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The theory of part I is extended to multiple spin processes. The lowest order two-spin process yields a 
cross-relaxation probability WCR whose principal characteristics are the same as those of WCR for single 
spin flips. Higher order two-spin processes occur with much lower probability and this probability is not 
sharply peaked at harmonic coincidence. Three-spin and higher multiple i^-spin processes yield functions 
WCR(&) whose width becomes progressively larger and less dependent on the concentration, and whose 
magnitude depends on the concentration n as nK. The effects of short-range forces (exchange) are easily 
embodied in the theory, but in the absence of such forces special attention must be paid to the dipole fields 
of near neighbors, which are then likely to dominate the cross-relaxation process. 

I. INTRODUCTION 

IN part I1 we presented a general formalism to de­
scribe the effect of the dipolar interaction on the 

otherwise uncoupled spins in a lattice. We applied our 
considerations particularly to nonradiative single-spin 
transitions. In the extension of the theory to higher 
order processes, we presuppose the entire machinery of 
part I. 

In generalizing the previous results to more complex 
processes, we follow these steps: (1) generalize the sta­
tistical procedure developed in part I, (2) discuss two-
spin processes in detail, (3) consider triple and higher 
multiple processes, and (4) consider subsidiary problems 
arising from near-neighbor interactions and inhomo-
geneous broadening. 

II. STATISTICAL PROCEDURE 

The matrix element used for single-spin flips was 
YsiMi?. This element corresponded to an interaction 
in which spin one interacts with all the other spins in 
such a manner that spin one flips and all the others stay 
put. The spin variables of Mu have a form like SJSZ\ 

Now let us consider a double flip. By a double flip 
we mean a process in which spin one flips down and 
any one of the others flips up. What is the appropriate 
statistical procedure and what matrix element do we 
embed in this procedure? 

The statistics breaks up into two parts. First, we con­
sider the interaction between spin one and some fixed 
spin p. The matrix element has the form Mip(tiP) with 
spin variables typically of the form SJS+P. With this 
one-^ combination fixed, we count the possible con­
figurations of all the remaining spins. Secondly, we sum 
MiP over all possible interactions. When one and p 
interact in a double flip, their interaction with one 
another is evidently on a different footing from their 
interaction with all the other spins. 

A closely related question concerns the indistin-
guishability of the spins. Two spins are distinguishable 
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if any of the following conditions obtain: (1) They 
belong to a different species; (2) they occupy different 
Zeeman states; (3) they occupy different positions in 
the lattice. Conditions (1) and (2) are obvious. The 
implication of condition (3) is that we do not get a new 
configuration if we interchange spin q for spin p, but we 
do get a new configuration if we move spin p (or spin q) 
to a different lattice site. 

Suppose that the distinguishability conditions (1) 
and (2) give Ni spins of kind 1, N2 of kind 2, and so 
forth, with a total of N spins. Suppose we fix the posi­
tions of A spins: A i of kind 1, A 2 of kind 2, and so forth. 
We now distribute the remaining N—A spins randomly 
into the remaining M—A lattice sites. The number of 
configurations is clearly 

{M-A)\ 
C(A) = . (1) 

(N1-Al)l(N2-A2)l'"(M-N)l 

By Stirling's approximation, this becomes 

{M-A)M~Ae-N+A 

C{A) = . (2) 
(N1-A1)l(N2-A2)KM-N)M-N 

Now 

hW+oo (M-A)M-A = limM^MM-A 

X ( 1 - (A/M))M~A = MM-Ae-A, (3) 

so that (putting n=N/M) 

C{A) = [_M^A/{N1-Al)\{N2-A2)l • •] 
X\jr»/(l-n)M~Nl. (4) 

We notice that the second bracket of Eq. (4) is inde­
pendent of A and will always cancel out when we com­
pute a fractional number of configurations. For a two-
spin process involving spin 1 and spin p, we have 
Ai = A2=l, A = 2, and the fractional number of con­
figurations is 

C(2) NiN2* r 
f= = / dr2drz • • • drp„idrp+i • • • dtN, (5) 

C(0) VN J 
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where 

v=V/M (6) 

and V has been replaced by fdx in the numerator. 
To obtain the transition probability, we need to 

introduce the transition operator and the appropriate 
energy constraint. The transition operator, as we have 
seen, is Mij?(iip) summed over all riP. The energy con­
straint is discussed in the next section. The transition 
probability may be symbolically written 

2TT iVVW 1 
W= 

h VN v 

X / M^vHrivdtir • -dxi, p-idtlt p+v • -dt1N 

X energy constraint. (7) 

We have introduced a factor 1/v to keep the units and 
dimensionality consistent in passing from the lattice 
sum for M\p to an integral. Also, the reference spin 1 
has been chosen as origin of coordinates. 

