^ 's in terms of <p's and %'s, 
integrating and keeping all terms to second order. 
The first term of e is simply the diagonal energy and 
includes the classic point charge crystal potential, 
Kleiner's correction5 to such a potential, and ligand 
exchange terms; the second term is the first-order 
contribution to the overlap energy of the sort inves­
tigated by Tanabe and Sugano7; we then have the 
first-order term of the covalent contribution, which 
Sugano and Shulman concluded was important; and 
lastly, the second-order terms in overlap and covalency. 
The expression for ee

A is of the form of Eq. (27) except 
that there are first- and second-order overlap and 
covalent contributions from both the Xs and Xff mixing, 
i.e., 

eeA = (<Pe\h\<pe)- E {2(Si+yi)(ipe\*l**>+[^+7i]2 

i=8,(T 

X<X< |A|X<>+[^-7< 8]<^l*k.». (28) 

One may obtain alternative expressions10 for the e's, for 
example, by multiplying Eq. (16) by x instead of Str, in 
which case eA is given by 

etA=(<Pt\h\<pt)-(St+yt)(<pt\h\Xt) 
+St(St+yt)(n\h\<pt). (29) 

Note the omission of the two multiplying the linear 
term.22 Unlike Eq. (27), this relation only holds if ^ is 
an eigenfunction of Eq. (6) (within our <p, % subspace), 
in which case Eqs. (27) and (29) differ from one another 
in third and higher order in S and 7. This point is of 
some importance for we shall be evaluating Eq. (25) 
[and thus Eq. (27)] using noncovalent orbitals (7=0). 

We have already seen indications that the computed 
covalent mixing appropriate to a bonding-antibonding 
pair differs from that of an unpaired bonding electron. 
This suggests that the covalent mixing of the paired 
l(xy)iB [and unpaired e{x2—y2)\r

B~] orbital [/], appear­
ing in the ground state, might very well undergo 
substantial changes on becoming an unpaired (and 
paired) electron in the excited state. We must then 
inspect the role of bonding orbital crystal field energies. 
The one-electron energy of a bonding / electron is, for 
example, 

et
B={Xt\h\Xt)+2yt(<p\h\Xt)+{yt%<P\h\<p) 

-(2ytSt+y2)(Xt\h\Xt)}. (30) 
22 Their counterpart of the second line [e.g., in S&S III , 

Eq. (2.11)] shows a (<pe\ho\<pe) matrix element but we find 
(^<|/fo| <pt) more appropriate for this case. 
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The energy of a bonding-antibonding t orbital pair, 
Qty in a crystal field is then 

= -^{X,|A|^)+(l+52){(^^l^)+(x^|xf) 
— (<£W*I XfX*)+(<^X*| <^Xf)} , (31) 

where 

= f fdT1dT2*A*(rl)*B(r1)—*c(r2)*D*(r2). (32) 

The two-electron terms of the first line of (31) account 
for the fact that the interelectronic interaction between 
the pair of electrons has been counted twice when 
summing eB plus eA. An equivalent expression is 
obtainable for the e bonding electron; its derivation is 
but slightly complicated by the simultaneous presence 
of s and a mixing. 

and 

SZ(t**)*(e**yi = evi
EA+e9,vi

B*+^ (34) 
i>3 

where Sc is common to both energies and the sums go over all pairs of orbitals represented by the e's. The subscripts 
v and u designate the (x2—y2) and (3z2—r2) orbitals of e symmetry, respectively. The v orbital is involved in the 
crystal field transition (txu

A —» ex*-y*
A) and the u orbitals are the "odd" unpaired bonding orbitals common to 

both crystal field states. Evaluating Eq. (25), rearranging terms and affecting appropriate cancellations, we have, 

WDq={{4>9\h
s-Vxf

s-V,tf
E-V9,f

E\4>^^ 

i = s,j=a-

-2St{x{,v | **- v,yy*- vs,uyE- V,,JE-\V>. ,s |*.» - {s^tXx, | A - v.,s- v.j- vs,uy- 7,.„*| xT> 

+{<t>*v\h- Vs,v
y- V,,S- V3,u

7- Vc,u-> 10W)]-25,(X, | ft- V,,S- V,,v-»- V,,J- V,,^^)} 

-{(7nr ; M )*C<X, | f t J f -F. . . " -7 . . , " |X r >-<^ | f t*-7 . ,«» J f -y , .„»* |* l e y ) ] 

-2y^EBi(XT\hE-Vs,uyZ-V,,u^\<l>xy)-ST(x„\hE-Vs,J
E-V,,u->

E\xT)-]} 

+ E {(yiM
B)L(^^\h-Vs,tl-'-V<r,u"'-^V1-,v-y\xi:V)-(<t>v\h~Vs,uy-Vr,u-'-^Vj^\<j>v)^ 

i = <r, j — s 

-2yi>vi
B[{Xi>v\h-V'S,u

y-V\,u
y-hVrj\vy\^v)-Si(Xi,v\h-Vs,uy-V(r,u'y-^Vj>v\Xi)V)']} 

+ E { ( T . \ « * B ) T < X ^ | & - £ F ; , « * ^ 
i = s,j—(r 

-S<(xi,u\h-lVils\<i>*)J}- E {{yi,uiEB)[(xi,u\hE-hVj,uyE\xi,l)-^u\hE-\Vi^E\<i>u)'] 
i—<r,j — s 

In Eq. (31) as in Eqs. (16) and (17) we see the effect 
of the antibonding-bonding cancellation. The covalency 
of a bonding-antibonding pair plays no role in the 
cluster's energy15 and hence in the crystal field splitting. 
Of course these pairs still make diagonal and overlap 
contributions to both the crystal field energy and to 
the Hamiltonian. 

It is clear that only the unpaired bonding electrons 
make covalent contributions to the energies of Eq. (25). 
These total energies (8) can be evaluated by a simple 
summation over one-electron e's, providing that we 
account for the fact that this procedure introduces each 
interelectronic interaction twice by subtracting inter­
electronic Coulomb and exchange terms [as we did in 
Eq. (31)]. Here, we wish to concentrate on those e's 
which contribute to a nonzero 10 Dq, namely all 
unpaired bonding electrons (which contribute covalent 
terms) and the bonding-antibonding pairs involved in 
the transition (which make diagonal and overlap 
contributions). The resulting <§'s are 
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where each sum has but two terms (i = s and j=a and vice versa) and where 

Vis=sA 

*V=+27 , 

I - P 1 2 r I-P12 
<Pi*(r2) <Pi(r2)dr2+ / Xf(r2) Xi(r2)dr2 

rn ri2 

I-P12 
-2Sil vffa) Xi(r2)dT2, 

Ti2 

(36) 

• r I - P 1 2 r I - P 1 2 
/ ^*(r2) Xi(r2)dT2-Si J Xi(r2) X{{Y2)dT2 

f\2 ri2 

+r 
" r I - P 1 2 

/ <Pi*(r2) <Pi(r2)dr2-
ru 

•f« I-P12 I 
"(r2) X{(r2)dT2\, (37) 

^12 

and hE is the one-electron Hamiltonian defined for the excited state. The (| V\) integrals in Eq. (35) are the sole 
remaining interelectronic contributions from Eqs. (33) and (34), all others have cancelled. The first line of Eq. 
(35) consists of the diagonal crystal field terms; the next two lines are antibonding orbital overlap contributions; 
lines 4 and 5 are covalent contributions from the unpaired bonding / and ev orbitals involved in the transition23; 
and the last two summations are covalent terms associated with the odd unpaired eu bonding electrons. Within 
the cluster approximation Eq. (35) is an exact expression, to second order, for 10 Dq subject to the following 
three conditions: 

(1) The Hamiltonian must be self-consistently defined for the set of SFs actually used, in which case Eq. (35) 
is correct independent of whether the ^ ' s are, or are not, eigenfunctions of Eq. (6). 

(2) The radial behavior of the <p and \p atomic orbitals (not necessarily equal to that of free ion H-F functions), 
must be the same for the two crystal field states, otherwise there are additional contributions to 10 Dq. 

(3) I t is assumed that the ligand Is shells do not enter into the bonding. Otherwise, there are additional covalent 
contributions from unpaired bonding-^uB orbitals. Such contributions are straightforwardly added to Eq. (35). 

