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A previous rotationally invariant perturbation treatment of localized d states is extended to the case of 
neighboring sites interacting via direct d-d exchange and indirect s-d scattering. It is found that the parallel 
alignment of two localized moments is never the ground state of the pair. For certain values of the un­
perturbed d-state energy (depending upon the exchange interactions) only one of the sites will be occupied 
by a d electron so the pair can have a net moment. If the conditions are such that both sites are occupied by 
d electrons, these electrons must be aligned antiparallel so there is only a small net moment due to scattering 
to and from the band states. 

I. INTRODUCTION 

IN a previous paper,1 a rotationally invariant pertur­
bation calculation of the susceptibility of a localized 

d state in a metal was made, using a model of this state 
proposed by Anderson.2 In this model the "d s tate" is 
assumed to have no orbital degeneracy, and to have a 
wave function distinct from the Wannier functions of 
electrons on the sites of the host lattice. When this 
state is singly occupied, its energy is e<*, when doubly 
occupied by electrons with antiparallel spins, is 2ed+ U, 
where U is positive. The Hamiltonian of the model 
consists of the band electron energies, the aforemen­
tioned "d s tate" energies, and a scattering term capable 
of converting electrons on the local "d" site into band 
electrons and conversely. No other terms (such as 
Coulomb interaction between conduction electrons and 
electrons on the "d" site) are included. Physical reasons 
for restriction of the energies to the ones mentioned 
above, are given by Anderson.2 Within the framework 
of this model, he showed that, provided the scattering 
to the band was not too strong relative to the correla­
tion energy U, and provided u was below the Fermi 
surface and 2e<*+ U above, a localized magnetic moment 
would result, which could be calculated by the Hartree-
Fock method. Since this method violates rotational 
invariance, it is hard to see how one can use it to com­
pute a Curie constant as distinct from a saturation 
magnetization. 

In SFI it was shown how this calculation may be done 
by perturbation theory. The method divided the possible 
states of the system into magnetic and nonmagnetic 
ones, and calculated two partition functions 3M, 3S in 
these two manifolds. The Curie constant then has the 

form 

Ceff — CI/2[£M/(8M+8S)1. 

* Supported in part by the U. S. Air Force Office of Scientific 
lH. Suhl and D. R. Fredkin, Phys. Rev. 131, 1063 (1963) 

(hereafter called SFI). 
2 P. W. Anderson, Phys. Rev. 124, 41 (1961). 

The actual calculation used the resolvent technique, 
deriving resolvents ^HM and dls for the two manifolds 
with the help of projection operators. These resolvents 
were then evaluated by perturbation theory, keeping 
only the lowest order self-energy corrections and, in 
fact, only their imaginary parts. The crucial point is 
the following: If these imaginary parts (due, of course, 
to the band scattering) were neglected, the partition 
function 3s of the nonmagnetic manifold would be 
smaller than 3M by a factor <^ed, for the "empty" 
component of the nonmagnetic manifold, and by a 
factor e-$

{2td+u) for the "filled" component of that 
manifold. (Energies are measured from the Fermi level.) 
Hence, at very low temperatures, the magnetic moment 
would be essentially that of the isolated "d" state 
without scattering to the band. The imaginary parts of 
the self-energies appropriate to 3s, which are in effect 
the damping rates of the states of S due to the presence 
of M, cause 3 s to assume the same exponential depend­
ence on the temperature as that of 3M- For this reason 
there is always a reduction of the moment. Qualita­
tively, the results agreed with those of Anderson, except 
no sharp cutoff was found in the moment, which tended 
to zero smoothly with increasing scattering. This might 
be a basic feature of perturbation theory, unless 
prescriptions are found for solving for the self-energies 
consistently in the way in which this is done in other 
many body problems. The complicating feature here, 
which makes the standard recipes hard to apply, is that 
the "d"-state correlation energy is treated rigorously 
as part of the unperturbed propagator. 

In the case of two d states, we distinguish between 
two situations: (1) The d sites are nearest neighbors and 
electrons on them interact directly, and (2) the d sites 
are far apart and interact only via band electrons. 

In case (1), we must include in the Hamiltonian an 
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essentially single-particle scattering between electrons 
on the two "d" sites. In addition, we will show that the 
direct Coulomb interaction between electrons on these 
sites may become important even if smaller than the 
former, provided its exchange part has ferromagnetic 
sign. To these interactions we must, of course, add the 
same Hamiltonians as in SFI, one for each site. In case 
(2), all direct d interaction is neglected and only the 
sum of the two Hamiltonians of SFI remains. 