For a single-spin process, C(1)/C(0) will have one 
N in front, and one more volume integral, so that W 
reduces to the expression 22 of part I. 

The extension of this counting scheme to processes 
involving an arbitrary number of spins is obvious, and 
some examples will be given below. 

III. TWO-SPIN PROCESSES 

First, we formulate the energy constraint for the 
two-spin process. Second, we dicusss the first-order 
two-spin process. Third, we discuss a second-order two-
spin process. Fourth, we consider the long-range 
process. 

Energy Constraint 

In a two-spin process, spin one flips from state A to 
state B, while another spin flips from state C to state D. 
The labels A, B, C, D designate the quantum numbers of 
the unperturbed single-particle states. The correspond­
ing unperturbed energies are EA

0,EB°,EC°,ED0. These 
energies are perturbed by the dipole interaction, and in 
first order we write 

Etot=E°+Ediv. (8) 

Etot and E° are numbers, but E d i p depends both on the 
specific configuration of all dipoles which the spin sees, 
and on the quantum state in which the spin finds itself. 
For a transition to be possible, we require zero change 
of over-all energy. The net change in Zeeman energy 
must be balanced by the net change in dipole energy: 

(EA
tot-EB

tot) + (Ec
tot-ED

tot) = 0 , (9) 

Equation (9) replaces the analogous condition 
EA

tot-—EBtot = 0, which was appropriate for single flips. 

To formulate the analogous energy constraint, we 
specify that: (1) spin 1 have energy EAtot when in 
state A ; (2) spin 1 have energy EBtot when in state B; 
(3) spin p have energy Ec

tot when in state C; (4) spin p 
have energy ED

tot when in state D; and (5) the con­
straint expressed in Eq. (9) holds. The total number of 
configurations for which Eq. (9) holds is obtained by 
integrating over all values of EA

tot,EBtot,Ectot,ED
tot. 

The energy constraint is then expressed as the operator 

fb[EA™- (EA»+EA
d^8£EB

tot- (EB
0+EB

di^ 

XdlEc
tot- (Ec°+£c d i p ) ]5 [^ i ) t o t ~ ( £ i / + £ D d i p ) ] 

X5lEA
tot-EB

tot+Ectot-ED
tot'] 

XdEA
totdEBtotdEc

totdED
tot. (10) 

Performing the integrations reduces expression (10) to 

dZ(EA°-EB0+E<f>-ED°) 

- (EBdip-EA
di»+ED

di»-Ec
di»)3 . (11) 

The first parenthesis in expression (11) is the total 
change in unperturbed energy and we denote it by fico. 
The second parenthesis is the negative of the change in 
dipole energy. We put 

fiAo>AB = EB
dip-EA

di», (12a) 

tiAcccD = ED
di»-Ec

d'w. (12b) 

We again assume that the contributions of all spins to 
Aco are additive: 

Ao)AB = Y, AuAB(rik) , (13a) 

AUCD= L Aa>cD(rPk) . (13b) 

Expression (11) now becomes 

5 (co - [E &*AB(rlk)+ E Acocz)(rp*)]) . (14) 

Finally, replacing the 8 function by its Fourier trans­
form, we have for the energy constraint: 

1 r00 

— / exp{ — ip£o)—X AcoABOri*)— J ] AcocD(rp]c)~]}dp 
27TJ-O0 * ^ l * ^ P 

1 r00 

E=— / (exp{ip[Ao)AB(rip)+Aa)cD(rpi)1} 
2TJ-oo 

X I I exp{ip[AcoiiB(rifc)+AwcD(rpfc)]})eriP«Jp. 
k^l,p (15) 

Firs t-Order Process 

We may now write the transition probability in the 
form of Eq. (7) using the energy constraint we have 
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just derived. We put Ni/V=ni/v. We then have 

2?r r ° 1 r l r 
W(a>) = — / — niti2— / Mip

2 exp{ip[AccAB(rip) 
ft J ^ 2TTL vj 

+Ao)CD(rpl)~]}driJ— / exp{^p[Aau£(rifc) 

+AcocD(rP^)]}^riA;j r ^ ' d p . (16) 

This expression is very similar to Eq. (24) of part I, 
with the integral containing Mip

2 corresponding to x 
and the round bracket raised to the (N— 2) power 
corresponding to <£. The difference is that x a n d $ 
cannot now be evaluated separately. They are coupled 
through the dependence of <£ on rip. This becomes more 
apparent if we write rPk=rik—t\p. As we integrate 
over rip to evaluate x, we should simultaneously have to 
integrate out the rip dependence in <£. This calculation 
would be impossible. 