As already noted, the last four lines of Eq. (35) arise from the odd unpaired ^fi>u bonding orbitals common to 
both crystal field states. These and the Vi,u

y contributions to the other lines sum to zero if an excited state param­
eter yi,u

EB (and its associated matrix elements), equals its ground state, yi,u
B, counterparts. Assuming this 

equality to hold, Eq. (35) becomes more simply, 

- {(Tx*M)2C<Xx IA^ I X , > - < ^ I A* 1 ^ > ] - 2T i r*
M<x, IA^ I ^>+2T ,*M5 i r<X i r J A* I xx>} 

+ { ( T 6 ^ ) T < ^ | A | x s > - < ^ | A [ ^ > ] - 2 T s ^ < X j A | ^ e > + 2 T ^ ^ s < X s | A i X s > } 

+ { ( Y a * B ) T < X * | % * > - < * e | A | « ^ 

The three (\V\) terms have not been written out 
explicitly, in anticipation of the fact that we will 
evaluate this equation in terms of the approximate 
Hamiltonian, ho, which does not contain Vs and Vy 

terms. Hence, the (| V |) corrections of Eqs. (35) and 
(38) need not be made since these interelectronic effects 
were not counted twice in our sum over e's. We will thus 
omit the last line when evaluating Eq. (38) with ho. 
Without these terms, Eq. (38) would be identical 
with the traditional one given in terms of antibonding 
covalency, provided that (1) the ground-state unpaired 

23 When treating the covalent mixing of three orbitals (e.g., 
the eiA, esi

B, ea\,
B) only two of which (the esi

B and eai
B) are 

occupied, there are covalent contributions to a quantity such as 
lODq. These include, first, the ys and yff terms of Eq. (35) and 
second, nonzero yff8 terms [see Eqs. (3)-(5) and related text] 
caused by nonzero s—<x mixing. The yas contributions enter in the 
third and higher orders in 7 and S and were therefore not listed in 
Eq. (35). In addition, there are contributions arising from any 
nonzero overlap of closed Ni2+ shells with ligands, but these appear 
in third (and higher) order in 10 Dq. 

,B 7S1 ̂  a n d .yff\
B values and their associated matrix 

elements are identical with those of the excited state 
es±

EA and ea\
EA electrons and (2) a similar equality 

holds for the unpaired pTiEB and pr\
A contribitions. 

The present calculations indicate that these require­
ments are not met. 

Before closing this section, we should note that, sub­
ject to two requirements, the unpaired bonding e electron 
covalent mixing contributing to 10 Dq is exactly that 
which is appropriate to the transferred hyperfine 
interactions. This differs with the antibonding orbital 
picture where ground-state antibonding spin | co valency 
contributes to the hyperfine interaction and excited 
state antibonding spin I covalency contributes to 10 Dq. 
The two requirements are: (1) that the covalent mixing 
of the two ground-state unpaired eB orbitals be identical, 
a requirement fulfilled by symmetry considerations 
alone; and (2) that the "odd" eB orbitals maintain 
constant covalency in the two cluster states, for 
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otherwise we have Eq. (35). I t is reasonable to assume 
that this last requirement holds in a lower order theory 
but that, at some point, we must revert to using Eq. (35) 
where these orbitals contribute to 10 Dq. 

VI. THE EVALUATION OF THE COVALENT MIXING 
AND THE ROLE OF SELF-ENERGY TERMS 

We are interested in obtaining the unpaired bonding 
orbital covalency which contributes to 10 Dq and to 
transferred hyperfine effects. Also, as noted in Sec. I I , 
independent estimates of the mixing occurring for the 
members of an antibonding-bonding pair supply us 
with a test of the internal consistency of our theory. 
With this factor in mind, we will estimate the cova-
lency of all the occupied bonding and antibonding or­
bitals in the ground cluster state and of selected ones 
in the excited state. Let us now consider the process of 
estimating y. 

As already discussed, we wish to solve the H-F 
equations £Eq. (6)] defined24 for the cluster, in a two-
function space consisting of cpt and Xt for the / mixing, 
and a three-function space, made up of <pe, Xs and Xa 

for the e mixing, i.e., we solve 2X2 and 3X3 secular 
equations, respectively, for our Hamiltonian h. For 
the 3X3 solution, we need the matrix elements(Xs | h \ Xa) 
which were not considered by Sugano and Shulman. 
As these are intimately associated with the cluster 
approximation and also include important three- (and 
four-) center integrals and thereby divert us from the 
purpose of this paper, we shall not obtain these in the 
present treatment, deferring this matter, along with 
others which have been brought up, for a future effort 
involving the proper Hamiltonian, h, not ho. We will 
instead explore the consequences of following the 
traditional view of assuming Xs— Xa mixing and overlap 
to be zero valued (i.e., ys<T = y<rs — 0). In this approxima­
tion we obtain the following relation for any one of the 
y values appropriate to Eq. (3) : 

Si(Xi\h\Xi)-{<p1\h\X.i)+yl(X,l\h\Xi)-{cpi\h\cpi)'] 

+yi2L(*i\h\ <Pi)St{<pi\h\ <Pi)l = 0. (39) 

There are two roots to this equation: The | y \ < 1 root 
is appropriate to the bonding orbital; the other, with 
| y | > l , is appropriate to its orthogonal antibonding 
partner. Upon dropping the quadratic term, we obtain 
the Sugano-Shulman relation for yi} namely25 [S&S II I , 
Eq. (2.13)], 

(<Pi\h\Xi)-St{Xi\h\Xi) 
7<= • (40) 

{Xi\h\x%)-{<pi\h\<pt) 
24 Since the antibonding-bonding pair mixing does not contribute 

to the cluster's total energy, we cannot properly derive the H-F 
equation appropriate to that mixing for such a derivation must 
follow from application of the variation principle to the total 
energy. One can write a one-electron H-F Hamiltonian [Eq. (7)] 
by inspection and solve for the pair mixing. This we will do but 
we must remember that the solution has a mathematical but not 
a physical meaning. 

25 Note the typographical error in the sign of the S(x\h\x) term 
in Eq. (2.13) of S&S III. 

They also give a relation for K [S&S II I , Eq. (2.12)] 

((Pt\h\XT)--S1r(<Pt\h\ (ft) 

Xjr = , (41) 

which we find is closely associated with the inverse of 
the second root of Eq. (39). We will obtain y values 
appropriate to both bonding or antibonding mixing. 
We expect the smaller root of Eq. (39) and the result 
obtained from Eq. (40) to differ negligibly since the y's 
are small; this will prove to be the case. 

As discussed in Sec. I l l , in computing the matrix 
elements appearing in Eqs. (38)-(40), our H-F one-
electron Hamiltonian, h, will be replaced by the 
approximate Hamiltonian ho. Now, when evaluating 
the matrix element of a one-electron H-F Hamiltonian, 
one often may or may not, as one wishes, include the 
interelectronic Coulomb and exchange potential terms 
due to the electron for which the matrix element is 
being evaluated (in this case ^ ) because these terms, 
being equal, cancel one another. The inclusion of such 
self-energy terms leads to a common Hamiltonian for 
all electrons in the system, an important and often 
exploited feature of self-consistent H-F theory.26'27 If 
by any chance the cancellation does not occur, these 
terms must be omitted from the Hamiltonian. Such a 
cancellation does not occur for ho, since it is not a 
self-consistently defined Hamiltonian, and some am­
biguity arises concerning the appropriate form of the 
self-energy term to be subtracted. Consider the evalua­
tion of a matrix element appropriate to an antibonding 
orbital SEy4. The exact self-energy contribution to the 
potential is 

r 1 - P M 

/ * / * (r2) *iA (r2)dr2, (42) 

but in view of the fact that ho is defined in terms of the 
(zero overlap) ionic (Ni—Fe) cluster [i.e., the first 
line of Eq. (8)], one would be subtracting out terms 
which did not appear in our Hamiltonian if we sub­
tracted out Eq. (42). A possible choice, consistent with 
using the interelectronic potential of ho, is to omit the 
Coulomb and exchange potential terms associated 
with the parent 3d<p{ (i.e., the overlap ionic counter­
part of ^iA), as was done by Sugano and Shulman in 
the course of estimating antibonding covalency. 
Likewise, the equivalent X̂  contributions would then 
be omitted when estimating bonding covalency. The 
use of an approximate Hamiltonian has led to this 
choice of an approximate self-energy term. We will 
consider the effect of going to the more exact term after 

26 For example, see A. J. Freeman and R. E. Watson, Treatise on 
Magnetism, edited by G. Rado and H. Suhl (Academic Press Inc., 
New York, to be published). 

27 Providing that we do not constrain spin pairs of bonding or 
antibonding orbitals to have the same covalent mixing. Such a 
requirement would involve us with the nonorthogonality assoc­
iated with the conventional Hartree-Fock theory (Ref. 26). 
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first considering the implications of this (zero-overlap) 
ionic approximation. 

