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Jacobs' room-temperature shift4 when corrected for the 
change in compressibility with thermal expansion.) If 
the two curves are superimposed, the low-energy side 
is almost identical, while the high-energy side differs 
slightly. The effect of this change is to increase the 
apparent total width at half-maximum under pressure 
by 3.5% to 0.017 eV. Jacobs4 also measured an ap
parent increase in half-width in CsCl at room tempera
ture of about 5 % in 4000 atm. 

Maisch and Drickamer5 studied the effect of pressure 
to 50 000 atm on CsCl and found a new band, the K' 
band, with peak energy about 0.1 eV higher than the 
F band which grows at the expense of the F band with 
increasing pressure and is reversible upon decrease in 
pressure. I t is thus possible that the high-energy com
ponent of the triplet is related to this Kr band and is 
increasing in relative importance with pressure. How
ever, no such Kf band was seen in this range of hydro
static pressures either for RbCl above or below its 
transition pressure, or for KBr, in which they observed 
a prominent Kf band at considerably higher pressures. 
Either the Kr band is not observable in the present 
range of pressures, or its appearance in Drickamer's 
experiments is due to shear and pressure inhomogenei-
ties in his apparatus which are not present in our gas 
system. 

I. INTRODUCTION 

TH E translation symmetry of the Hamiltonian for 
an electron in a periodic potential leads to the 

classification of the solutions of the corresponding 
problem by means of a wave vector k and to the possi
bility of introducing Bloch functions. When a constant 
magnetic field is also present, the Hamiltonian is no 
longer invariant under the translation group. However, 
operators may be denned which commute with the 
Hamiltonian of a Bloch electron in a magnetic field.1'2 
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*P. G. Harper, Proc. Phys. Soc. (London) A68, 879 (1955); 

H. J. Fischbeck, Phys. Stat. Solidi 3, 1082 (1963). 
2 Recently, Brown [E. Brown, Bull. Am. Phys. Soc. 8, 257 

(1963); Phys. Rev. 133, A1038 (1964)] has considered magnetic 
translation operators for constructing a ray representation of the 
usual translation group, 

SUMMARY 

Using a novel technique a new absorption band has 
been formed by x irradiation of RbCl above its poly
morphic transition pressure. The position, width, and 
temperature and pressure dependence of this band 
support its designation as the new F band in this 
CsCl-type phase. The band could be converted to the 
normal F band by reversing the transition at low 
temperatures. The shape of this new band has been 
examined under pressure at liquid-helium temperature, 
and shows no evidence of the multiplet structure ob
served in the cesium halides, thus indicating that the 
lattice structure is not responsible for this effect. 

The pressure measurements on CsCl prove that for 
still another way of forming and observing the prin
cipal band, the triplet components all appear to be due 
to the F center. 
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In this paper, a magnetic translation group which 
commutes with the Hamiltonian is defined and its 
general properties are established. In a following paper, 
we derive the irreducible representations of the mag
netic translation group and give the classification of the 
solutions of the Schrodinger equation for an electron in 
both a periodic electric potential and a constant 
magnetic field. 

II. DEFINITION OF THE MAGNETIC 
TRANSLATION GROUP 

Let a Bravais lattice be represented by the vectors 

Rn=n1ai+n2SL2+msL3 (1) 

(where ai, a2, &z are the unit cell vectors and ni, m, n$ 
are integers), each of which defines a point in the Bravais 
lattice. Let us define a path joining the origin O with the 
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In this paper a group-theoretical approach to the problem of a Bloch electron in a magnetic field is given. 
A magnetic translation group is defined and its properties, in particular its connection with the usual transla
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point denned by Rw. We start from point 0 and move in 
a direction of another lattice point, say, given by Ri; 
from Ri we move in a direction, say, R2 to the point 
given by R1+R2 and so on until we achieve the point 
given by Rn. Clearly, the point given by Rn can be 
achieved by different choices of vectors Ri, R2 and so on. 
Let one of the possibilities be given by the vectors 
Ri, R2, • • •, R». We denote the described path by the 
symbol 

|RX,R2, ,R,). (2) 

According to (2) we achieved the point of Rw by means 
of i steps. Also, 

R , = R 1 + R 2 + - . - + R i . (2a) 

In a similar way, we could choose another set of vectors 
satisfying (2a) and define a different path joining 0 with 
the point defined by Rn. 