Problem (1) has also been treated in Hartree-Fock 
approximation by Alexander and Anderson,3 who con­
clude that the pair aligns antiparallel with zero net 
moment unless one of the energies ed or 2ed~\~U is close 
to the Fermi level. In that event, they can obtain 
parallel coupling, and therefore a net moment. As we 
shall see, perturbation theory parallels these conclusions 
somewhat. 

II. RESOLVENT METHOD 

We will treat the "d" pair Hamiltonian rigorously, 
and, as in SFI, only the band scattering as a perturba­
tion. (A simultaneous treatment of both these mechan­
isms will be briefly considered at the end of this paper.) 
Then we may divide the unperturbed states of the 
system into three manifolds, broadly describable as 
singlet, doublet, and triplet, and the effective Curie 
constant, by a trivial generalization of the formula in 
SFI as4 

C<eff = — ~ — , (1 ) 

where Ci and C1/2 are the "bare" Curie constants 
appropriate to a free spin one and a free spin J, respec­
tively, and 3r j SD, 3S a r e the partition functions of the 
three manifolds. These manifolds, split into submani-
folds, which may be classified according to their origin 
before the single particle scattering between the two 
sites is turned on. The result is as follows: 

(S) One electron on each site, the pair forming a 
singlet. Two antiparallel electrons on one site, 
the other site empty. Both sites doubly occupied 
by antiparallel electrons. Both sites empty. 

(D) One electron on either site, the other empty. 
Two antiparallel electrons on one site, the other 
singly occupied. 

(T) One electron on each site, the pair forming a 
triplet. 

Including the possible Sz states in D and T, this gives a 
total of 16 unperturbed basis states. When the single-

3 S. Alexander and P. W. Anderson, Phys. Rev. 133, A1594 
(1964). 

4 It should be emphasized again that formulas like (1) and (7a) 
of SFI give only the thermal expectation value of rid\— n<i\ in the 
case of (7a) SFI, and of the total moment on the pair of d sites 
alone in the case of (1) of the present paper. Any polarization 
effects of the conduction electrons over and above their back­
ground Pauli moment are not determined by these formulas. 

particle scattering between the two sites is turned on, 
some of these form admixtures. The d part of the 
Hamiltonian (exclusive of the band scattering) is 

a 

+ Vu'Zfa.*du+di*di*), (2) 

where d*, d are creation and annihilation operators on 
the sites indicated by the subscripts, a is the spin 
index and the n's are occupation numbers on the 
indicated sites. Coulomb interation is neglected for 
the present. Under the Vu term in Eq. (2), the sub-
manifolds enumerated above (linearly combined where 
required) combine and regroup as in the following 
table. In the ket symbols, the first and second places 
denote occupancies of sites 1 and 2, respectively. The 
results are given in Table I. 

The low-temperature behavior of the partition 
functions of all these manifolds is dictated by that of 
the partition function of the energetically lowest 
manifold. (Just as in SFI, the others are "damped" by 
lowest manifold and so acquire its temperature depend­
ence.) For this reason we need only determine which 
energy is lowest as the parameters €d, U and F12 are 
varied. 

We assume e<z<0, 2ed+U>0 so that the isolated 
sites favor single occupancy let Vu>0. If Vi2>%U, 
the E(Smi) is always lowest. If Vu<^U, then E(Smi) 
or E(Di+) is lowest according to whether 

~ed^V12{l--S(V12/U)£l+(l+(16V12
2/U*))']-1}. 

If Fi2<0, the same result holds, but with F12 replaced 
by IF12I and Di+ by Df~. Presumably for reasonably 
small F12, the situation with singlet lowest is more 
common. Only when ed approaches the Fermi level to 
within ^ 7x2, can the doublet energy become lowest. 

It follows that in the common situation, any moment 
exhibited by the pair is due to band scattering. For 
small values of the scattering energy V, such moment 
as there is comes principally from 3 D , since the doublet 
manifold can reach the singlet manifold by lowest order 
damping involving V2. The triplet manifold connects to 
the singlet only in order F4. Qualitatively, this agrees 
with the Hartree-Fock procedure of Alexander and 
Anderson, who find no moment at all unless | F12 ( ~ | td |. 