The question arises, as to whether the pv bonding and 
antibonding matrix elements, for example, evaluated 
with different self-energy terms will, on insertion into 
Eqs. (40) and (41), yield X ^ and yT

B values which 
satisfy the orthogonality relation [cf. Eq. (5)]. A 
failure to satisfy Eq. (5) may arise from approximations 
in our Hamiltonian, in the treatment of the self-energy 
terms or in evaluating matrix elements; but, whatever 
its source, this failure implies a breakdown of theory. 
The matrix elements, for bonding and antibonding 
orbitals, are best compared by writing them for the 
proper ionic Hamiltonian, ho [the first line of Eq. (8) 
minus the appropriate <p or % self-energy terms] and 
for a Hamiltonian, ho, without the self-energy subtrac­
tion [literally the first line of Eq. (8)]. (Up to this 
point, we have not considered the role of self-energy 
terms in discussing the ho Hamiltonian. We here redefine 
ho to include the above self-energy term so as to conform 
to existing usage.) Upon doing this, we have the 
relations 

<^»|Ao^X<)A--<^|Ao|X$-)
A = ^ ^ t - | ^ X i - ) - - < ^ ^ | ^ X < ) , 

(<Pi\ho'\Xi)
B-(<pi\ho\Xi)

B = (XiXi\Xm)-(XiXi\Xm), 

(<Pi\ho'\ <Pi)A—(<Pi\ho\ <pi)A = {<Pi<Pi\ <Pi<Pi)—(<Pi<Pi\ <Pi<Pi), 

(Xi\hof\Xi)
B-(Xi\ho\Xi)

B = (XiXi\XiXi)--(XtXi\XiXi). 
(43) 

The integrals on the right-hand side of Eq. (43), 
coming from the Coulomb and exchange self-energy 
terms, obviously cancel, indicating that these matrix 
elements are independent of whether such terms are 
included in the Hamiltonian. However, we also have 

(<Pi\ho'\ (Pi)B—((Pi\ho\ <Pi)B=(<Pi<Pi\XiXi)—{<piXi\ <piXi), 

<x<| A</| x ^ - < x f | A0| *i)A=(<pm\ Xi*i)-(<PiXi\ <Pi*i), 
(44) 

and here the cancellation of terms does not occur. 
Noting that the bonding and antibonding matrix 
elements of ho are, by definition, identical, gives us the 
following relationships between bonding and antibond­
ing ho behavior for a bonding-antibonding pair: 

(<Pi\ho\Xi)
A = (<Pi\ho\Xi)

B, 

(<Pi\ho\ <Pi)A = (<Pi\ho\ <Pi)B+(<Pi<Pi\Xi*Ci)—(<PiX.i\ <PiX%), 
<Xi|Ao|X<>4 = <X < |Ao |X f )

B -<^^ . |X < X < )+<^X t - | ^ i X < ) . 
(45) 

The two-electron integrals are most definitely nonzero.28 

28 The fact that self-energy terms cause (| h \ )B matrix elements 
to differ from their {\h\)A counterparts is, in itself, a necessary 
but not sufficient condition for a computed y A to differ from y B . 
A computation with the exact one-electron Hamiltonian and 
with the exact self-energy terms [Eq. (42)] will have (\h\)B 

7^{\h\)A for the (xl^lx), {x\h\<p) and {<p\h\tp) matrix elements, 
one will obtain identical y values. In the present case, the dif­
ferences, in {<p\h$\x) matrix elements will be seen to cause severe 
differences between a y A and its partner y B . 

But, what is more important, we will see that the 
(\ho\ )A's, on insertion into, say, Eq. (39) yield a different 
y than do the (\ho\)B's. This means that the theory, 
with its present approximations, fails to yield the 
required bonding-antibonding pair orthogonality. We 
will see this failure to be severe. 

Not only does the theory suffer this internal incon­
sistency but it is difficult to ascertain which of the 
approximations is most at fault. Use of the full Hamil­
tonian of Eq. (8), the exact self-energy term [Eq. (42)], 
and extreme care in the evaluation of matrix elements 
would resolve this problem but would also be beyond 
the scope of this paper. We do wish to inspect one 
feature of the theory here, namely, given a Hamiltonian 
(in this case ho), what part do the self-energy terms 
play in the behavior of individual matrix elements and, 
in turn, on the resulting estimates of covalency. Such an 
investigation will further indicate the nature of the 
computed covalency and its sensitivity to computa­
tional details (including assumed covalency) while 
enabling us to avoid the serious numerical problems 
associated with a proper treatment with the proper 
covalent Hamiltonian. We believe this to justify a 
partial handling of the problem. 

Let us define a Hamiltonian, H, which is equal to ho 
minus self-energy terms defined for the covalent ^ t ' s 
in Eq. (42). One may then obtain equations similar to 
(43) or (44) such as 

(tPilko'M-ivilHlxy 
= Ni{(<Pi(pi\ <piXi)~-(<pi<pi\ ipiXi) — 2\i{(px\ <PX) 

+^(#xl <PX)+K{<P<P\XX)+W(XX\ <PX) 
—V(x^lxx)} 

= -M(<PX\ <PX)-(<P<P\XX)}+0(\*) (46) 

or 

< ^ | F | X ^ = (^ |Ao |X < > 4 -X,-{(^^ |X^> 

-(<P&i\<pi>Ci)}. (47) 

For the other matrix elements we obtain 

(cpi\H\Xi)
B = (<pi\ho\Xi)

B+yi{{cpm\XiXi) 

— (<PiXi\ cpiXi)} , 

(<Pi\H\ cpz)
A=(<pi\ho\ <Pi)A-\%{(<pm\x<Kl) 

— (<PiXi\ <piXi)} , 

<X1 . |H|X^ = < X < | A o | X ^ + [ l - i V r ^ 
X{(^^ |X ,X, ) -{^X 4 - | tpjXi)} , (48) 

<^|flr| <Pi)*=(<Pi\ho\ <Pi)B+Ll- (N/n 
X{{<Pi(Pi\XiXi)—{(piXi\ <p{Xi)}, 

(Xi\H\Xi)
B=(Xi\ho\Xi)

B-y2{(<Pi<pi\XiXi) 

— (<PiXi\ <PiXi)} , 

where terms ot order X3, y3, or higher have been dropped. 
We will report solutions of Eq. (39) utilizing the linear 
covalent contributions to the off-diagonal (<p\H\x)A 

and {cp\H\x)B matrix elements (omitting second and 
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higher order corrections). We will see the computed 
covalency to be sensitive to the estimates of covalency 
used in evaluating these matrix elements. 

We have so far considered the differences which do, 
but should not, occur in the estimates appropriate to 
members of a bonding-antibonding pair. Let us now 
consider how these do (and should) differ with that 
appropriate to an unpaired bonding orbital. When 
obtaining the (<pi\h\ <pi) and (<Pi\h\Xi) matrix elements 
for either member of a bonding-antibonding pair, the 
Coulomb and exchange contributions of <pi to Vm 

[see Eq. (9)] cancel after the manner of the right-hand 
sides of Eqs. (43). The Coulomb repulsions of the 
seven other Ni 3d electrons remain, and the potential 
contributed by the Ni ion to these matrix elements is 
that characteristic of Ni2+. However, no such cancella­
tion occurs when evaluating the same matrix elements 
for an unpaired bonding orbital because the <pi involved 
in the bonding is not one of the eight contributing to 
the Ni potential. Eight 3d electrons make Coulomb 
contributions in this case, causing the potential to be 
characteristic of Ni+ , not of Ni2+. [Such a 3d electron 
Coulomb contribution to (<p\h\(p) which is ^ 1 a.u., 
is to be compared with (1) the denominators of Eq. (40) 
which are as small as 0.25 a.u., (2) the (cp<p\ xx) Coulomb 
self-energy terms of Eqs. (44) and (45), which are 
^-0.3 a.u. and (3) 3d—3d exchange interactions, which 
are the order of 0.1 a.u.] I t must be emphasized that 
this difference occurs whether we evaluate matrix 
elements with ho or with the exact self-consistent 
Hamiltonian h. In other words, such an effect on the 
current results involving ho, is indicative of what 
actually occurs for the exact self-consistent LCAO 
treatment of the cluster. 

From our experience with the potential terms of 
Sec. I l l , we should have anticipated the differences in 
the Ni potentials appropriate to the various {<p\h\(p} 
and ((p\h\x) matrix elements. The fact that these 
differences occur is a key to the intrinsically different 
nature of the covalency of a bonding-antibonding pair 
on one hand and an unpaired bonding orbital on the 
other. The magnitude (1 a.u.) of the difference in the 
(<p\h\ cp) matrix elements has observable quantitive 
repercussions on one's theoretical estimates and makes 
it imperative that the pertinent covalent mixing be 
investigated. 

VII. THE MATRIX ELEMENTS 

In this section we evaluate the ho matrix elements 
appropriate to the various bonding and antibonding 
cases of interest, and examine the effects due to the 
net 3d spin on the Ni2 + ion. Wherever possible, we will 
rely on the one- and two-electron integrals already 
obtained in S&S I I I and the same approximations have 
been made when evaluating the VL matrix elements. 
The additional required integrals have been evaluated 
with conventional (or restricted) analytic H-F (hence-

TABLE I. The one-electron energies (Ref. 32) of the RHF 3d 
orbitals, for the 3F(ML = Ly MS = S) state of Ni2+, as defined by 
Eq. (52). In these tables, the appropriate ms value is denoted by 
the arrow (t and J, denote ms — \ and —J, respectively). Also 
included is the €RHF value. All quantities are in atomic units. 

*Zd 
Ml = 2 

1 
0 

- 1 
- 2 

C R H F = - 1.41254 

ms = T 
-1.46199 
-1.44377 
-1.41399 
-1.44377 
-1.46199 

i 
-1.39472 
-1.34007 
-1.34007 
— 0.38057\unoccupied 
-0.38057/ orbitals 

forth denoted as RHF) functions for29 Ni2+ and30 F~. 
However, no additional three- and four-center integrals 
were obtained for this work although they are required 
in a proper treatment of the theory. The Switendick-
Corbato IBM 7090 program31 was used for such two-
center integrals as arose. 