This impasse can be overcome through the following 
consideration: Let us consider the limiting situations, 
Tip —> 0 and r ^ —> oo. In the first case, the t\p de­
pendence of <£ is eliminated and <£ has exactly the form 
we discussed in part I. I t will essentially describe a 
quasiresonance line whose parameters are the algebraic 
sum of the parameters for the resonance lines A <-» B 
and C<r->D. In the second case, we note that Aco(r) 
depends on r as r~s. Within any arbitrarily large neigh­
borhood of spin 1, rPk will be infinite, Ao)(rPk) will be 
zero, and exp[ipAw(tpk)~] will equal one. The converse 
is true within any arbitrarily large neighborhood of 
spin p. Consequently, each of the (N— 2) integrals in 
<£ breaks up into the sum of two integrals. 

l i m ^ ^ ^ f — / {exp\jPAo)AB(r)2 

)
N-2 

. (17) 

I t is easily shown that <£ now corresponds to the con­
volution of the two resonance lines A <r-> B and C <^D. 

In either limit, $ is functionally identical to an ab­
sorption line and has a width roughly twice of an ab­
sorption line. For most practical applications, this is 
sufficient information. If more detail is necessary one 
must split the calculation into two parts corresponding 
to r ^ very small and rip very large. For rip small it is 
always possible to calculate exactly the diagonal dipole 
elements which determine Aco. For rip large it is always 
possible to convolute known absorption lines. 

What is the physical meaning of the preceding argu­
ments? In the first place it is no longer exactly true that 
X and <£ represent, respectively, the rf power spectrum of 
the dipole interaction and the level broadening. Such a 

separation was possible for the single-spin theory of 
part I because of our assumption that the interactions 
of spin 1 were independent. Now, however, the inter­
actions of spin 1 are not completely independent; they 
are correlated with the interactions of spin p. From our 
present point of view, we still assign to x a meaning as 
power spectrum, and take care of the correlations in <£. 
In line shape language, $(p) is the coherence relaxation 
function and its width corresponds to TV When two 
spins are very near one another, they are very strongly 
correlated. With respect to the rest of the system, they 
behave as a coupled unit with a coherence time equal 
to that of a single spin. When two spins are very far 
apart, on the other hand, they are uncorrelated, and 
their joint coherence time is given by 

i/r2(i,2)=[i/r2(i)]+[i/r2(2)], 

or, if ra(i)=r2(2), 

r2(iJ2)=ir2(i)=ira(2). 

The dependence of <£ on Y\p is thus interpretable as the 
dependence of the pair coherence time on the spin 
separation. 

We may then write for the double-flip probability 

2irnin2 r°° 
W(a) = / x(p)Hp)e~ip"dp, (18) 

ft v ./_«> 
where 

x ( p ) = — /"ilfipV>A"x«dr, (19) 
2TT7 

Acox(r) = AcoAB(rip)+Acoci)(rpi) . (20) 

We now discuss briefly the more precise functional 
form of Mip and Aco appearing in Eqs. (18) to (20). The 
matrix element Mip is, of course, 

(A(l)C(p)\5C^\B(l)D(p)). 

In the absence of a crystal field, we would have 

Mip=g(3 cos20ip— l)Aip3 , Awtot=0, (21a) 

Mip=g sin20ip/Vip3, Awtot= ± 2 . (21b) 

The quantity g is the value of the appropriate spin 
matrix element. Like the matrix element for single 
flips, Mip can be expressed even in the most general case 
as the product of an angular function and r~3. 

Mlp=m(dlp)/rlpK (22) 

The Aw's have the same form as in the single-spin 
process. In the absence of a crystal field 

AOOAB (tifc) = q_AB(3 cos20ifc— l)/Vifc3, (23) 

with an analogous expression for ACOCD. The qAB is the 
difference of the values assumed by the spin variables 
in the matrix elements 5C^Adip and 3Cj5Bdip. In the 
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general case, Aco too can still be expressed as the product 
of an angular function and r~3: 

Ao)(rlk) = f(6lk)/rik~ (24) 

We see then that the x of Eqs. (18) and (19) is 
identical in form to the single-spin x of Eqs. (25) and 
(38) in part I. The functions m(6) and /(0) are still 
sums of Legendre polynomials of order two. 

The entire discussion x developed in part I applies 
without essential change to the two-spin case. Thus, 
we may write 

Sw(m2) 1 
x(co) = lnlLe/col , |co |<£e 

3r0
3 2Le (25) 

= 0, |co|>Ze. 