Let us now define an operator which depends on both 
the vector Rn and the path joining the point 0 to the 
point defined by Rn : 

T ( R » | R I , R 2 , - • *,R*) 

= exp{(i/ft)R„.Cp+(«A)A]} 
Xexp{ (i /2)[Ri x R 2 +R x x R 3 + 

+ R , _ x x R , ] - h } , (3) 

where h=eH/kc7 H is the magnetic field, A is the vector 
potential of the magnetic field, p is the momentum 
operator of the electron, and e is its charge. The order 
of the vectors in the vector products in (3) is given by 
their order in path (2). The expression 

i [ R 1 x R 2 + R 1 x R 3 + . - . + R ; _ 1 x R , ] . h (4) 

has a very simple meaning. To show this, let us take 
the projection of the path (2) onto the plane perpen
dicular to h. This gives a path 

| R ^ , R 2 ^ , . . . , R ^ ) , (5) 

where Rjkp is the projection of R& onto the plane perpen
dicular to h. I t is easily seen that 

i [ R 1 x R 2 + R 1 x R 3 + - + R ; _ i x R i ] - h 

- I C R ^ x R ^ + R ^ x R s ^ + . - . + R ^ ^ x R ^ . h . (6) 

The brackets with the factor \ on the right side of (6) 
give the area of the polygon enclosed by the vectors 

R i ^ R 2 V •• , ]*.•*,-R»* (7) 

(in which the vector —Rn
p was added in order to close 

the path). We thus see that the expression (4) gives the 
flux of the magnetic field (with the factor e/hc) through 
the polygon which is obtained by projecting the vectors 

Rx,R2, . . . , R , , - R n (8) 

onto the plane perpendicular to H. Therefore, the 
elements (3) may be written in a different form 

T ( R W 1 R 1 , R 2 , - • •,R<) = exp{(f/ft)RB .[p+(eA)A]} 

X e x p { ^ ( R 1 , R 2 , . . . , R i ) } , (9) 

where <p(Ri,R2,- • -,R;) is the flux of the magnetic field 
through the polygon (7) multiplied by e/hc. I t should 
be noted that the path (2), and therefore its projection 
onto the plane perpendicular to H, can be very compli
cated. For example, from the point given by Rw, which 
may be reached along the path (2), one may continue 
along the vector — Rn and then again turn back to point 
Rn by path (2). In such a case, the area in (6) will be 
doubled. The second exponent in the definition of the 
elements (3) or (9) thus expresses the curl nature of the 
magnetic field. 

One may now show that the operators defined in (3) 
or (9) commute with the Hamiltonian of a Bloch electron 
in a magnetic field for a proper choice of the gauge. The 
Hamiltonian is 

# = l / 2 m [ p - ( e A ) A ] 2 + F ( r ) , (10) 

m is the mass of the electron and F(r) is the potential 
of the periodic field. I t is easily shown that 

pi-\—Ai, ph—Ah 
c c J 

= f * J • 
dAh dAf 

(ID 1 ' , 
cL dXi dxjc J 

Therefore, if the gauge in (10) is chosen in a way that 

dAk/dXi+dAi/dxk=0; i , f t= 1 ,2 ,3 , (12) 

the commutator (11) will vanish and the operators (3) 
will commute with the Hamiltonian (10). Relation (12) 
holds, for example, for a gauge 

A = f [ H x r ] . (13) 

In order to show that the operators defined in (3) 
form a group, we shall check that a product of two such 
operators is again an operator of the same form. Let us 
take two operators 

r (R,I R1?R2, •. • ,R<) and r (R n ' | Rx',R2', • • • ,R t ' ) . 

Their product is 

r(R, |R1 ,R2 , - • . , R ; ) T ( R / | R / , R 2 V . .,Rft') 

= exp{ (i/h) ( R n + R n 0 • [ P + («A) A]} 

Xexp{ (i/2)[Ri x R 2 + • • • + Ri x R i ' + • • • 

+ R , _ 1 ' x R , ' ] . h } , (14) 

where the second exponent is defined by the path 

|R1 ,R2 , . . . ,R< ,R1
/ ,R2

/ , . . - ,R i b
/) . (15) 

In obtaining relation (14) we used the following 
expressions: 

GR-H#-'<P+;A) ^ ( R n x R ^ - h (16) 

(without any gauge limitations) and 

eAeB=eA+B+UA,B] 

for A and B such that [^4,5] commutes with both 
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A and B. The product (14) can be written according to 
the definition (3) as follows: 

r(Rn | Ri,R2, • • • ,Ri)r(Rn' IR/ , !^ ' , • • • ,R&0 

= r ( R n + R » ' | Ri,R2, • • • ,Rt,R/,R2 /, • • • ,R*'). (17) 

