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Following the methods presented in an earlier paper, the conduction eigenvalues for beryllium at the 
equivalent of over 80 000 points in the first Brillouin zone (all in the immediate vicinity of the Fermi surface) 
were calculated. The constant energy surfaces were constructed for several values of the energy near the Fermi 
energy. The hole and electron volumes were calculated for each case, and the Fermi energy was determined 
by the requirement that the two volumes be equal. This is the first time that this well-known result has 
actually been used to determine the Fermi energy in a band calculation. The corresponding Fermi surface 
was defined by about ten cross sections perpendicular to the [0001] direction. The agreement between these 
results and experiment is generally good and slightly improved over the previous results. 

INTRODUCTION 

IN a previous article1 the Fermi surface of beryllium 
was determined theoretically and compared with the 

experimental results of Watts.2 The surface was con­
structed from conduction electron eigenvalues at the 
equivalent of 5184 general points in the first Brillouin 
zone (BZ). These eigenvalues were calculated by ex­
panding the wave functions in a linear combination of 
23 orthogonalized plane waves (OPW's). The crystal 
potential used in these calculations was self-consistent 
and its construction was fully described in the original 
article. 

The same program which was developed for the 
earlier calculations has been used to calculate the con­
duction electron eigenvalues at the equivalent of over 
80 000 points in the first BZ. All of these points were in 
the immediate vicinity of the Fermi surface. From these 
eigenvalues the Fermi energy was determined for the 
first time by the well-known requirement that the hole 
and electron volumes be equal. The Fermi surface 
corresponding to this Fermi energy was constructed and 
is presented in this report. I t differs only slightly from 
the previous results, but tends to bring the theoretical 
and experimental results into closer agreement. The 
interesting feature here is not the new results, butjrather 
the reminder that there is available, through the applica­
tion of a well-known conservation requirement, a 
method of determining the Fermi energy which requires 
the calculation of energy eigenvalues only in the vicinity 
of the Fermi surface. 

DETERMINING THE FERMI ENERGY 

In the work of Loucks and Cutler1 the Fermi energy 
was determined in the usual way by arranging in in­
creasing value the energy eigenvalues which were cal­
culated for representative points throughout the BZ. 
The energy corresponding to the highest occupied state 
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was taken to be the Fermi energy. This method, al­
though correct in principle, suffers in that it is difficult 
to get a representative sample of points (particularly 
near the zone edges) without calculating the eigenvalues 
at an extremely large number of points throughout the 
zone. Many of these points are not near the Fermi sur­
face and hence are of little value except in the counting 
procedure for the determination of the Fermi energy. 

The method proposed here has the advantage that all 
eigenvalues are calculated at points in the immediate 
vicinity of the Fermi surface. Thus, they serve not only 
to determine the Fermi energy but also to define more 
accurately the surface itself. In addition it provides 
enough information about the other energy surfaces 
near the Fermi surface to enable one to calculate first 
and second derivatives for use in determining such 
parameters as the density of states at the Fermi energy 
and the effective mass. 

Essentially, the method employed is based on the 
obvious conservation requirement that the hole volume 
in the first double zone must equal the volume of the 
electron pockets in the second double zone. Since the 
electrons spill out of one zone into the next in order to 
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FIG. 1. Dependence of electron and hole volume on 
virtual Fermi energy. 
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FIG. 2. Cross-sectional area of electron and hole surfaces in l/24th 
zone for planes perpendicular to the [0001] direction. 

minimize the energy, the vacated volume must be 
exactly equal to the volume occupied by the electrons. 
This is an admittedly obvious fact. However, it has 
never been used in practice to determine a theoretical 
value of the Fermi energy from a band calculation. The 
reason it has been avoided is perhaps because of the 
large number of calculations necessary to determine the 
electron and hole volumes. In this work they were 
determined for each of several constant energy surfaces 
near the Fermi surface. The results are plotted in Fig. 1. 
The curves of the hole volume and electron volume were 
found to intersect at EF = 0.909 Ry. The Fermi energy 
presented in the original paper was EF=0.901 Ry. 

FERMI SURFACE OF BERYLLIUM 

The constant energy surface was constructed at 
EF= 0.91, as well as at other points, in constructing the 
curves shown in Fig. 1. Since we have found that the 
true Fermi energy is £ ^ = 0.909, it is within the accuracy 
of the procedure used in constructing the surfaces to 
consider the one for i<^=0.91 to be the Fermi surface. 
These results are presented in Figs. 2, 3, and 4. In 

FIG. 3. Intersec­
tions of Fermi sur­
face with faces of the 
l/24th zone. 

Fig. 2 the cross-sectional area perpendicular to the 
[0001] direction is shown for the holes and the electrons. 
In both drawings the left-hand side represents the 
symmetry point K, and the abscissa corresponds to 
distances measured along the symmetry edge KB.. The 
identifications such as Gl , G2, etc., correspond to the 
cross sections shown in Fig. 4. I t should be noticed that 
in the lower curve of Fig. 2, corresponding to the elec­
tron cigars, the abscissa extends from K to H. However, 
in the upper curve, corresponding to the hole coronet, 
the distance between Gl and G i l extends only \ of 
the distance from K to H. Figures 3 shows the inter­
section of the Fermi surface with the l /24th zone faces. 