Here, (m2) is the average value of m2{6) over the 
sphere, L is the maximum value of f(6), and e = ro~3. 
Unlike the single flip, the double flip is not character­
ized by the occurrence of Aco and —Ace in pairs. The 
resulting % is asymmetric and this asymmetry is well 
approximated by the addition of an additive constant 

on one side of the origin. As mentioned in part I, such 
asymmetry manifests itself primarily in the wings. 

The discussion of W(w) developed in part I also 
applies, with two changes: (1) There is now a coeffi­
cient of n2 instead of n, so that the transition proba­
bility depends on the square of the concentration. 
(2) When calculating the central peak of PF, we must 
use a $ that is wider than its counterpart in the single-
spin transition. The theory developed in part I re­
garding the shape of W{co) and the concentration de­
pendence of this shape applies to the double flip 
without further modification. 

Second-Order Process 

So far, we have treated the two-spin process in terms 
of first-order theory. I t may happen, however, that the 
"resonant" condition is met, i.e., AEAB°-{-AECD0 = 0, 
or co=0, but at the same time the matrix element M\v 

vanishes. Such is the case for ruby at a number of mag­
netic field values when the field is parallel to the c axis. 
To see what effect is expected under these circum­
stances, we must go to second-order theory. 

The second-order matrix element is given by 

Mip=^2x^B E F ^ D 
(A(l)C(p)\5C^\X(l)Y(p)){X(l)Y(p)\SQ.^\B(l)D(p)) 

EXY—EBD 

(26) 

where X and Y are the intermediate states for spins 1 
and p. Each of the first-order elements connecting the 
intermediate states to either the initial or final state is 
of the form of M\v given in Eqs. (21) and (22). Equa­
tion (26) may be abbreviated in the notation of 
Eq. (22), 

tm1(elp)m2[elp)/rlp
&'] 

M i p ^ E x r • — . (27) 
AEXY 

In other words, M\J breaks up into products of an 
angular function, r~6, and an energy denominator. The 
energy denominator is 

1/AE= l / (A£°+A£ d i P)= (1/AE°) 

X [ 1 - (AEdi»/AE°)+ (AE^/AEv)2• • • ] . (28) 

Since, for the bulk of the transitions, AEdip is small 
compared to A£°, we approximate the energy de­
nominator by 1/AE°. 

The number of terms in the XY sum is generally 
small. The reason for this is that the vanishing of the 
first-order matrix element is generally due to some sym­
metry condition which causes many of the other 
matrix elements to vanish as well. For instance, in the 
case of ruby at 0° orientation, for g/3H=4:D, the tran­
sition (f, —•§) <-> (—J, —-J) is linked by two inter­
mediate states. Both terms in the sum over inter­
mediate states are proportional to P20P217'-6. The co­
efficients of the coordinate functions are 0.4 and —2.4 
so that their sum is —2. We cite this example to illus­

trate that the order of magnitude of the sum is the same 
as the order of magnitude of each term. 

We now proceed exactly as in the first-order theory. 
The integral for x ' is now 

1 1 r«>mi2(0}m22(d) 
x ' ( p ) = / e^

mirZdr. (29) 
2w (AE)2Jr0 r12 

We identify this integral with the integral 7(p,4) of 
Eq. (38) in part I. Then, according to Eq. (43) of part I, 
the integration over r (and <p) yields 

TC3.-WW3 

where 7 represents the incomplete 7 function. We ap­
proximate f(6), as before, by a function which assumes 
values —L<f<L as cos0 assumes values — K c o s # < 1, 
and we replace m^(0)mi(d) by (m-?m£). With €=r0~3, 
we then have 

1 / 1 x ^ w y rL T(3, -ipef) 
X ' ( P ) = - — ) — — — / *f—— • (31) 

e \AE/ 3L J-.L (~-^P -ipefY 
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Through the relation2 

ry(a,x) 

P dx= -
y(a-l9x) 

xa 
(32) 

we obtain 

1 / 1 \ 2 {m?m?Y r 7 ( 2 , - * ) - 7 ( 2 , * ) - i 

^ - • y —5—L—s—]•(33> 

where # = —ipeL. By means of the recursion formula2 

7 ( a + 1 , #) = ay (a,x) — a; V * (34) 

and the relation 
y(l,x) = l—e-*, 

Eq. (33) may be reduced to 

<\AE/ 3 

1 1 

(35) 

x\e-{-+-)-e{ Y l . (36) 
L Nx3 x2/ \x* x2/ J 

We have now explicitly evaluated X'(P)-
To obtain x'(<>>) w e n e e d 

./ —oo 

(p)e-ia">dp. (37) 

This Fourier transform is obtained almost trivially 
from expression (36) by taking successive integrals of 
d functions located at co = =b eL. The Fourier transform 
of expression (36) is 

x»= 
2x(wi%22)e2 3 

9f 0
3 (A£) 2 4Lei 

= 0 , 

b-(B' Icol <Ze 

[col >Ze. 