A . (<pi\ho\ <Pi) 

I t is in this matrix element that 3d shell exchange and 
Ni + versus Ni2+ potential repercussions are most 
important. We are constructing our molecular orbitals 
from free ion H-F orbitals and this suggests that we 
make use of the familiar25 one-electron Hartree-Fock 
equation, 

3CNiP»(*,<r) = ei<pi(r,v), (49) 

when evaluating (<pi\ho\<pi). Here cpi is a one-electron 
spin orbital (i.e., a function of space and spin), e* is its 
H-F energy eigenvalue, and 3CNI is the one-electron 
H-F Hamiltonian for Ni2+, consisting of kinetic, nuclear 
potential, and interelectronic Coulomb and exchange 
terms. With the self-energy terms included, 3CNI is 
independent26 of which Ni2+ orbital it operates on and 
is related to ho by 

ko' = Wm+VL(r). (50) 

Since our 3d<pi's are R H F functions this suggests that 
we simply have 

(<Pi\ho\ ^ )=€RHF+(<P t | VL\ (Pi), (51) 

where €RHF is the 3d eigenvalue. Unfortunately, this 
equation does not hold, for the R H F Ni2HVs are not 
exact eigenfunctions of Eq. (49). R H F theory requires26 

a single radial function per shell. For an open-shell ion 
this is only obtained by constraints, for there exists no 
single radial function which, when inserted into the 
occupied <p/s, will satisfy Eq. (49) for all electrons in a 
shell. The immediate implications of this can be seen by 
first inspecting Table I where the values32 of 

€i=(<pi\3Cm\<Pi) (52) 
29 R. E. Watson, Technical Report No. 12, Solid-State and 

Molecular Theory Group, MIT, 1959 (unpublished). 
30 C. Sonnenschein (unpublished). 
31 A. C. Switendick and F. J. Corbato, Quarterly Progress 

Report No. 34, Solid-State and Molecular Theory Group, MIT, 
October 1959 (unpublished). 

?2 See p. 229 of Ref. 29, 
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TABLE II . One-electron energies for the cubic 3d orbitals of 
Ni2+ as denned by Eq. (52) for the configurations indicated in 
the text. All quantities are in atomic units. 

«rt = -1.42742 
e*i = -1.35829 
eet = -1.47226 

6RHF=-1.41254 

eei = -0.38057 
€ e | *=-1 .35829 
eaE= -0.38057 

But since the <p/s are not exact eigenfunctions of that 
equation, the (x^|5CNi|^) contribution should not be 
estimated in this way. This contribution has, with one 
approximation, been evaluated explicitly and the results 
appear in Table IV. The one approximation, neces­
sitated by numerical inaccuracies in the Is integral, 
consists of omitting the Coulomb potential term due to 

for the various occupied and unoccupied 3d orbitals of 
the R H F Ni2 + ion are listed. Also included is €RHF, 
which was used in S&S I I I when evaluating Eq. (51) 
for (<Pi\ho\<pi). We see that the occupied orbital e/s 
vary by as much as 0.12 a.u. Energy denominators as 
small as 0.22 a.u. occur in Eqs. (40) and (41), suggesting 
that these variations can observably affect the evalua­
tion of these equations. One notes that the smaller e/s 
occur for occupied 3d orbitals of minority spin as one 
would expect since exchange lowers an electron's energy. 
The unoccupied orbital e's lie approximately 1 a.u. 
higher than the others and show (cf. the discussion in 
the preceding section) the Coulomb energy penalty of 
attempting to place a ninth 3d electron on the ion. 
This penalty, which the unpaired bonding orbital 
covalency must pay, greatly influences results. 

One may rigorously use Eq. (51) providing one inserts 
the €*, denned by Eq. (52) for the orbital and multi-
electron Ni state of interest. The e/s of interest are 
readily obtained with the available29 integrals and are 
listed in Table I I . The resulting {(fi\lu\ <pi)'s evaluated 
using Eq. (51), with self-energy terms properly ac­
counted for and utilizing the S&S I I I approximate 
values for the (<pi\VL\<PiYs are given in Table I I I . 
Also listed for comparison are the matrix elements as 
obtained by Sugano and Shulman; these are ((pi\ho\ <pi)A 

values. 

B . (Xi\h0\<Pi) 

If one assumes Eq. (49) to hold, then these matrix 
elements are obtained by first evaluating 

(*i\ho'\ *><> = <X<|3CNi| <Pi)+(*i\ VL\ <Pi) 

= 6 R H F ^ + ( ^ | F L | ^ ) . (53) 

TABLE III . The matrix elements (<p\fa\(p) for bonding (B)} 
antibonding (^4), and excited configuration (E) covalent mixing. 
All quantities are in atomic units. 

S&S III 
values 

hA 

e\EA 

(s or pa) 

0.1216 
0.1907 
0.0604 

(0.1365) 
(0.1365) 
(0.1202) 

0.1744 (0.1202) 

e\B(s) 
e\B(pa) 
e\r

EB(s) 
eiEB(p.) 
eiB(s) 
eiB(pff) 
hEB 

-0.1358 
-0.0667 
-0.2058 
-0.2178 
-0.0918 
-0.1038 

0.8859 
0.8739 
0.9110 

TABLE IV. Values of (X*|3CNi| w) and CRHF^ (with S% taken 
from S&S III) for ground and excited (E) configuration covalent 
mixing. All quantities are in atomic units. 

H 
n ei(s) 
et (pa) 
e±E(s) 
eiE(pa) 
ei(s) 
e\ (pa) 
hE 

<X;|3CNik;> 

-0.10528 
-0.10406 
-0.11751 
-0.15150 
-0.11751 
-0.14695 
-0.08478 
-0.09572 
-0.0739 

€RHF^i 

-0.1067 
-0.1067 
-0.1150 
-0.1564 
-0.1150 
-0.1564 

the Is2 shell, and compensating for this with a nuclear po­
tential term for a nuclear charge two less than that of Ni. 
Otherwise, the Switendick-Corbato program was used 
to obtain all integrals occurring in the (X; |3CNI| <£>;)'s. 
The €RHFS* products are included in Table IV and we 
see that these differ but slightly from the exact values, 
indicating that assuming Eq. (42) has less significant 
repercussions here than it does for ((p\h\<p) matrix 
elements. 

Using the S&S I I I estimates of the {X^V^^pi) 
contributions, the (X;|&o| <pi) matrix elements are given 
in Table V. As we see from Eqs. (45), these matrix 

TABLE V. The matrix elements (X» | fa | <pi) for ground and 
excited (E) configuration covalent mixing.a All quantities are 
in atomic units. 

Present 
calculation S&S I I I 

h 
h 
et(s) 
et(pa) 
eiE(s) 
eiE(Pa) 
ei(s) 
ei (Pa) 

nE 

-0.0428 
-0.0416 
-0.1185 
-0.0937 
-0.1185 
-0.0891 
-0.0858 
-0.0379 
-0.0115 

(-0.0443) 

(-0.1160) 
(-0.0986) 

a These matrix elements are independent of whether we are dealing with 
bonding or antibonding effects (see text). 

elements, unlike (% | ho\ x) and (<p\ ho\ <p), are independent 
of whether we are dealing with bonding or antibonding 
orbitals. The matrix elements are sensitive to whether 
they are for an antibonding-bonding pair or for an 
unpaired bonding orbital [e(s)i, e(po-)i, and hE2» We 
see values for the latter to be appreciably smaller in 
magnitude. 
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C . <2C,-|ft0|3C<> 

The various values of this matrix element are readily 
obtained using the integrals appearing33 in Table II of 
S&S III. The results appear in Table VI. Two features 
of the matrix element behavior should be noted. First, 
as expected, unlike the cases of (x\ho\ <p) and ((p\ho\ <p) 
matrix elements, the (x\ho\x) matrix elements appro­
priate to the unpaired bonding orbitals differ but 
trivially from the paired bonding orbital values. This 
small difference indicates that these matrix elements 
cannot compensate for the shifts, appearing in the 
unpaired bonding (<p|^o|x) a n d (<H^o| <p) values, due to 

TABLE VI. The matrix elements (xi\ho\^i) for bonding (B), 
antibonding (̂ 4) and excited configuration (E) covalent mixing. 
All quantities are in atomic units. 

hA 

hA 

e*A(s) 
e\A(po) 
e\EA(s) 
etEA(pff) 

-0.0837 
-0.0835 
-0.9965 
-0.1659 
-0.9959 
-0.1628 

(-0.0835) 

(-0.9959) 
(-0.1628) 

hB 

hB 

eiB(s) 
etB(Pa) 
eiEB(s) 
exEB{p<) 
eiB(s) 
eiB(p„) 
hEB 

+0.1737 
+0.1739 
-0.7303 
+0.1123 
-0.7297 
+0.1154 
-0.7300 
+0.1162 
+0.1753 

the Ni+ potential. Secondly, we see a sign reversal, 
similar to the one in Table II, on going from the anti-
bonding to the bonding member of a pr or pff pair, which 
is again due to the self-energy terms of Eqs. (45). 
Their effect is to reverse the sign of the denominator of 
Eq. (40) and of the linear term of Eq. (39), a feature 
which will be of great importance to us when discussing 
results. 