FIG. 4. Intersections of Fermi surface with planes perpendicular 
to the [0001] direction. 

DISCUSSION 

The Fermi surface which corresponds to the Fermi 
energy determined by the above method is compared to 
the previous theoretical results and the experimental 
results in Table I. I t is seen that the agreement between 

TABLE I. Comparison of representative dimensions of the 
Fermi surface as determined by the present work, the de Haas-van 
Alphen measurements, and the previous theoretical work. 

Designation Loucks Watts Loucks & Cutler 

be 
ba 
U 
ok 
kl 
gh 
no 
ml 

0.453 
0.141 
0.075 
0.008 
0.246 
0.118 
0.017 
0.574 

0.48 
0.09 
0.09 
0.08 
0.23 
0.13 
0.02 
0.56 

0.44 
0.13 
0.07 
0.01 
0.26 
0.13 
0.04 
0.57 

the present theory and experiment is very good, 
especially for the bottom four entries which correspond 
to the coronet. However, the theoretical cigar is still 
shorter than the experimental one and almost triangular, 
rather than circular in cross section. This almost tri­
angular shape also yields extremal cross-sectional areas 
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which are consistent with the observed de Haas-van 
Alphen frequencies. Further experiments or calculations 
which can distinguish between this model and the 
circular one proposed by Watts are necessary. It should 
be noticed in Fig. 2 that there is a waist on the almost 
triangular cigar. This is also consistent with the de 
Haas-van Alphen data. The larger cross-sectional area 

I. INTRODUCTION 

AT low temperatures, the specific heat of rare-earth 
metals has four components which, depending on 

circumstances, can be separated totally or partially 
from each other. These are the lattice specific heat 
CL~ATS, the electronic specific heat CE^BT, the 
magnetic specific heat CM, and the nuclear specific 
heat CN. In the higher lanthanides, CM is primarily 
caused by exchange interaction between the 4 / elec­
tronic spins. At 4.2°K and below, thulium has a unique 
ferrimagnetic structure, to be described in some detail 
later (cf. Sec. IV.B).1 It is interesting to see how well 
the magnetic specific heat follows the prediction, 
CM=CT3, of the simple spin-wave theory.2 

CN is due to splitting of the nuclear spin states by 
interaction with the 4 / electrons. By far the largest 
contribution to CN comes from the magnetic field pro-

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission, and the Finnish Research Council 
for Technical Sciences. 
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is about 2% greater than that of the waist. The cor­
responding experimental results predict 3%. 
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duced by the orbital angular momentum of the 4 / 
electrons. The resulting nuclear specific heat has the 
familiar appearance of a Schottky curve with its 
maximum somewhere below 0.1 °K. Above the maxi­
mum, CN may be expressed in inverse powers of Ty 

the leading term being proportional to T~2. 
According to the above discussion the total specific 

heat of thulium becomes 

CP=AT*+BT+CM+CN, (1) 

where A and B are constants. 
The present measurements on thulium are a part of 

our research program for studying the heat capacities 
of rare-earth metals between 0.4 and 4°K,3~10 with 
particular emphasis on CN- The specific heat of thulium 
has previously been measured by Jennings, Hill, and 
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The specific heat Cp of thulium metal has been measured in a He3 cryostat. Between 0.38 and 3.9°K 
Cp = 2 .839r 3+l7.94r+23.437^ 2 -1 .79r- 3 -0 .066r- 4 (in mj/mole °K). The last three terms represent 
the nuclear specific heat CN- On the basis of earlier estimates, we put CL — 0.243T3 and CE = 10.5T for the 
lattice and electronic specific heats, respectively. According to the simple spin-wave theory, the magnetic 
specific heat CM is proportional to Ts for a ferrimagnetic metal; experimentally one finds CM = 6.2T512 for 
thulium, which has a rather complicated ferrimagnetic structure. Further, there seems to be no evidence 
in CM for an exponential factor, to be expected because of magnetic anisotropy. All conclusions on CM are 
tentative, however, until data at temperatures between 4 and 20°K become available. CN does not fit to the 
simple picture as given by Bleaney either. Since I — \ for the only stable thulium isotope Tm169, quadrupole 
interactions are zero and there are only two nuclear energy levels, their separation being determined by the 
magnetic hyperfine constant a'. This would give a nuclear specific heat with even powers of T only, with a' 
determining the values of the coefficients. The observed CN cannot be fitted into an equation of this type 
which indicates that other interactions, probably nuclear exchange interactions, are present. Formally, 
the experimental situation may be expressed by writing a' — a§ — b/T, instead of treating a' as a constant. 
Our results are in good agreement with recent Mossbauer data by Kalviug et al. who found 22.9 for the 
coefficient of the T~2 term. 