(38) 

x'(co) turns out to be a parabola. I t has a half-width of 
0.7Le. For L=2q, as is appropriate for ruby at 0° 
orientation, this half-width corresponds to 1.4 times the 
effective nearest-neighbor dipole energy. This width is 
much larger than the width of any reasonable $(co) at 
low concentrations. I t follows that FF'(co), obtained by 
convoluting <£ and x'> will have essentially the same 
shape as x'(w). 

The coefficient in front of the second-order Wf is 
down from that of the first-order W by \ (me/AEo)2. 
Since me is approximately the dipole energy and AEQ is 
approximately the Zeeman energy, this factor is typi­
cally of order 10~2. This is not all, however. The second-
order W'(a)) shows no sharp resonance. If we consider 
a <£(co) of width one-tenth the nearest-neighbor dipole 
energy, the sharp resonance of the first-order W de­
creases the ratio of W'(0)/W(0) by almost another 
order of magnitude. Far away from the resonant con­
dition, however, W eventually may become com­
parable to W. 

In summary, the second-order process gives rise to 
an effect which is relatively small, as expected, and 
which is quite spread out in its frequency dependence. 
One would not expect this process to be directly ob­
servable, but it does contribute, to some extent, to 
"general" cross-relaxation, i.e., to relaxation which 
appears more or less independent of any resonance con­
dition between levels. 

Long-Range Process 

Finally, we consider still a third type of two-spin 
process. In this process, spin 1 and spin p both flip, but 
independently of one another. I t represents, in a sense, 
the joint probability of two single spin flips. Because the 
two spins operate independently, their separation 
becomes irrelevant. Our theory gives a reasonable 
account of the nonexistence of such a process. 

The matrix element governing this process is 

Up 
XY 

l(A(l)X(i)\X^\B(l)X(i))(C(p)Y(j)\K^\D(p)Y(j)) 

EC—ED 

(C(p)Y(j)\3C^\D(p)Y(j))(A(l)X(i)\3C^\Ba)X(i))} 

EA—EB 
(39) 

The two portions of this matrix element correspond to 
the two possibilities of either spin 1 or spin p flipping 
first, thus giving rise to different intermediate states. 
Since our method always envisions exact conservation 
of energy in any one process, one energy denominator 
is the exact negative of the other. By abbreviating the 
notation in an obvious manner, we have 

1 
MiP" = — E (MuMvj-MvjMu) . 

AEXY 
(40) 

2 A. Erdely, F. Oberhettinger, W. Magnus, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1948), Vol. 2. 

If ij^j, the spins referred to in Mu and Mpj are all 
different, Mu and MPJ- commute, and M\v

,r vanishes 
identically. If i=j, Mip" does not vanish. However, 
the extra index "uses up" one more volume integral in 
our configuration counting [see Eqs. (7) and (16)], 
and as a result, there is an extra factor of 1/V left over. 
This leads to a transition probability which is down by 
a factor of N, where N is the number of spins in the 
crystal. Physically, spin 1 and spin p cannot interact 
at all without any interaction mechanism. They can 
interact via some common third spin i, but since they 
act independently, the chances of their "picking" out 
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the same spin i from the N available spins are down by 
a factor of N. 

This completes our treatment of the two-spin process. 

IV. HIGHER ORDER PROCESSES 

Triple and higher multiple spin flips are handled in 
a fashion quite analogous to double flips. The principal 
difference is that dipole operators can never connect 
more than two spins at a time; for this reason, multiple-
spin processes must be treated in higher order pertur­
bation theory. 

We consider a triple flip in which spin 1 goes from 
state A to state B, spin p from C to D, spin q from E to 
F. If the selection rule Am==zkl holds for each spin, 
the possible processes are that either spin 1 or spin 2 or 
spin 3 flips first with the remaining two spins flipping 
second, or the converses of these three possibilities. 
There are thus six intermediate states, with a given 
process and its converse having energy denominators 
that are exact negatives of one another. These processes 
have been discussed in their detailed application to LiF 
by Pershan.3 In the more general case, when m is not a 
good quantum number, there is no selection rule. The 
number of processes can become very large and the 
matrix elements very complicated. Nevertheless, a 
typical term, together with its converse, can be repre­
sented by 

Mlpq= (MipMlq-MlqMlp)/AE. (41) 

Mipq does not vanish since M\p and M\q do not com­
mute. The coordinate dependence of M\p and M\q is 
defined in Eqs. (21) and (22). We therefore have 

Mipq= 
1 mi(OiP)m2(0iq) 