The triplet energy is always above E(Sm\). It is 
also below E(Di+), unless 

F 1 2 > - 6 , > F i 2 { l - 8 ( F 1 2 / C / ) 

X [ l + ( l + ( 1 6 F i 2 2 / ^ 2 ) ) 1 / 2 ] - 1 } , 

in which case E{D±r) lies between the singlet Smi and 
the triplet. In that case the triplet partition function 
acquires the exponential temperature dependence of 
that of the doublet, but at temperatures such that kT 
is much less than a quantity of order Vu2/U, the 
damping process still favors the singlet. 
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TABLE I. Energies of various states.a 

States 

Singlets 
both sites empty, Se = 10; 0) 

both sites filled, S / = | U ; U > 
"polar" singlet; Sp= ( 2 ) - ^ ( [ U ; 0 ) - |0 ; U » 

"mixed" singlets 

s„i=(2)-n>(IT; i>- li; T»+ft(IU,o>+|o,U»: 
s«,-(2)-w[-Klt;l>-|iit»+<»(IU,0)+|0IU»] 

Doublets 

one-electron doublets; Di±= (2)~^{\ t,0)=b |0,f» 
three-electron doublets: JD3

±= (2)~1/2(lTJ,T>± 1 T,T!» 
and two similar pairs with the spins reversed. 

Triplets 

IT;T> 
r=(2)-i/*(|T;i>+U;T» 

U;l> 

Energies 

0 
4€ d+2i7 
2ed+U 

2€d-Usmh*(e/2) 
2ed+U cosh*(6/2) 

ed^iUsiiihd 
3ed+U^lU sinhO 

2ed 

2ed 

2ed 

• In this table sinhfl =4:Vu/Ut a = -coth(0/2) / [ l +coth2(^/2)]1/2, and b = 1/[1 +coth*(0/2)l1'*. For brevity, the energies of these states S/,SP, etc. 
will be denoted by £(5/) , E(SP), etc. 

Finally, when E(Di+) is also below E(Sml) (see 
inequality), the susceptibility for small band scattering 
is dominated by spin J with V2 corrections from spin 1, 
and spin 0. This is the situation in which Alexander and 
Anderson find triplet coupling favored. In the present 
theory no such coupling ever occurs. 

However, some caution is indicated by the fact that 
in the present model the singlet-triplet separation is 
only of order Vu2/U. If a Coulomb interaction between 
the electrons on the d sites is added, and its exchange 
energy W, say, turns out to have ferromagnetic sign, 
the above conclusions become invalid as soon as W 
exceeds Vi22/U. The triplet would then tend to be 
lowest, and the susceptibility would be dominated by 
spin one. 

III. EVALUATION OF THE PARTITION FUNCTIONS 

We use the resolvent technique (as in SFI) for 
evaluation of the partition function. The complete 
Hamiltonian is taken to be 

k,(T 

k,ar i = l 

=5Cb+5Cd+cO = 5Co+eO, (3) 

where 3C<2 is the Hamiltonian of the "d" states alone, 
=tr are the position vectors of the sites, and V is the 
band scattering operator. The resolvent operator 
9?= (5C—z)"1, could be projected onto the unperturbed 
singlet, doublet, and triplet manifolds as in SFI. The 
result will involve "nested" propagators and have an 
extremely complicated appearance, each propagator 
involving the manifold one more remote than its 

predecessor. We have calculated one of these nested 
expressions in the approximation in which, at most, two 
conduction electrons or holes are excited in the inter­
mediate states. 

The resolvent for the D\ state (which exhibits the 
behavior of resolvents of other states as well), with the 
denominator evaluated to first order in A (A=irpV2, 
p= density of states), may be written as 

(4) 
k 

where 5 is an infinitesimal, 

\(D1\V\T)\2nk \(D1\V\S,)\2nk 

Tk= h E " 
E(T)-z-ek 5' E(S')-z-ek 

-I 9 

— z+ek 

and XI s' means the sum over the three singlet states 
with two d electrons, Sp, Smi, Sm2. The matrix elements 
may be evaluated with the aid of the wave functions 
derived above. For example, N\(D1+\v\Sml)\

2=y+V2 

Xcos2k-r, NKD^lVlT^^SV2sm2k'T, where y±= 1 
±[4Fi2/(#2+16Fi22)1/2]. The summation over k is 
somewhat complicated by the presence of sin2k«r (etc.). 
Since ek is isotropic, the angular integration will give 

/ 

sin2k«r 

cos2k • r 

sin2£rl 

2kr 

sin2£r 

2kr J 

= 2TT 

M-

fi+ 

If we assume 

\ek(dk/dE)F\<&nax(kF, 1/r), 
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then 
sin2£f cos2&*** sin2[ek(dk/dE)Fr~]+cos2[€k(dk/dE)Fr~]isin2kFr sin2kFr 

2kr 2[kF+ck(dk/dE)Fy 2kFr 

Then fi± becomes 

a±=lzL(sin2kFr/2kFr). 