We now have a multiplication rule for the elements 
defined in (3): In order to multiply two elements [left 
side of (17)], we have to add the vectors RTO and Rn ', and 
the paths | Ri,R2, • • • ,R<) and | Ri',R2 ', • • • ,R*'); the 
vector on which the product [right side of (17)] depends 
is Rn+Rr/ and the path is | Ri,R2, • • • ,Ri,Ri',R2', • • • ,R*') 
[the latter is obtained by displacing the path 
| Ri',R2 ', • • • ,RfcO by the vector R„, thus obtaining a 
path joining point 0 with the point defined by the vector 
R n + R B

7 ] . Thus, the product of two elements of the form 
(3) is an element of the same form. One sees that the 
elements defined in (3) form a group because one may 
also easily show that r(— Rn | — Rt, — R*_i, • • •, — Ri) is 
reciprocal to the element r (R n | Ri,R2,* • *>Rt). We shall 
call this group the magnetic translation group (M.T.G.) 
and denote it by G.2aIt should be noted that the 
operators 

exp{(i /*)R„.(p+(eA)A)} (18) 

do not form a group (as pointed out by Brown2), because 
a product of two such operators is not an operator of the 
form (18). 

The group G defined in (3) is an infinite group for two 
reasons. First, there are an infinite number of vectors 
Rn. Secondly, for any vector Rn an infinite number of 
different paths joining point 0 with Rn can be defined. 
We can, for instance, obtain from path P a, different one 
Pf by starting at and returning to any point belonging 
to the Bravais lattice on path P and adding a closed 
path to the path P at the mentioned point. 
I The structure of the group G becomes more apparent 
after its connection with the usual translation group, 
denoted by R, is established. To do this, let us define, for 
every vector Rn, a set of elements H(Rn) to which all 
the elements r (R» | Ri,R2, * • • ,R») of G belong. Each such 
set H(Rn) consists of an infinite number of elements. I t 
is easy to see that we can look at the sets H(Rn) as at 
elements of a group. If we multiply an element of the set 
H(Rn) by an element of set H(Rn')>

 w e shall get an 
element of the set H(Rn+Rn). # ( 0 ) is the identity and 
H{—Rn) is reciprocal to H(Rn). This group, denoted by 
H, is an infinite commutative group, and is isomorphic 
to the translation group R. The isomorphism follows 
from the one-to-one correspondence between Rn and 
H(Rn). The group G is homomorphic to H, 

r (R„ |Ri ,R2, - - - ,Ri) ->ff (Rn) , (19) 

2ft After the abstract of this paper appeared in Phys. Rev. 
Letters, Gerald A. Peterson pointed out (private communication) 
that in his Ph.D. thesis he has denned a closed set of magnetic 
translation operators and has called it magnetic translation group 
[G. A. Peterson, Ph.D. thesis, Cornell University, 1960 (un
published)]. 

where the arrow shows the one-sided correspondence of 
the elements of G with those of H. From the homo-
morphism of G to H and the isomorphism of H and R, 
it follows that the magnetic translation group G is 
homomorphic to the usual translation group R. The last 
fact will be used to introduce the Born-von Karman 
boundary conditions for the representations of the 
magnetic translation group. 

The group G has an invariant subgroup which is of 
great importance for constructing its irreducible repre
sentations. Consider the vectors rm in the plane ai, a3 

and construct elements of the group G: 

T(rm |R 1 ' ,R 1 ' , . . . ,R / ' ) 

= exp{ (i/h)im- [ p + 0/c)A]} 

Xexp{ (*/2)[R/ x R a ' + R / x R 3 ' + • • • 

+ R / _ 1 ' x R / ] . h } , (20) 
where 

r m = w i a i + w 3 a 3 (21) 

and R/ , R2', • • •, R / are arbitrary vectors of (1) except 
for the requirement that they form a path joining point 
0 with the point defined by xm. The elements in (20) 
form a subgroup of G because a product of any two 
elements from (20) is also an element belonging to (20). 
Let us denote this subgroup by F. A similarity trans
formation by means of any element r (Rn | Ri,R2, • * * ,R») 
of G when applied to an element r ( r m |R i / ,R 2 V * *R/0 
of F gives the following result: 

r - 1 (R. |Ri ,R, , - • • ,R,Mr„, |R1 ' ,R sV • - ,R/) 

Xr(Rn\RhR2,---,Ri) 

= T (xm I — Ri, — Ri_i, • • •, — Ri, R i , R 2 , • • •, 

R / , R i , R s , - - . . R , ) . (22) 

The relation (22) shows us that subgroup F is an 
invariant subgroup of group G, I t is clear that another 
invariant subgroup of G can be obtained by taking in 
(20) vectors xj in the plane a2, a3. This latter invariant 
subgroup is isomorphic to F. With respect to the in
variant subgroup F, group G can be written as follows: 

G=r(0\0)F+T(a2\&2)F+- • • 

+ T (n2&21 n2a2)F
Ji . (23) 

I t is of interest to note that when the magnetic field H is 
in the direction a3 the subgroup F is a commutative one, 
while the elements of F do not commute with those 
elements of G that do not belong to F. 