AE 
(42) 

rip
ariq

6 

When following our previous reasoning, the operator 
for a triple flip becomes 

\vAE/ J 

2 rm^{elp)m^{elq). 
-dtipdtlq. (43) 

^ l A i g 

In our configuration counting, we must include the fact 
that we have already assigned three spins to three 
"boxes" and thus, the analog of Eq. (5) is 

/ = 
C(3) NtNzNztf 

C(0) VN / dtir- •dti, v-i 

Xdtlt p+ r • -dti, q-idrlt q+v • -dx1N. (44) 

In setting up the energy constraint, we require that 
A £ ° + A E d i p = 0 when all three spins are considered. In 
analogy to expression (15), this constraint turns out to 

be 

1 r°° 
— / exp{iplAo)AB(rlp)+Ao)AB{riq)+Ao)cD(rpl) 
2irJ -«> 

+ AwcD(tpq) + A0)FG(Tql) + A0)FG(tqp)2} 

X I I ex-p{ip[Aa)AB(rlk)+Aa)cD(rPk) 
kj^l, p, q 

+&aF0(tak)']}e-i'"*dp. (45) 

Finally, defining Acox in analogous fashion as in Eq. (20) 
we have 

2-K n\Utfi% r00 

ft v* J_„ 

1 / 1 \ 2 rvm? -j 
X ( P ) = — ( — 1 / «*PA«x<np) 

2TT \AE/ J In* J 

(46a) 

rm2 1 
n -eip&o)x(riq) \e X | — eipAu^T1^ letp^x^dripdriq, (46b) 

-rip
6 

•ill $ ( P ) = - exp{ip[_Ao)AB t r u ) + A U C D irpk) 

+AcoFG(tqk)']}drVc (46c) 

3 P. S. Pershan, Phys. Rev. 117, 109 (1960). 

Once again, % and $ are not really separable, but our 
previous discussion of this point applies without change. 

A new difficulty arises, however, because x itself 
is now given by two integrals which are not separable. 
They are not separable because of the appearance of 
rpq in the third exponential. To test the effect of this 
coupling term, we have computed x(w) numerically, 
both with and without the coupling term. We used P2 i 
for m(8) and P2o for Acox. We find that the two x's gen­
erated in this way have virtually the same shape, 
except that the x without the coupling term is narrower 
by about a factor of 1.5. I t appears to be still prac­
ticable, therefore, to calculate x on the basis of separable 
integrals with the proviso that one expects the correct 
function to be qualitatively the same but somewhat 
broader. 

Each of the separate integrals gives the power spec­
trum of the projection of the dipole operator governing 
the interaction between spin 1 and spin p and between 
spin 1 and spin q, respectively. If these two interactions 
were completely independent, there would be no 
coupling term, and the joint power spectrum would 
simply be the convolution of the individual power 
spectra. But the transitions do not occur independently; 
hence, a coupling term. In picturesque language, the 
relative squiggles of spins 1 and p are modulated by the 
squiggles of spin q, and the spectrum is broadened. 
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FIG. 1. Three-spin functions: W half-width versus 

$ half-width in units of x half-width. 

The calculation of the triple flip PF(co) again resolves 
itself into the convolution of the x and $ functions of 
part I. Only now we need two %'s with their associated 
<£'s instead of one. We note that W(u>) will have a factor 
proportional to the cube of the concentration and to 
the square of the ratio of the dipole energy to the 
Zeeman energy. 

Four-spin and higher order processes require no new 
physical or computational considerations. We note that 
a matrix element of the form MiPMqr gives zero con­
tribution. The two factors commute and the element 
will be identically cancelled by its converse. This is 
important since there is no implicit requirement in such 
a matrix element that spins 1 and p be near spins q 
and r. 

When K spins flip, we will therefore require (K— 1) 
'th-order perturbation theory, and the matrix element 
will be a sum of terms each of which contains (K— 1) 
products. Our counting scheme will generate a concen­
tration dependence of order nK, and the (K— 1) 
products of dipole operators will generate a factor of 
(dipole energy/Zeeman energy)2 (iC~2). The functional 
form can be estimated by convoluting (K— 1) % func­
tions and their associated <£'s.rOwing to this increasing 
number of convolutions, it is clear that higher order 
processes will show a less and less marked resonance 
effect, and that their W(oi) will become more and more 
smeared over co space. When this consideration is 
coupled with the step n dependence of these processes, 
we have at least a partial explanation of why the 
"general" cross-relaxation increases so markedly at 
higher concentrations. 