Now we will neglect the real part of £*?&, and calculate 

( 2 / A ) I m I ft=3»[E(r)-s>-
k 

+nlE(Sp)-z1a-+ntE(Sml)-z~la+y-

+n[E(Sm2)-z~]a+V++2nl-z1a+, (5) 

where n[_z] is the Fermi distribution. Following the 
procedure of SFI, the partition function may be 
written as 

SDI 
/

+00 

-00 

IwSH(z)e-^dz 

where 
'f ^ r+- [ 5 + A 7 ( f ) > - ^ 

^-^(Di+) / ? (6) 

r + [ A 7 ( 0 + 5 ] 2 

7(r) = - I m E n 
A k 

and we have substituted f+JS(Z)1
+) = 2. 

7(f) will be infinitesimally small unless f > £ ( 5 m i ) 
—E(Di+), and the integrand of Eq. (6) will be infinites­
imally small unless f < 0 . The problem then requires 
consideration of two separate cases depending on the 
s i g n o f £ ( 5 w i ) - £ ( - D i + ) . 

A. Magnetic: E 0 = £ ( 5 m i ) - E ( Z > i + ) > 0 

In this case the integrand behaves like a delta 
function near f = 0 , in the limit 8—>0. The 7(f) term in 
the numerator can only contribute for f>7£0, and, 
since e~PEo<Kl, this contribution is negligible. (For large 
negative values of f the integrand could become large 
because of the exponential factor, even compensating 
for the small factor 5. However, either the band bottom 
or the finite spatial extent of the impurity potential V 
will introduce a cutoff before this happens.) The parti­
tion function for the magnetic case is now simply 

< 3 D I +=*-**CDI+>. 

B. Nonmagnetic: E^E(Smi)-E{Di+)<Q 

(7) 

7(f) is now finite at f = 0 so there is no contribution 
from the b in the numerator in the limit d—>0. If we 
make the transformation 

then we immediately see that the largest term in <r^7(f) 

Hence, the partition function may be written 

< 8 D I + = T - ^ ^ ( ^ 
A r1 

f2 

The 7(f) does not contribute to the denominator 
because we are integrating over that portion of the f 
axis where 7(f) = 0. The straightforward evaluation of 
the integral then gives 

£D+= - ( A / 2 £ 0 ) 7 - « + e - ^ ^ i > . (8) 

Calculation of Curie constant. We could proceed to 
evaluate all the other partition functions in the same 
manner. However, examination of Eqs. (7) and (8) and 
the analogous results in SFI will enable us to write the 
following set of simplifying rules for the calculation of 
the partition functions: 

(1) All partition functions have the form niAie~^El, 
where Ai is independent of temperature, E^=min 
XZE(Smi), E(D{h)2, and fii is an integer indicating 
the multiplicity of the state. 

(2) The partition function for the state of lowest 
energy has A—\. 

(3) For any state coupled to the lowest state to 
first order in V (states coupled in higher order are 
neglected in the present paper), 

^ = ( A T ± a ± ) / ( £ , - £ , ) . 

The a and y factors are determined from the square of 
the appropriate coupling matrix element. 

Applying these rules, we can calculate the effective 
Curie constant from Eq. (1) for the two cases. 

Nonmagnetic: E0=E(Smi)—E(Di+)<0 

where 

Cell=CmF/(l+F), 

a+y- T+a-

(9) 

2LE(Di+)-E(,Sml) E ( D r ) - £ ( . S m l ) 

7+«+ 7 -a - "I 

+. + _ . 
£ ( I ? , + ) - £ ( 5 . i ) E(Ds-)-E(Sml)l 

The labelings of the energies in the denominators of F 
indicate the four levels to which Sm% is coupled in first 
order. 
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Magnetic: E0=E(Sml)-E(D1+)>0 

3dAa+ 
Ceii — \ C 1/2-

X ! 1 + T [ 

2[£(T) -£(2?i+)] 

7+04- T-a+ 

2L£(5'm2)-£(Z)1+) E(Sml)-E(Dt+) 

E(SP)-E(D1+) E(T)-E(Di+) T- (10) 

Each doublet state is actually counted twice, but 
since all the terms represent doublets, the factors of 
two cancel out. The accuracy of these expressions 
requires A<^\E(Smi) — E(Di+)\. In the region of 
transition from magnetic to nonmagnetic, the two 
levels cross and this inequality cannot hold. We must 
therefore do a more detailed calculation involving only 
the Smi and Z?i+ levels. 