So far, the groups have all been infinite. For con
structing their irreducible representation, it is con
venient to deal with finite groups. To do this, the Born-
von Karman boundary conditions can be applied. 

III. FINITE MAGNETIC TRANSLATION GROUP 

The finiteness of the usual translation group is 
achieved by looking for its special representations, 
namely, by seeking representations which satisfy the 
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Born-von Karman boundary conditions 

D{(e\a1)»} = D{(e\a2y}=D{(e\asy}=D{(e\0)}, (24) 

where (e|ai), (e|a2), (e\az) are translations in the direc
tions of the unit cell vectors (e is the identity of the 
rotation group in the usual notation3), N is a large 
integer, and D denotes a representation of the translation 
group R. When seeking representations of R which 
satisfy the conditions (24), we can consider the group 
R as being a finite group R of order A^3, the elements of 
which are given by the direct product of the following 
three groups: 

(€ |a i ) ' ; (e |a2) ' ; (e |a 8 )*; i, j , * = 1 , 2, • • -, N. (25) 

Similarly, in order to make G finite, we require 
similar boundary conditions to those imposed for the 
representations of the translation group (24). To do this, 
we use the fact that the translation group R is iso
morphic to H and require the following conditions on 
the representations of H: 

D{HN(a1)} = D{H"(a2)} 

= D{HN(at)}=D{H(0)}. (26) 

With the conditions (26), the group H can be considered 
as being finite and given by the direct product of the 
following three groups: 

{H*(aO>;{ff'(aO>;{ff*(a,)>; 
* , i , * = i , 2, . - - , # . (27) 

Let us denote the last group by H and the corresponding 
M.T.G. by G. I t is clear that again R and H are 
isomorphic. 

The requirements (26) mean that elements 

r ( iya* |Ri ,R 2 , - • ' » / ) ; * = 1 , 2 , 3 , (28) 

of G can be considered as constant factors. From this it 
follows that the elements (28) commute with all the 
elements of G. I t is easy to show that 

r(Rw|Ri,R2,- • • jR^'KRn'IR/^V • *,Rfc) 
= r (Rn

f I Ri',R2/, • • • ,RfcOr (Rn I Ri,R2, • • • ,R») 
Xexp{i(RnxRn ')-h}. (29) 

Hence, the elements (28) commute with all the elements 
of G if the exponential term in (29) equals 1 for Rw = Nak 

(k~ 1, 2, 3). We have therefore the following condition: 

(iVa*xR t t
/)-h=2irf»; 4 = 1 , 2 , 3 , (30) 

where m is an integer and Rn ' is any vector from (1). 
Before discussing condition (30), let us derive another 
condition from the requirements (26). Consider two 
elements of the form (28) and take their product 

T ( M K | R I , R V • •>R/)r(2\ra4 |R1 ' )R,V • - .R/ ) 

= r( t fad-tfa» |Ri ,R s , - • -.R/.Rx'.R,',. • - , R / ) . (31) 

3 G. F. Koster, Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc.. New York, 1957), Vol. 5. 

But since the elements on the left side of (31) should 
behave as constant factors, the additional factor on the 
right side of (31), 

exp{J(tfa<Xtfa*.h}, (32) 

should be equal to 1. We have thus 

(NaiXNak)*h=4nm; i , * = l , 2 , 3 , (S3) 

for odd N [for even N there is no additional condition 
to the one expressed by (30)]. Combining (30) and (33) 
we get for odd N the condition 

(tfajbXRn
,)-h=4irw; £ = 1 , 2 , 3 , (34) 

which is stronger than the requirement (30). We now 
write the conditions (30) and (34) in a more convenient 
form, using the fact that (30) and (34) will be satisfied 
for any vector Rw' if they hold for the unit cell vectors 
ai, a2, a3: 

N(ak x &i) *h=1-Knu (for even N), (35a) 

N(ak x ai) •h=4?imki (for odd AO, (35b) 

where tiki is an integer and k, 1=1, 2, 3. By using the 
definition of the reciprocal lattice vectors 