The concentration dependence of the shape of W(u>) 
enters exclusively through the $ functions, as we have 
seen in part I. We showed that W(co) for a one-spin 
process has a width which varies as the square root of 
the <£ width. If the resonance line is homogeneous, the 
width of this TF(co) will vary as n112. The same argument 
applies without change to the two-spin process. For 
higher multiple processes, however, the concentration 
dependence of the width of W(o)) is much weaker. In 
Fig. 1, we show the half-width of W as a function of the 
half-width of <£, for a three-spin process. The curve is 
virtually flat until the <£ width is about one-tenth the 
X width. The slope of the curve then increases gradually 

and reaches the value \ only when $ and x have equal 
widths. The concentration dependence of the width of 
W(u>) rapidly disappears as the number of spins in­
volved increases. The reason for this is that the succes­
sive convolutions rapidly smear out the sharp central 
peak which alone depends critically on the width of $. 

V. EXCHANGE 

We have so far ignored certain considerations which 
do not alter the general structure of our calculation, 
but which nonetheless may have a pronounced effect 
on actual results. 

An exchange interaction of the form J(SrS 2) fre­
quently occurs between neighboring transition metal 
ions. If such an interaction is present, we distinguish 
two cases: (1) When the exchange energy is of the same 
order as the dipole energy, we treat these two inter­
actions in parallel fashion. We still consider the un­
perturbed energy of the ion as an eigenvalue of a single-
ion state. We consider the diagonal elements of / (Si • S2) 
as contributing to Aco and we consider the off-diagonal 
elements as contributing to the transition matrix ele­
ments. The integral defining x [Eq. (25), part I ] will, 
of course, be split into two parts. The first part sums 
over those sites that are exchange coupled, the second 
over the rest of space. (2) When the exchange energy 
becomes comparable to the Zeeman or crystal field 
energy, the unperturbed states can no longer be con­
sidered as single-ion states. If / is large enough, E° is 
given by the diagonal elements in a representation in 
which /(Si• S2) is diagonal. In any case, since the energy 
separations between pair states are now, in general, 
quite different from the energy separations between 
single-particle states, such exchange coupled pairs do 
not, in general, contribute to the resonant cross-relaxa­
tion process. In terms of computational procedure, this 
means that the integral defining x starts at a radius 
where exchange is no longer large. 

This prescription is somewhat oversimplified for two 
reasons. First, it may happen accidentally that the 
separation between some of the pair levels does, in fact, 
coincide closely with the separation between some of the 
single-particle levels. Secondly, as we have seen, the 
frequency width of higher order processes becomes large. 
At the same time, the number of pair levels is (25+1) 
times the number of single-particle levels. As the re­
quirement of harmonic coincidence is made less and 
less stringent, it becomes more and more probable that 
some of the level separations in the larger pair manifold 
will meet an approximate harmonic condition. One 
expects that exchange coupled pairs would, in general, 
enhance the probability of higher order processes, par­
ticularly under conditions where the single-particle 
levels alone do not exactly meet the harmonic condition. 
Such participation of exchange-coupled pairs in the 



A1572 W. J . C. G R A N T 

cross-relaxation process has been discussed by 
Bloembergen and Pershan4 and by Gill and Elliott.5 

VI. THE NEAR-NEIGHBOR SPECTRUM 

From the very beginning, we have replaced lattice 
sums by volume integrals, using the volume per lattice 
site v to keep the dimensionality consistent. Clearly, 
such a substitution is valid when the density of lattice 
sites per unit solid angle is large. For the calculation of 
<£ this procedure will introduce a negligible error, except 
possibly in certain concentrated systems. The principal 
reason for this is that the dominant contribution to <£ 
comes from distant lattice sites. For the calculation of 
X, the equivalence of the discrete and "continuous" 
lattice is of much more restricted validity, because the 

FIG. 2. W(co) for simple cubic lattice, [001] direction, 
M = sin6 cos0 (arbitrary units). 

4 N. Bloembergen and P. S. Pershan, in Advances in Quantum 
Electronics, edited by J. R. Singer (Columbia University Press, 
New York, 1961), p. 373. 

5 J. C. Gill and R. J. Elliott, in Advances in Quantum Electronics, 
edited by J. R. Singer (Columbia University Press, New York, 
1961), p. 399,. 

dominant contribution comes from close-lying sites. I t 
is valid when a substantial number of neighbor shells 
are strongly exchange coupled. In this case, as we saw 
in the preceding section, there is no contribution to % 
until the sites fall outside the exchange radius. An 
example is ruby, where exchange is large over at least 
the first seven neighbor shells. The equivalence is not 
valid when the nearest neighbors participate in the 
cross-relaxation process. The contribution of these 
neighbors will dominate over the contribution of the 
rest of the lattice because of the r~6 dependence of the 
transition operator. The integral for % is then replaced 
by a sum. 