IV. ZERO TEMPERATURE LEVEL SPLITTING 

When the Smi and Z>i+ levels are close together, we 
are permitted to rediagonalize them with respect to V 
and ignore the other levels. In this section we will there­
fore assume \E(D1+)-E(Sml)\«\E(T)-E(D1^) |, 
|£(Sm2)-£(Z>i+)|, etc. For £(Smi)<J5(Z>i+) it is 
appropriate to consider a two-electron manifold. We 
take the wave function for this restricted manifold to 
be of the form 

^=E o^lDtfck^+blS^, (11) 

k,a 

with the coefficients normalized so that 

EK,|2(i-**)+|&|2=i. 
k,<x 

The renormalized eigenvalues are found by minimizing 
the energy [calculated with Eq. (11) as wave function], 
minus the normalization condition multiplied by X, 
with respect to ak and b. This procedure gives the 
equations 

[ E ( Z ) 1 + ) + € , - X > , + F(7-«+ /2)1 / 2^ = 0, 

F(T-a+ /2)1 / 2E fl*(l-»*)+C^(5mi)-X]6 = 0, 
k 

determining the new energies as solutions of 

\—nk 

(12) 

-\+E(Sml)=±V2
7-a+T, 

i £CDi+)+e*-X 
(13) 

It should be noted that we have actually renormalized 
only the states Smi and Dx

+ accompanied by an electron. 
If E(Smi)>E(D1

+)J the appropriate manifold contains 
only one-electron states. The wave function is then of 
the form 

^=a\D^)+Zh\Sml)ck. (14) 

This leads to the characteristic equation 

nk 
-\'+E(D1+) = ±V2y-a+Z 

* E(Sml) = ek-\' 
, (15) 

which renormalizes the states Di+ and Smi accompanied 
by a hole. 

It can be seen at once that for [ E(Di+)—E(Smi) | 1̂ >A, 
we have \=E(Smi), X'=£(Z>i+). Using this value of X, 
and the normalization condition we find 

V(y-a+/2) 1/2 

dk = ~ 

where 
(l+Ffy^E(Smi)-E(D1^)-ek-] 

l—nk 
F ^ | F V « + E 

* LE(Sml)-E(D^)-ekJ 

If the summation is performed, it is readily seen that Ff 

is the same as the first term of the F used in Eq. (9). 
With this value of ak, we can obtain the result 

Ceff = Ci/2Z) ak
2(l—nk), 

k 

(16) 

which is the same as Eq. (9), except that the terms 
involving levels other than Smi and Dx+ are missing. 
Hence, the choice of the wave function given by Eq. (11) 
corresponds to choosing E(Smi)<E(Di+), as would be 
expected. 

By the same reasoning, we can use \'=E(Di+) to 
find the coefficient a for the wave function given by 
Eq. (14). In this case 

Ceff— Ci/2#2, (17) 

which is easily seen to correspond to Eq. (10), with the 
terms involving states other than Smi and Di+ removed. 
In order to determine the energy eigenvalues X' when 
the states are close together, we rewrite Eq. (15) as 

where 

+ y = l ^ 7 _ a + L — - — , k y—€k+E0 

y=E(D1+)-w 

(18) 

For positive Eo, Eq. (17) will always have one positive 
root, which gives the shift in energy of the Z>i+ state 
when it is lowest. If we approximate^the density of 
states by a parabolic band starting at k = 0, then the 
sum can be converted to an integral from &=0 to 
k = kF which can be easily evaluated. If \y+Eo\<g,EF, 
then the resulting equation simplifies to 

r 1 4EF I n 
y' = 3V2\ In 

L2EF y'+Eo EFA 
(18a) 