D. The Overlap Integrals, Si 

As already noted, the present investigation has 
utilized analytic HF functions in its evaluation of 
integrals. Sugano and Shulman used the same Ni 3d, 
but different F~, orbitals. They used simple two-
exponential analytic approximations to the F~ functions 
of Froese,34 a choice which was necessitated by the 
extensive nature of the computations. Si values which 

TABLE VII. 

st 
Se(s) 
Se(Pa) 

Comparison of overlap integrals 
S&S I I I and in this calculation. 

ThiS> 
calculation 

0.07077 
0.07977 
0.10499 

obtained by 

S&S III 

0.07557 
0.08143 
0.11071 

33 Two additional integrals are needed. Their values, in the 
notation of the S&S III Appendix, are: (dcr, p'/r+\\d8+, pir) 
= -0.000255 a.u. (da, pir+Wjnr, dd+) -0.000039 a.u. The <x|/*o|x> 
integrals are the most seriously affected by the (almost) complete 
omission (Ref. 10) of three and four-center integrals. 

34 C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957). 

were obtained for the current set of functions, along 
with their S&S III counterparts, are listed in Table VII; 
the differences serve as a measure of the error, due to 
wave function uncertainty, that should be attached to 
such integrals as these. The Si obtained with Son-
nenschein's F"~ orbitals will be used in the following 
section. 

E. (\H\) 

From the definitions of Eqs. (47) and (48), we see 
that these matrix elements are functions of covalency 
and as we will want them for varying y and X values, we 
list in Table VIII the terms 

KvuPilXiXd-itpfCil <^X,->], 

which are necessary for evaluating these equations and 
the corresponding terms of Eq. (45) (used in the 
evaluation of Tables III and VI). These were obtained 
from integrals appearing in S&S III, which only include 
two-center integral contributions. It should be noted 
that by basing these terms on two-center integrals 
alone, we are making ligand % self-energy corrections 
[the first equation of (44)] which are strictly compatible 
with the VL in our ho Hamiltonian. Here too, the inclu­
sion of three-center contributions to these integrals 
may have appreciable quantitative effects on these 
terms. In the calculations which follow, we will keep 
only the linear covalent contributions occurring in the 
((Pi | H | Xi) matrix elements; the other elements will then 
keep their ho values. In view of our decision not to use a 
proper covalent Hamiltonian in this paper, a more 
detailed treatment seems unjustified. 

VIII. RESULTS 

Equations (39) and (40) have been evaluated with the 
ho matrix elements of the preceding section for the 
various bonding and antibonding Y'S. The results 
appear in Table IX. Only the Y'S, which are less than 
1 in magnitude, have been reported for Eq. (39); as 
stated earlier, the larger roots are redundant. 

An important feature of the results in Table IX 
concerns the internal consistency of a theory relying on 
ho. We see that the jiA and jiB, of a pa or pv anti-
bonding-bonding pair, differ in sign while those for s 
bonding differ in magnitude. As we have already 
stressed, a y / must equal its partner jiB if the ortho­
gonality requirements of Eqs. (5) are to be realized. 
Any failure to meet these requirements implies a 

TABLE VIII. The Z(<Pi<pAxixi)~~{vi^A <Pixi)~] values necessary 
for obtaining the covalent contributions to the {\H\) matrix 
elements. All quantities are in atomic units. 

e{s) 
e(pa) 
t{p.) 

0.26618 
0.27823 
0.25741 
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TABLE IX. The y; covalent mixing parameters, as estimated with Eqs. (39) and (40), for bonding (J5), antibonding (A) and excited 
configuration (E) cases, and compared with the S&S III values. 

hA 

nA 
etA(s) 
e\A(p,) 
eiEA(s) 
eiEA(p*) 

c 
d 
d 
c 
c 

Eq. (40) 

0.180 
0.130 
0.037 
0.337 
0.033 
0.214 

Eq. (39) 

0.171 
0.127 
0.037 
0.298 
0.033 
0.201 

S&S III values 

(0.1727) 

(0.0313) 
(0.2848) 

HB 

UB 

etB(s) 
e\B{p<r) 
eiEB(s) 
eiEB(pff) 
eiB(s) 
eiB(pa) 
hEB 

a, b 
a, b 
a 

Eq. (40) 

-0.178 
-0.224 

0.114 
-0.319 

0.094 
-0.462 

0.0171 
0.0661 
0.0325 

Eq. (39) 

-0.174 
-0.217 

0.112 
-0.287 

0.093 
-0.404 

0.0169 
0.0654 
0.0322 

a Contribute to 10 Dq. 
b Contribute to transferred hyperfine effects. 
0 Contribute to 10 Dq in the traditional antibonding model. 
d Contribute to the transferred hyperfine effects in the traditional antibonding model. 

breakdown of the theory. The deviations seen in Table 
I X lead to antibonding-bonding orthogonality integrals 
as large as 0.6 instead of the required zero. Thus, the 
severity of this orthogonality breakdown renders any 
quantity estimated with these 7's at best suspect. 

The yv sign reversals of Table I X have been caused 
by the reversal in sign of the [(x|/zo|x)~(<p\ho\ <p)l 
term of Eqs. (39)-(41), due to self-energy effects. We 
expect a similar sign reversal in this term if we go to a 
theory utilizing the exact self-consistent Hamiltonian 
(and the exact self-energy expressions). The only way 
in which this exact theory can then yield a common 
yp

A and yp
B will be if ((p\h\x) reverses sign as well 

(note that here we refer to a matrix element of h, not ho). 
We will shortly see indications that this does indeed 
occur. 

Three other features of the results of Table IX should 
be viewed before we leave them. First, Eq. (40) and 
the more exact (39) give results of similar character 
but occasionally differ by as much as 10%. Secondly, 
the difference in 7's, for pairs of orbitals differing only 
in spin, are not negligible. These do not affect our 
predictions for Ni2 + but such effects are of sufficient 
magnitude to observably affect the transferred hyper­
fine spectrum associated with an ion such as Cr3+ (cf. 
Sec. IV). Finally, we see the unpaired bonding orbital 7 
values to be appreciably smaller than their paired orbital 
antibonding counterparts, suggesting that one must not 
assume them equivalent and that one must utilize the 
unpaired bonding results when estimating 10 Dq or 
some other experimental parameter. The large uncer­
tainty which one must attach to the antibonding 7's 
(due to the antibonding-bonding pair breakdown) 
makes this comparison tenuous. The results which we 
will now inspect, also indicate substantial differences 
between the yA and unpaired yB behavior. 

We are not prepared in the present paper to attempt a 
calculation involving the full Hamiltonian, h, of Eq. (8), 
but we do wish to gain some idea of the sensitivity of 
the predictions to covalency. To do this we will go 
over to the covalent treatment of the self-energy 
correction, utilizing the II matrix elements of Eqs. (47) 

and (48) (actually we will only consider the linear 
contributions to the (<p\H\x)'s)' Computing 7 / s as a 
function of assumed 70 values (appearing in (<p\H\x)), 
we obtain the results of Table X. We see that the 
bonding-antibonding pair results are quite sensitive to 
this covalent contribution and that the negative 7's 
turn positive with increasing covalency because of a 
sign reversal in the (<p\H\x) elements. Since we have 
not used the proper Hamiltonian, we cannot expect 
complete convergence of the p electron bonding-
antibonding yi pairs. The table also suggests that, given 
the Hamiltonian, we have underestimated the bonding-
antibonding covalency if we use the antibonding results 
of Table IX. 

In contrast with the paired bonding behavior, the 
unpaired bonding 7's of Table X show a tendency of 
(<p\H\x) to reverse sign. The «x|^o|x>—(<p\fo\ <p)) 
term does not have a negative sign (as do the paired 
bonding elements), and this causes the trend toward 
negative 7's. The tendency towards increased paired 
orbital 7's and decreased unpaired bonding 7's serves to 
accentuate the different nature of the two types of 
covalent mixing. 

TABLE X. The covalent mixing ji, as estimated using Eq. (39) 
with (<pi\H\Xi) matrix elements for bonding (B), antibonding 
(^4), and excited configuration (E) cases as a function of assumed 
covalency. 

efHs) 
e^Bis) 
efA(<x) 
etB(<r) 
t\* 
t^B 

nA 

nB 
a^O) 
elEB(a) 

e^A{s) 
e^B(s) 
elB(s) 
elB(<r) 
tlEB 

0 

0.057 
0.112 
0.38 

- 0 . 3 0 
0.24 

- 0 . 1 7 
0.19 

- 0 . 2 2 
0.27 

- 0 . 4 0 
0.051 
0.093 
0.017 
0.065 
0.032 

0.05 

0.069 
0.088 

0.062 
0.073 
0.009 
0.047 
0.015 

Assumed y*° 
0.1 

0.081 
0.064 
0.44 

- 0 . 2 3 
0.34 

- 0 . 0 9 4 

0.27 
- 0 . 1 2 

0.33 
- 0 . 3 1 

0.073 
0.053 
0.0008 
0.0295 
0.0030 

0.2 

0.50 
- 0 . 1 5 

0.42 
- 0 . 1 2 

0.33 
- 0 . 1 0 

0.38 
- 0 . 2 0 

- 0 . 0 1 6 
- 0 . 0 0 7 
- 0 . 0 3 3 

0.3 

0.55 
- 0 . 0 7 

0.48 
- 0 . 0 7 

0.39 
- 0 . 0 9 B 

0.43 
-O.O85 

0.4 

0.59 
O.OI7 
0.53 
0.15 
0.44 
0.19 
0.47 
0.046 

0.5 

0.62 
0.10 
0.58 
0.22 
0.49 
0.28 
0.50 
0.16 
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TABLE XI. The covalent mixing parameters, yi, as estimated 
using Eq. (39) with (tpi\H\x>) matrix elements for the unpaired 
tiEB, eiB(s), and eiB(o) orbitals for assumed yfi values. 