1 MjHdj) 
X(P) = — £ *""", (47) 

where the sum need extend only as far as the first few, 
sometimes only the first, neighbor shells. Then %(w) 
will be given by a series of 6 functions 

m-2(0-) 
x(co) = £ - ^ ^ 5 ( W - A ^ ) . (48) 

Finally, W{<JS) will be given by a sum of resonance 
curves, each displaced from the origin by Awy and 
weighted by the corresponding transition operator: 

W(o))^J2 ^(co-Acoy) . (49) 

In systems that are very dilute and have no inhomo-
geneous broadening, the various <£'s may be resolvable. 
To illustrate, we show, in Fig. 2, TF(co) for a simple cubic 
lattice with the magnetic field in the [001] direction 
and with Acoj= (3 cos2^—l)/r / , wy=sin0./cosfy. The 
width of <£ has been taken as 1/50 the nearest-neighbor 
dipole energy. The peak at 18 is due to the (0,1,1) and 
equivalent sites. The six nearest neighbors are not 
effective because their mj vanishes. If we take 
mj= (3 cos20— 1), then the neighbors at (0, 0, ± 1 ) will 
produce an effect 32 times greater than the (0,1,1) 
neighbors and 11 times as far away from the origin. The 
shape of W is quite sensitive to the angular functions 
involved. This means it is quite sensitive to the par­
ticular matrix element for a given process and to the 
direction of the magnetic field. 

In more concentrated systems or in systems with 
substantial inhomogeneous broadening, <£ will be too 
broad to resolve subsidiary peaks such as shown in 
Fig. 2. Nevertheless, the shift of the peak away from 
co = 0, i.e., away from the exact resonance condition, will 
still occur. 

The shift of the peak cross-relaxation probability 
away from the harmonic condition becomes intuitively 
obvious if one considers that the matching of level 
separations must include the diagonal dipole energy as 
well as the Zeeman energy. Thus, the peak in cross re-
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laxation still occurs where the total energies are exactly 
matched, but this point will be somewhat displaced from 
the point where the Zeeman energies alone are exactly 
matched. The amount of displacement depends rather 
critically on the specific operating conditions. 

VII. INHOMOGENEOUS BROADENING 

Inhomogeneous broadening affects the distribution 
of energy levels about their unperturbed value. In our 
formalism this distribution manifests itself in the func­
tion <£. The question whether $ should include the in-
homogeneous broadening or not is isomorphic to the 
question whether the spin packets within an inhomo­
geneous line cross-relax together or separately. For 
limiting cases one can give an unequivocal answer. If 
the spin-diffusion time within the inhomogeneous line 
is much shorter than the cross-relaxation time for one 
packet, then the whole line relaxes together. If the 
spin-diffusion time is much longer than the cross-
relaxation time, then the packets relax separately. To 
put this in terms of numbers, we take T2= 10~8 sec and 
ri2=10~3 sec. For Tdiff we use Bloembergen's rule of 
thumb6 

Tdm=T2X(T2/T2*Y, (50) 

where 1/T2* is the total width of the inhomogeneous 
line. We then obtain the condition that the homo­
geneous width of the line must be much greater than 

6 N. Bloembergen, S. Shapiro, P. S. Pershan, and T. O. Artman, 
Phys. Rev. 114, 445 (1959). 

2% of the inhomogeneous width, if the entire line is to 
relax as a whole. If this condition is met, <£ should there­
fore include the inhomogeneous broadening. If this con­
dition is not met, the situation becomes complicated. 
Relaxation takes place between all the spin packets in 
one inhomogeneously broadened level and all the spin 
packets in the other inhomogeneously broadened level. 
At the same time spin diffusion takes place within each 
of the levels. 

VIII. SUMMARY 

We have extended the basic cross-relaxation theory 
of part I to relaxation processes of all orders. Among 
other results we have derived the following: (1) For a 
iT-spin process, the magnitude of the transition proba­
bility depends on concentration as nK. (2) The fre­
quency width of the transition probability is propor­
tional to the square root of the <£ width for one- and 
two-spin processes. For three-spin processes, the width 
of W depends on the width of <£ only when $ and x have 
comparable widths, and even then the dependence is 
relatively feeble. For higher multiple processes, the de­
pendence of the W width on the <£ width is negligible. 
Instead, the width of the i^-spin W is roughly propor­
tional to K. (3) In the absence of strong exchange 
interactions, the nearest neighbors dominate the cross-
relaxation process. In this case, W is obtained from the 
convolution of $ functions with a discrete near-neighbor 
spectrum, and its peak may be displaced from the har­
monic point by an amount corresponding to the 
nearest-neighbor dipole energy. 