For a convenient numerical example, the parameters 
3V2/EF

2= 10~4, E0=0 give the solution 

y=3.6X10-4£i,. 
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The solution of Eq. (13) is quite similar, provided 
certain approximations are made. The k summation is 
over all electron states above the Fermi surface, so a 
simple parabolic density would cause the integral to 
diverge. This divergence is always stopped by the 
actual high-momentum cutoff of the interaction poten­
tial V (which has here been assumed independent of k). 
For purposes of simplicity we will assume the density 
of conduction electron states to be symmetric with 
respect to the Fermi surface, although this is actually 
inconsistent with the assumption of a parabolic band. 
If we change variable to y=E(Smi) — A, then Eq. (13) 
becomes 

1 — nk __ nk 

y+ek—E0 * y — ek-

For £ o < 0 (singlet lowest) this always has a positive 
root, and the result of the summation is the same as 
Eq. (18a) with the substitutions yf => y, E0=$—Eo. 
Hence, in this approximation, the unperturbed crossing 
point remains unshifted. Using the value of y' calculated 
from Eqs. (18a), (16) gives 

and 

Ceit-

Ceif — -

C 1/2 

1+[A 7 -W2(y '+E 0 ) ] ' 

C1/2Ay-a+/2(y—E0) 

l + E A T - a + ^ - E o ) ] ' 

E 0 > 0 (19a) 

E0<0. (19b) 

The only restriction on the size of A is that A be very 
much smaller than the "distance" between E(Smi) or 
E(DX

+) and any of the neglected states. There is, 
however, a limitation on the size of the correction term 
since \xAEF/y>\, Eq. (18a) shows that yy y'>V2/EF 

^ A (for anything resembling a parabolic band), so the 
A terms never become larger than one. This implies 
that the effective moment is always larger for E0>0 
than for E0<0, in agreement with the previous distinc­
tion between magnetic and nonmagnetic cases. In 
general in this order there will be a sharp discontinuity 
(but no longer an infinity) in the moment at the 
boundary between the two regimes. 

Equation (18a) will permit positive solutions for yf 

for slightly negative EQ. These solutions are slightly 
larger than for small positive values of EQ. However, 
this does not mean that the corrected energies do not 
cross. The increase in yf is only logarithmic in E0 while 
the unperturbed separation of energies is linear in E0, 
and therefore the latter is dominant. 

V. LONG-RANGE EFFECT 

If the two impurities are separated by many lattice 
spacings, the d-d exchange interaction Vu is negligible. 
In this case, the s-d scattering will dominate, and the 
resolvent can be calculated with respect to a simpler set 
of wave functions than those used above. For the 
magnetic case (e<*<0; ed+U>0) the unperturbed 
ground state consists of single occupancy of the d level 
of each site. The two electrons can form a spin singlet or 
triplet, and these two levels will be degenerate in energy 
(to zero order in V). In order to determine whether the 
pair is magnetic or nonmagnetic, we must examine the 
manner in which the s-d interaction removes the 
degeneracy. 

In the unperturbed representation, the triplet and 
completely empty and filled states are the same as 
were used previously. The other states are: 

State 

Si-IU;0> 
J.-|0;Ti> 
s,-(2)^(|t;l>-li;t» 
V-«-lt;0>, |0;t> 
V-«-IT;t i>,IU;T> 

Energy 

2ed+U 
2ed+U 
2ed 

€d 

3ed+U 

Sm and T are the degenerate unperturbed ground states. 
As far as s-d scattering is concerned, the only difference 
between the Sm and T states is that the T state (because 
of the exclusion principle) will not allow a scattering 
from the d to the conduction band and back to the d of 
the opposite site. 

The lowest order terms to show this effect will involve 
coupling the Sm or T to the Si or S2 via D\ or Z>3 

intermediate states. For example, the interaction term 
for the sequence Sm —> ZV —> Si —» W —* Sm and 
T-+D1

1-+S1-+D1
1->Tis 

j F ^ / 2 T r ( c k ^ t C k " t * : ± : ^ 

(+ed—z+ek— ek' + ek>>)(2ed+U—z+ek— ek>)(ed—z+ek) 
(20) 

where the upper ( + ) signs refer to the Sm sequence and 
the lower (—) signs refer to the T sequence. Taking the 
trace of the Ck operator product gives 

[wk't(l — nkt)+nk>i(l—wki)]5k'k"5kk" 

+ [ ( l - « k - t ) ± ( l - » k , a ) I ( l ~ » k t ) = t : ( l - « k * ) ] 