Input yi° Computed yi 

e±B(s) O01 0.0154 
eiB(<r) 0.05 0.047 
hEB 0.025 0.0236 

In Table X I we have reevaluated the unpaired y's 
with input (<p\H\x) covalent contributions suggested 
by Table X. The results show internal consistency and 
are in crude agreement with the noncovalent estimates 
of Table IX. This is largely due to the fact that the 
covalency is small and hence the covalent self-energy 
repercussions are small (but not insignificant). 

So far we have only considered the occupied orbitals 
of the cluster and have not used the alternate approach 
of dealing with the antibonding holes. As stated earlier, 
such an approach is exactly equivalent to the unpaired 
bonding method provided that one maintains various 
restrictions of the present paper (e.g., common radial 
behavior for the <p's and %'s appropriate to an anti-
bonding-bonding pair on the one hand and to the 
unpaired bonding orbitals and antibonding holes on 
the other). In a less restricted treatment, the two 
approaches need not be equivalent but one is then 
involved with an unrestricted H-F theory and its 
associated difficulties.26 Estimates of antibonding hole 
y values involve no self-energy corrections [e.g., in 
Eqs. (44), (47), and (48)], and the results must equal 
(to second order) their unpaired bonding counterparts 
in order to maintain orthogonality requirements. Using 
Eq. (40) and the matrix elements and integrals of 
Tables III-VIII, we obtain values of 7 equal to 0.0147, 
0.048, and 0.024 for the e(s), e(a), and tE orbitals, 
respectively. These are in remarkable agreement with 
the values listed in Table X L 

While we seem to have converged on "self-consistent" 
unpaired bonding values in Table XI , this by no means 
implies that they are in detailed agreement with what 
will be yielded by the more exact theory. On the other 
hand, they differ strikingly with those bonding-anti-
bonding results obtained either by Sugano and Shulman 
or in Tables IX and X. This is due to the N i + - N i 2 + 

Coulomb cancellation differences and will remain in 
the exact self-consistent field cluster theory. 

In order to facilitate the discussion of 10 Dq and 
transferred hyperfine effects, the 7 values, appropriate 
to the unpaired bonding and antibonding models, have 
been extracted from Tables I X to X I and listed 
together in Table XI I . The S&S I I I antibonding results 
are included for comparison, as are the yA values 
suggested by Table X, since these would be appropriate 
to 10 Dq and the transferred hyperfine effects if we had 
adhered to the traditional (but incorrect) antibonding 
model. Different yA values are reported for 10 Dq and 
for the transferred hyperfine effects as spin J, parameters 

are appropriate to the former and spin | to the latter 
in the antibonding model. Computed 10 Dq or fi values 
based on these yA will not be reported since this would 
be incorrect. We merely note that the use of these 7A 's 
would predict even stronger covalent effects than those 
apprearing in S&S III. 

A. Transferred Hyperfine Effects 

Values of fi were determined by using Eqs. (23) and 
(24) for the various sets of unpaired bonding 7 /s 
reported (and defined) in Table XII . The separate 
spin f and spin J, contributions to the fi values are 
listed in Table X I I I along with the experimental11 

values of fi. The experimental fs value includes the 
so-called Is—2s cross-term correction.16,17 Under the 
antibonding column, we list the S&S I I I predictions 
and give their pure overlap contribution separately 
from the covalent terms [cf. Eq. (20)]. 

The predicted fs values are not in good agreement 
with experiment; the S&S I I I antibonding prediction is 
in somewhat better, but by no means good, agreement. 
What agreement there exists for the unpaired bonding 
results, arises largely from the spin t electron overlap 
term rather than from the spin J, covalent terms. 

The experimental fff value lies between the S&S I I I 
antibonding prediction and those of the present calcula­
tions. The theory is again seen to be in poor agreement 
with experiment. Quite aside from the fact that the 
S&S I I I predictions involve the inappropriate anti-
bonding 7's, we do not find them in marked numerical 
agreement with experiment. The present results con­
sistently and appreciably underestimate both fs and 
fff. We will see a similar, and perhaps related, low value 
for 10 Dq. Let's consider that case now. 

B. Crystal Field Splitting Parameter 

Our expression for 10 Dq [Eq. (38)] was derived for 
the exact self-consistent Hamiltonian h, but, as discus­
sed earlier, we shall use ho matrix elements to estimate 
the diagonal, overlap, and covalent contributions. 
Before proceeding to this task, it is instructive to 

TABLE XII. The 7 values appropriate to the unpaired bonding 
and the antibonding models for lODq and the transferred hyperfine 
effects as obtained from Tables IX-XI. Included are the S&S III 
antibonding estimates. 

Unpaired bonding Antibonding 
A B C D E 

Table Table 
IX IX Tables S&S Table 

Eq. (40) Eq. (39) X, XI I I I X 
For transferred hyperfine effects 

T ^ 0.017+ 0.017_ O015 y~^A O031 0.05-0.08 
yAB 0.066 0.065 0.047 7<rtA 0.285 0.4 -0.6 
For lODq 
ys±

B 0.017+ 0.017_ 0.0154 ysi
EA 0.031 0.05-0.07 

yal
B 0.066 0.065 0.047 yAEA 0.285 0.2 -0.5 

y^EB 0.0326 0.0322 0.024 y^A 0.173 0.2 -0.5 
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TABLE XIII. Comparison of unpaired bonding [cf. Eqs. (23) 
and (24)] and antibonding (S&S III) transferred hyperfine 
parameters, /,-, with experiment. The various calculations are 
defined as in Table XII. 

Unpai red bonding 
A B 

Antibonding 
S&S I I I 

Spin | overlap = 
Spin I covalent = 

Total fa --

Spin t overlap = 
Spin I covalent = 

T o t a l fa •• 

=0.0021 
=0.0010 

0.0021 
0.0010 

0.0021 
0.0009 

=0.0031 0.0031 

Exper iment = 

=0.0037 0.0037 
=0.0060 0.0059 

0.0030 

0.0054 

0.0037 
0.0040 

-0.0097 0.0096 0.0081 

Exper iment =0.0378 

Spin t overlap =0.0022 
Spin t covalent =0 .0020 

T o t a l fa =0.0042 

Spin f overlap =0.0041 
Spin f covalent =0.0480 

T o t a l fa =0 .0521 

compare this estimate with the results appearing in 
S&S I I I . Such a comparison, however, cannot be done 
directly since their equation for 10 Dq [S&S III , Eq. 
(2.11)] differs with Eq. (38). For example, they have 
an es overlap term, 

-Ss(<pe\h\Xs) + Ss%<pe 

and a covalent contribution 

\<Pe) 

-7sEAWe\h\xe)+Ssys
EA(<pe\h\<pe). 

(54) 

(55) 

Here, the second-order contributions appear in the 
"renormalization" term of their equation. Equations 
(54) and (55) obviously differ with lines 1 and 4 of 
Eq. (38) which are their counterparts here. Prior to 
comparing our results with S&S III , we must then ask 
whether the differing equations for 10 Dq in any way 
affect our observations. With this in mind, we will first 
evaluate Eq. (38) with the antibonding y's and matrix 
elements of S&S I I I . [Equation (38) is readily converted 
for use in their antibonding model by replacing the 
values of y and the matrix elements of the fifth line 
(for the tEB electron) by the corresponding tA values 
and similarly replacing the e8

B and ea
B of the sixth and 

seventh lines by their counterparts es
EA and ea

EA, 
respectively J The results of this calculation are given 
in Table XIV along with the values obtained by using 
Eq. (2.11) of S&S I I I , with and without second-order 
terms. Sugano and Shulman identified the linear terms, 
alone, as specific overlap or covalent contributions. 
With the inclusion of second-order terms, we see from 
Table XIV that the two equations yield the same total 
contribution from a particular electron but differ 
appreciably as to the relative roles of "covalent" and 
"overlap" effects. This implies that one equation or the 
other has incorrectly identified these contributions. 