Ki= (2T/V)ajxak) (36) 

where i, j , k form the cycle (123) and V is the volume 
of this unit cell, we can write the conditions (35a), (35b) 
as follows: 

N(V/2ir)Km-h=2TWi (for even N), (37a) 

Ar(F/27r)Kw.h=47rw (for odd N). (37b) 

Here m is an integer. Equations (37a) and (37b) show 
that 

h = (2v/V) (Rn/N) (for even N), (38a) 

h = (4TT/F) (R„/A0 (for odd N). (38b) 

The requirements (38a), (38b) which follow from (26) 
are limitations on both the possible directions and values 
of the magnetic field. Let us choose the magnetic field in 
the direction a3 [this can always be done when condi
tions (38a), (38b) holdj and let R n = ^ a 3 ; then 

h = (2w/V) (n/N)*z (for even N) , (39a) 

h = (4TT/F)(n/N)az (for odd N). (39b) 

For N sufficiently large the limitations (39a), (39b) on 
the magnetic field H are not essential. I t should, how
ever, be noted that when the crystal has dimensions of 
the order of 1 cm (A^IO 8 ) , the fields satisfying condi
tions (39a), (39b) differ by quanta of the order of 10 G 
(i.e., the lowest nonzero magnetic field satisfying the 
above conditions is of the order of 10 G). Unlike the 
boundary conditions for the usual translation group 
(which lead to no physical consequences), in the case of 
the M.T.G. we have restrictions on the magnetic field 
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even for crystals of the dimensions of 1 cm on which 
bulk experiments have been carried out. 

We now show that the Born-von Karman conditions 
(26) on the representations of H, which led to require
ments (39a), (39b), turn the group G into a finite one 
G. By using (39a), (39b), we find that the elements of 
G are of the form 

r(Rn| R1?R2, • • • fr)= exp{ ( i /*)R n . ( p+ (e/c)A)} 

f exp{2irim(n/N)} (for odd N), (40a) 
X 

Iexp{irim(n/N)} (for even N), (40b) 
where m is the coefficient by the product ai x a2 in the 
expression 

Rx x R 2 + R x x R 3 + • +R,_x xR... (41) 

From Eqs. (40a), (40b), we see that the number of 
elements of G is finite. In order to count the number of 
elements of 0, we treat the cases for even and odd N 
separately. For odd N, condition (39b) is imposed and 
the elements of G are given by (40a). The number of 
different values of the vector Rn is N3. For each Rn there 
are different elements in (40a) arising from the second 
exponential factor. We first show that the number m in 
(40a) [and also in (40b)] can take all integer values. 
This follows from the fact that we can add to the path 
joining the point 0 with point Rn a closed path which 
will change (41) by an elementary area ai x a2 and will 
change m in the expressions (40a), (40b) by unity. Let 
us now assume that p is the largest common factor of 
n and N (when there is no common factor, p=l), and 
let N/p = Nf, n/p = n'. In order to count the different 
elements of (40a) for a given Rw, let us check that 

exp{ 2wim (n/N) } ^ exp{ 2irim/ (n/N)} (42) 

for m'^m (we exclude here those cases for which mf 

differs from m by the number TV'). By assuming the 
equality sign in (42) to hold, we get 

exp{ 2wi (m - m') (n/N)} - 1 . (43) 

Relation (43) holds only when 

(m—m') (n/N) =(m—mf) (n' /N') = integer. (44) 

But since nf and Nf have no common factor, the relation 
(44) is possible only for ni—m'>Nf, which means that 
m' should differ from m at least by N' in order to get 
the equality sign in (42). The second exponential in 
(40a) thus takes on Nf different values for a given Rw. 
Since Rn itself has Nz different values, there are NzNf 

different elements in G in the case of odd N. In a similar 
way, it is easy to show that there are NZ(2N') different 
elements in G for even N. 

I t is of interest to note that when the magnetic field 
H is very strong (of the order of 1010 G), we can have 
the case that 

h=(47r /F)a 3 , (45) 

in which case the group G consists of Ns commutative 
elements of the form 

exp{(i/ft)R»-(p+(«A)A)} (46) 

and is isomorphic to the usual translation group. 

IV. CONCLUSION 

We have defined here a magnetic translation group 
G which commutes with the Hamiltonian for a Bloch 
electron in a magnetic field. In a following paper, we 
construct the irreducible representations of this group 
and give the classification of the solutions of Schrod-
inger's equation for an electron in both a periodic elec
tric potential and a constant magnetic field. 
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