X5kk'^k"k'". (21) 

The first term of this expression is the same for both 
Sm and T; hence, it does not help remove the degen­

eracy. I t is also independent of position because the 5 
function conditions make the argument of the cos in 
Eq. (20) equal to zero. The second term will give zero 
in the T state unless the conduction electrons are 
polarized. We will therefore consider only that part of 
Eq. (20) which is due to the second term of Eq. (21). 
If we assume the density of conduction electrons to be 
isotropic and sum over k', k'", average the directions of 
k and k", and replace k,r by kf for simplicity, then we 
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have 

where 

F4 

-V2-
P 

8r2 2ed+U-z 

(l — nk)sm2kr 

* k(ed—z+ek) 

(It should be noted that this sum is really no longer 
discrete because the angle has been averaged out.) 
There are three other sequences of this class, and they 
are obtained by substituting D% and Di in one or both 
places. The result of adding all four terms together is 

F4v2 (f+g)* 

where 

*=£ 

8r2 2ed+U-z 

rih sin2&r 

k k(3€d+U—Z—€k) 

The main contribution to the partition function 
integral will come from z close to 2ed. Both / and g are 
real in this region. If we make the approximations 

kFry>\, — (redm/hkF)^>l , 

and neglect terms which are exponentially small in 
these quantities, then an asymptotic approximation 
gives 

ps cos2kFr ps cos2kFr 
/= -rm(ed—z) rm(3ed+U—z) 

Now r only occurs for Smi, and for s~2ed we find 
r > 0 . Hence, the Smi is lowered with respect to the T 
state. 

VI. SIMULTANEOUS CONSIDERATION OF d-d 
EXCHANGE AND BAND SCATTERING 

The above calculations seem to indicate that the 
singlet (Smi) is always lower than the triplet (T). In 
order to show that this is not due to our perturbation 
treatment for the band scattering, we have performed 
the diagonalization procedure of Sec. I I , with the 
additional inclusion of all those states coupled by V. 
(This will be exact in the two-electron manifold.) The 
trial function consists of the four possible states with 
two d electrons with opposite spins (dit*^2i*, ^u*^2t*, 
^it*^n*, ^21*^21*), the four possible states with one 
electron and one conduction electron (dit*cu, ^2t*£H*, 
du*Ckt*, ^2i*at*, with the conduction electron aver­

aged over k states as in Sec. IV), and finally the four 
possible states with three d electrons and one conduction 
hole (di{*d2i*du*cu, d2t*^it*^i**ai, ^u*^2t*^2**c*t, 
dW*dit*du*£fct, with the conduction holes averaged 
over k). Using the method of Sec. IV we can diagonalize 
the energy by means of the equations obtained from the 
energy by differentiating with respect to each of the 
twelve coefficients of the trial states (remembering 
that eight of these coefficients depend upon k). The 
solutions are rather cumbersome, but if we assume 
kprS>\., then the four states with two d electrons 
combine in a manner similar to that found in Sec. I I . 
The wave functions and energy eigenvalues have the 
same form as Sp, Smi, Sm2, T (Sz = 0) with the 
modifications 

t'^vJ 1+F2E 
1 — nk 

* (€«rr-e*-X)*-W* 

+F 2E-
tlk 

and 

6 d = ^ 6 / = 6 , - F 2 E 

* (3ed+U-ek-\)-WU 

(ed+ek—\)(l — nk) 

* ( € * + e f c - A ) 2 - ^ 2 

(3ed+U-\)nk 

- F 2 E 
* (3ed+U-ek-\y-W* 

As in Sec. IV, X is simply the corrected energy of the 
state under consideration. Since these corrections have 
the same form for both Smi and T, it is apparent that 
they have no effect on the previous conclusion that 
E(Sml)<E(T). 

VII. CONCLUSION 

The calculations of this paper indicate that in 
perturbation theory neither the d-d exchange, the s-d 
scattering, nor any combination of the two will produce 
a parallel alignment of a pair of localized moments. 
The analysis does, however, show that the pair can 
show a sizable magnetic moment provided that the 
d-d exchange is such that E(D1

±)<E(Smi). The condi­
tions required for this relation are similar to those 
required by Alexander and Anderson3 for parallel 
alignment. This suggests that the two methods may be 
equivalent, even though the representation of Alexander 
and Anderson3 does not characterize the parallel align­
ment as either doublet or triplet. 