As already discussed, Eq. (38) was obtained from 
one-electron energy expressions [e.g., Eqs. (27), (28), 
and (30)] by the explicit evaluation of (&\h\ty), a 
process which correctly yields the energy whether or 
not SF is an eigenfunction of h. The matrix elements of 
the resulting equations were then in no way manip­
ulated. Equation (38) correctly yields a value of 10 Dq 

in the limit of zero covalency by the simple expedient of 
setting the y values equal to zero: the terms which 
remain are considered to be diagonal or overlap contri­
butions; those which are introduced in the process of 
allowing nonzero y's are considered covalent effects. 
Thus, we conclude, Eq. (38) gives the proper break­
down of covalent and overlap effects. 

Equation (2.11) of S&S I I I is based on one-electron 
energy expressions such as Eq. (29) which in turn was 
obtained from 

<?|A|*>/<*>I*>=«, (56) 

a relation which holds only if ^ is an eigenfunction of 
the H-F equation [Eq. (6)], i.e., only for the one value 
of y appropriate to that equation. One can alternatively 
obtain Eq. (29) by using Eq. (40) to remove a linear 
— (y+S)(<p\h\x) term from Eq. (27). However, in 
doing this, one assumes a specific relation between y, 
S, (<p\h\<p), (<p\h\x), and (x|A|x), namely, that y be 
appropriate to the H-F solution. The resulting expres­
sion is simpler than Eq. (38), but it yields correct results 
only if the H-F y value is inserted, and we can no longer 
correctly separate the covalent and overlap contribu­
tions by simple inspection, as we did for Eq. (38). 
From Table XIV we see that in S&S I I I the role of 
overlap effects was underestimated and that of cova­
lency overestimated. 

Computed unpaired bonding values for 10 Dq are 
listed in Table XV: Cases A and B (described earlier) 
have been merged since they yield identical results; 
the S&S I I I antibonding values35 of Table XIV have 
again been included for comparison. All of these results 
have been obtained by using Eq. (38) and all indicate 

TABLE XIV. The overlap and covalent contributions to 10 Dq 
obtained using Eq. (38) [modified as indicated in the text] and 
by using Eq. [S&S III, (2.11)] when evaluated with the matrix 
elements and YA 'S of S&S III. All quantities are in cm-1. 

s contributions 
overlap 
covalent 
total 

pa contributions 
overlap 
covalent 
total 

pir contributions 
overlap 
covalent 
total 

Total overlap 
Total covalent 

Total 

Eq. (38) 

2870 
240 

3110 

4680 
5035 
9715 

-1535 
-1440 
-2975 

6015 
3835 

9850 

S&S III 

Linear terms 
only 

2070 
790 

2400 
6170 

- 7 3 0 
-1680 

3740 
5280 

9020 

Eq. (2.11) 
Linear plus 

second-order 
terms 

2250 
855 

3105 

2720 
7000 
9720 

- 9 0 5 
-2075 
-2980 

4065 
5780 

9845 

35 The total antibonding value for lODq differs by 70 cm -1 with 
that appearing in S&S III. This occurs because we differ as to 
the matrix element appropriate to the second-order t2g orbital 
contribution (see footnote 22). 



A1544 R . E . W A T S O N A N D A . J . F R E E M A N 

TABLE XV. The diagonal (as estimated in S&S III), overlap 
and covalent contributions to 10 Dq evaluated with Eq. (38) 
and the ho Hamiltonian for the unpaired bonding 7's of sets A-B 
and C, and for the antibonding Y'S of S&S III. All quantities 

Case A-B Case C S&S III 

Diagonal -3570 -3570 
Overlap 

esi
EA 3000 3000 

eAEA 4135 4135 
UA -1410 -1410 

Total overlap 5725 5725 

Covalent 
Unpaired es±

B 105 100 
Unpaired ea\.

B 725 665 
Unpaired hEB - 1 7 0 - 1 6 0 

Total covalent 660 605 

10 Dq= 2815 2760 

Experimental 10 Dq=7250 

eAEA 

UA 

-3570 

2870 
4680 

-1535 

6015 

240 
5035 

-1440 

3835 

6280 

that overlap effects dominate. The covalent contribu­
tions play a small role in the present calculations and 
the resulting 10 Dq values are observed to be substan­
tially smaller than experiment. 

Upon seeing such a disagreement with experiment, 
one might well inquire into the role played by uncertain­
ties or errors in the y values. From a given set of matrix 
elements (say, the unpaired bonding (l^oD's), an un­
paired bonding y, which is obtained variationally, gives 
the lowest one-electron (and in turn cluster) covalent 
crystal field energy obtainable for the orbital in ques­
tion. Any deviation in the 7 eigenvalues, for electrons 
appearing in the cluster ground state, will raise the 
ground-state energy, hence decreasing 10 Dq. Any 
similar deviation for a yE will raise the excited state 
energy, thereby increasing 10 Dq. If we utilize the 
unpaired bonding (| ho |) integrals, any variation in the 
ya

B or ys
B, from the values of Table IX, will, therefore, 

decrease 10 Dq, while a variation in yt
EB will increase it. 

Consider the effect of varying ya
B, since it contributes 

the dominant covalent term in Table XV. If we assume 
Eq. (24) to be rigorously appropriate to the experi­
mental fa value, we can obtain an experimental ya

B 

which is four times the value appearing in Tables IX 
and XI . Inserting this into Eq. (38) yields a ea covalent 
term of ~ —1100 cm""1 which, holding all other contribu­
tions constant, leads to a 10 Dq of only ^4000 cm -1. 
Thus, a mismatch between a 7 value and a set of matrix 
elements can severely affect a computed 10 Dq. The 
behavior of these matrix elements determines the result; 
they could be of sufficient accuracy to yield qualitatively 
correct 7 values while being quite unsatisfactory for an 
estimate of 10 Dq. 

As stated, Eq. (38) should be evaluated for the exact 
self-consistent Hamiltonian. In the absence of such 
computations, we can again gain some indication of the 
sensitivity of the results to matrix element behavior 

by evaluating Eq. (38) for 10 Dq with the bonding 
(<p\H\x)B matrix elements of Eq. (48). Replacing a 
(<p\h\x)B integral by {<p\H\x)B affects both covalent 
and overlap contributions to 10 Dq. The results of 
Table X indicate that (<p \ II \ x)B is smaller in magnitude 
than its partner (<p\h0\x)B for small covalent mixing 
(eventually reversing sign for greater covalency), and 
imply, in turn, a decrease in 10 Dq. Using (<p\H\x)B 

values appropriate to the computed 7's, decreases the 
covalent and overlap contributions by ^2000 cm-"1 and 
yields a 10 Dq value - 8 0 0 cm -1, again increasing the 
numerical disagreement with experiment. 

As was the case for the / / s , the present calculations 
yield a 10 Dq which is appreciably less than experiment. 
These underestimates may be related; if so, more than 
a simple underestimate of 7 values has occurred. We 
are involved with the more subtle, and more difficult, 
matter of matrix element behavior. Unfortunately, we 
have little evidence of whether a treatment involving 
the exact one-electron Hamiltonian, will or will not 
improve the numerical agreement with experiment. 
I t is important to note that approximations were made10 

in estimating the VL contributions to the (<p\h0\x) 
and (x\h\x) matrix elements, but it is presently not 
obvious what repercussions, if any, these had on the 
results. This will be investigated in the future. Of 
greatest interest, of course, is the question of whether a 
treatment, such as the one outlined above, with the 
exact h, yields reasonable agreement with experiment. 
I t need not. 

IX. OTHER PARAMETERS AFFECTED BY COVALENCY 

Other parameters are affected by covalency, including 
the orbital reduction factors appropriate to the inter-
electronic Slater Fk (or Racah B and C) integrals of 
multiplet theory36 and to g shifts and spin-orbit coupl­
ing,37 and the determination of superexchange12 interac­
tions and neutron form factors.38 

In the antibonding approach to the expectation 
value of a one-electron operator, Op, one compares 
< ^ A | O p | ^ / ) with the free ion < ^ | O p | ^ y ) value. 
Quite often, a reduction factor defined by 

* = < ^ | O p | ^ / > / < ^ | O p | w > (57) 

is introduced to account for observed differences. Such 
a factor is, in principle, straightforward to obtain but is, 
in practice, almost never evaluated because of difficul­
ties associated with the (x I Op | <p) and (x | Op | x) 
matrix elements. The one case where Eq. (57) has been 
evaluated occurs for Stevens' orbital reduction factor, 
&,37-14 appropriate to 

(^i\lm\^j) = kijtm(<pui\lm\ <P3dj), (58) 
36 See, e.g., J. C. Slater, Quantum Theory of Atomic Structure 

(McGraw-Hill Book Company, Inc., New York, I960), Vol. I. 
37 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 

(1953). 
38 J. Hubbard and W. Marshall (unpublished). 
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where lm is some component of the orbital angular 
momentum 1. The <p% and xx contributions to k can be 
included and k tends to be less than one. 

For other operators it is often assumed that the 
reduction effects are adequately predicted by the 
approximate relation 

< ^ | O p | V > = ^ i ^ i < ^ 8 d * | O p | <pu3), (59) 

where the N9s are the normalization constants of Eq. 
(2). The (<p|Op|x) a n d (x |Op |x ) terms are neglected, 
because they are inconvenient to evaluate and are, 
hopefully, negligible. Detailed inspection of the Stevens' 
orbital reduction factor suggests that this approxima­
tion is inadequate. Nevertheless, necessity led Tinkham 
to rely on such a normalization estimate when discussing 
spin-orbit effects.14 Sugano and Shulman also used this 
approach when dealing10 with the experimentally 
observed11 reduction of the Racah B and C integrals 
from their free ion values (here, the normalization 
enters in the fourth power because two-electron terms 
are involved). 

In the (multielectron) unpaired bonding approach, 
the simple one-electron picture of the traditional model 
is lost. As discussed earlier, the overlap effects arise 
from the bonding-antibonding pairs and covalent 
contributions come from the unpaired bonding electrons. 
Now, if one ignores the [<£*(r)xW] overlap density 
terms, overlap effects increase the charge and spin on 
the Ni2+ ion. Covalent mixing also increases the charge 
but decreases the spin (i.e., increases minority spin). 
Our picture of reduction effects therefore depends on 
whether we are dealing with a charge or a spin-depend­
ent effect. 

The complications introduced by the multielectron 
considerations increase the size of the computations, but 
introduce no formal difficulties. When dealing with a 
diagonal one-electron operator matrix element one need 
only sum over paired bonding-antibonding, and un­
paired bonding contributions. The neutron magnetic 
form factor is an interesting example of this case. For 
an off-diagonal matrix element [e.g., between the ground 
and excited states of Eq. (25)] we must remember that 
as one changes the occupation of antibonding orbitals, 
the bonding orbitals are also changed by the change in 
covalency [it was this which invalidated Eq. (26) as an 
expression for 10 Dq], Such variations cause the orbitals 
of one state to lose their orthonormality with respect 
to orbitals of the other. These complications are easily 
managed computationally by using a formalism such as 
Lowdin's39 for dealing with nonorthogonal functions or 
by evaluating the matrix element in terms of the anti-
bonding holes (s). The difficulties associated with 
(<p|Op|x) and (x |Op |x ) matrix elements, mentioned 
above, also occur in the present approach. Detailed 
estimates of orbital reduction effects will not be at-

39 P. O. Lowdin, Phys. Rev. 97, 1474, 1490, 1509 (1955). 

tempted in this paper. Let us briefly consider an ex­
ample using the incorrect normalization correction to 
make an estimate of a reduction effect. In Sugano and 
Shulman's calculations, the competition between the 
overlap and the (dominant) antibonding covalent contri­
butions, led to reductions in the Racah B and C integrals 
equal to those actually observed. If one were to consider 
such simple normalization corrections for the unpaired 
bonding results, one finds that the antibonding overlap 
terms lead to a 3 and 4 % enhancement of the Racah B 
and C integrals and a negligible covalent contribution 
from the unpaired bonding electrons. 

Similarly, the small magnitude of the unpaired bond­
ing covalent mixing leads to poor agreement [using, 
say, Eq. (59)] with the various experimental "k" values. 

On several occasions in this section, we have cited 
difficulties associated with evaluating (x I Op | <p) a n d 
(x I Op | x) integrals. As this matter has implications for 
any more exact theory of crystal field effects, let us 
consider it briefly here. One is frequently interested in 
the highly singular r~3 operator appropriate to fine 
structure and hyperfine interactions. Matrix elements of 
this, and other, operators often nearly diverge because 
the LCAO wave functions were not required to have 
the proper singular behavior in the vicinity of each of 
the nuclei present (cf. the previous discussion of trans­
ferred hyperfine effects). Thus, even if the (<p|Op|x) 
and (x I Op | x) integrals are well behaved, their computed 
numerical values could be quite unrealistic. To our 
knowledge this matter has not been investigated and 
correcting for it promises to be a most interesting 
problem. Until this is done, one cannot claim complete 
quantitative understanding of the various orbital 
reduction effects. 

X. CONCLUDING DISCUSSION 

A large number of observations, some major and some 
minor, have been made, concerning the application of 
the LCAO molecular orbital method to crystal field 
theory, in this paper. Perhaps the most important of 
these is the fact that it is the unpaired bonding electrons 
and not the antibonding electrons, which make covalent 
contributions to physical observables. The importance 
of this observation is largely due to the intrinsic (hence, 
quantitative) difference in the nature of the two types 
of covalent mixing (based on diagonalizing the one-
electron Hamiltonian). In addition, we saw indications 
that a theory based on the incomplete Hamiltonian ho, 
is internally inconsistent, hence inadequate. The results, 
obtained with ho, were also seen to be in poor agreement 
with experiment, the covalent contributions being signifi­
cant but by no means dominant. We are not optimistic 
that the same theory, evaluated with the exact H-F 
Hamiltonian, will recapture good agreement with all ex­
perimental parameters. (These observations are, of 
course, made for the molecular orbital theory. The alter­
native Heitler-London approach to the crystal field prob-
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lem13 is being studied by Rimmer and Hubbard.40 The 
Heitler-London method introduces covalency through 
configuration mixing and thereby loses the simplicity 
of the single determinant description of the MO 
theory.) 

The fact that the unpaired bonding orbitals make the 
only covalent contributions to an observable, is not 
surprising. I t has been recognized for some time that, 
when dealing with Hartree-Fock single determinants, 
any mixing between a pair of occupied orbitals in no 
way affects the expectation value of an operator.36 

This immediately implies that the covalency of the 
simultaneously occupied orbitals of a bonding-antibond-
ing pair, cannot in any way, affect the prediction of 
any observable, for the (NiF6) cluster states considered 
here. 

Our understanding of orbital reduction effects and 
of the covalent "derealization" of charge and spin 
differs in the two approaches. In particular, the 
covalency of a bonding-antibonding pair conserves 
charge on the metal ion while that of the unpaired 
bonding orbital involves a shift of charge from the 
ligands to the metal. Such differences in the nature of 
the two types of covalent mixing, have quantitative 
repercussions on the estimates of 7 values (cf. Table 
XII ) . This is the most immediate quantitative reason 
for our preoccupation with unpaired bonding effects in 
this paper. As noted, the differences between computed 
paired and unpaired covalent mixing do not destroy the 
required spin symmetry of the cluster (i.e., it is an 
eigenfunction of S2). The unpaired bonding approach 
may be viewed as the proper application of restricted 
H-F theory to the current cluster model for KNiF3 . 
Spin symmetry is maintained and what is more, if we 
apply the variation principle to the total energy of the 
cluster (with respect to the covalent mixing param­
eters), subject to the (RHF) requirement that the two 
types of covalent mixing be identical, one of necessity 
obtains the unpaired bonding (or antibonding hole) 
values. (The discussion for Cr8+ has, of course, en­
compassed UHF theory and the breakdown of spin 
symmetry.) 

We also noted that a theory based on the mixing of 
free ion metal <p and ligand yp orbitals and based on the 
approximate Hamiltonian, ho, appeared unsatisfactory 
(quite aside from the fact that quantitative agreement 
with experiment was not obtained) for we saw serious 
internal inconsistencies in the covalent mixing estimated 
for bonding-antibonding pairs. The effects did not seem 
so severe for unpaired bonding 7 values, an observation 
which is probably misleading. 

40 D. Rimmer and J. Hubbard (unpublished), who use the 
configuration interaction method of Keffer et al. (Ref. 13). 

Having failed to produce even fair agreement with 
experiment, the question arises whether the same 
theory, evaluated for the exact self-consistent Hamil­
tonian h, will or will not produce agreement with 
experiment. We do not expect the current (free ion \p 
and <p) cluster model to yield good agreement (say to 
20%) for all the parameters considered in this paper. 
Should such a failure prove to be the case, there will 
again arise, the old question of the variation of atomic 
orbital character away from the free ion behavior 
assumed in the present LCAO approach. Such a varia­
tion can take several forms: first, there is the matter of 
bulk expansion or contraction of the metal17'41 ion (or 
ligands); secondly, there is the question of the extent 
to which 3d<pt and <p3 orbitals differ radially42; thirdly, 
there can be variation in orbital behavior from one 
multielectron state to the other; fourthly, one can allow 
different bonding and antibonding ^'s to have different 
radial parts for their <p and x basis orbitals (involving us 
almost inevitably with a UHF theory); lastly, we have 
to consider the variation of orbitals centered on one 
nucleus when in the immediate vicinity of another, a 
matter important to orbital reduction and hyperfine 
effects. A bulk expansion of the metal <p orbitals may 
be expected with the covalent increase of charge 
occuring at the Ni site. This would improve numerical 
agreement with some experiments but it remains to be 
seen if this effect is fundamental to the current disagree­
ment with experiment. Other questions which arise, 
include the role of correlation effects, one's ability to 
adequately define Fext and the justification of the 
cluster model itself. 

Finally, it is imperative that a proper crystal field 
cluster treatment, involving the exact Hamiltonian, be 
done. In this way, a number of the questions of the 
present paper would be resolved. We believe a calcula­
tion of this sort to currently be attainable with reason­
able accuracy. 

Note added in proof. In a recent publication, E. 
Simanek and Z. Sroubek [Physica Status Solidi 4, 251 
(1964)] have considered unpaired bonding effects for 
the same system. 
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