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where k is of the order of 2.5 and depends on the 
geometry of the outer conductor, and mks units are 
used. Therefore 

U0= (Gfib2/^) ln(M/p) 
and 

dU0/dp=-(G(3b2/4irp). 

1. INTRODUCTION 

THE purpose of this paper is to establish a general 
and simple relation between the surface effect in 

secondary electron emission1 (SSE) from metals and the 
surface photoelectric effect2'3 (SPE), and to use this 
relation to show clearly why the SSE is so small that it 
can be neglected in explaining the experimental facts. 
Such a relation is of interest for its own sake, and in 
addition a new examination of the problem is desirable 
since most of the published papers on the SSE, are 
incorrect.4'5 

1 For a review of secondary emission see O. Hachenberg and 
W. Brauer, in Advances in Electronics and Electron Physics 
(Academic Press Inc., New York, 1959), Vol. XI, p. 413; A. J. 
Dekker, in Solid State Physics, edited by F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1958), Vol. 6, p. 251. 

2 K. Mitchell, Proc. Roy. Soc. (London) A146, 442 (1934). 
3 1. Adawi, Phys. Rev. 134, A788 (1964). This paper will be 

denoted by I. 
4 A. Viatskin, Zh. Eksperim. i Teor. Fiz. 9, 826 (1939) treated 

a semi-infinite square-well potential model. The basic formulation 
is correct but the final integrations and conclusions are obscure 
and incorrect. 

«W. Brauer and W. Klose, Ann. Physik 19, 116 (1956). This 
paper has been assumed correct in the two review articles cited 
in Ref. 1, but it contains unfortunately basic errors. They treat 
a finite square well of width 2a in the limit that a —•> oo. The cor
rect final state which should be used in the transition matrix ele
ment is the function v* used here. Using the notation and Eq. 
(4.5) of I we have that the incoming wave v is given by 
v = l((f>a/A8*-{-<f>a/Aa,*). When the correct limiting procedure is 
applied as a—»°o, the results of the finite and the semi-infinite 
square well become identical as has been discussed in general in I. 
With this in mind, and for a primary electron incident normal to 
the metal surface, none of the four delta functions obtained by 
Brauer and Klose and on which essentially all their discussion is 
based should arise; and the effect is precisely determined by terms 
similar to those they ignored. The yield by the surface effect in 
secondary emission as in photoelectric emission is independent of 
the dimensions of the model analyzed, and there is no need to 
introduce an ad hoc depth d, for calculating the effect. 

The same expression is obtained by an approximation 
in which the material within a circle of radius p is 
taken to be uniformly stressed, in tension above and in 
compression below the strip, while outside the circle 
it is stressed just as if the strip were of infinitesimal 
width. This relatively simple stress distribution appears 
to be a good approximation to the exact situation. 

% We shall use for convenience Hartree's atomic units 
in which h, the electron mass m, the Bohr radius as, and 
the electron charge e are unity, and the speed of light c 
is 137. As was done in discussing the surface photo
electric effect in I, we treat the conduction electrons as 
independent noninteracting particles. The motion of a 
single electron in the y and z directions is free and can 
be described by the plane-wave Lr1 expi(kyy-\-kzz) obey
ing cyclic boundary conditions and normalized to unity 
in a square area of side L. The x motion is bound by a 
general surface potential V(x) which is the same for all 
electrons and varies only in the direction x which is 
normal to the metal surface. This motion is described 
by the wave function Zr1/20o(#) normalized to unity. 
The length L is the thickness of the metal plate which 
extends from x=—L to x=0. The function (j>o(x) 
satisfies the wave equation, 

H1<f>o=E0<I>o, (1.1) 
where 

H1(x)=-id2/dx2+ V(x). (1.2) 

Inside the metal, V(x) is a constant equal to — Vo, 
and we can write </>o(#) = 21/2 sin (^#+7) where 7 is a 
phase factor depending on V(x), and %kx

2=E0+Vo. 
The potential V(x) rises to zero in the surface barrier 
regions near x=0 and x— — L in a distance much less 
than L, and 0o(#) behaves as exp(—px) for large xy 

where —%p2=E0. We ignore thermal effects and assume 
that all energy states below the Fermi energy EF are 
occupied, and all energy states above the Fermi energy 
are empty. The conduction electrons in this model 
assume k values which fill "a Fermi hemisphere" given 
by k2=kF2 and kx> 0, where &F is the Fermi momentum, 
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The secondary emission yield of metals by the surface effect 5 is expressed in terms of the surface photo
electric yield y(co) for a radiation of frequency a> and angle of incidence of cos-1 i(5*_1) which is about 52°. 
I t is shown that 5 ^ (2ira.Ep)~\f ^^ y(co)do)/o3, where Ep is the primary energy in atomic units, a = 1/137, on 
is the threshold frequency, and C02 depends on the energy of the primary and may be replaced by 00. For a 
square-well potential model for a metal, 8~10~3/EP with a relative error of order (EF/EP) In (EP/EF), 
where EF is the Fermi energy. 
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i.e., EF=J&F2. The number of electrons per unit volume 
in the interval dzk is given by 4^3^/(8x3), where the 
factor 4 is contributed by the usual factor 2 for spin 
and an additional factor 2 to take account of the dis
tribution of the bound states of the x motion in the 
continuum limit3 (large Vo1/2L). 

We consider a primary electron of momentum K and 
energy EP=^K2 incident normal to the metal surface, 
namely, K = (—K, 0, 0). The mutual Coulomb repul
sion between the primary electron and the conduction 
electrons bound by the surface potential offers a direct 
mechanism for a secondary electron emission from the 
bombarded metal surface. I t is with this process that 
we are here concerned. We do not concern ourselves 
with those electrons which are left excited after colliding 
with the primary, and which diffuse in the metal, and 
appear later as secondaries. We hardly need to empha
size that the effect we are discussing exists only by 
virtue of the binding of the conduction electrons to the 
surface potential, since it is well known that no second
aries can be directly emitted from a metal surface 
bombarded with normally incident primaries if the 
electron gas is completely free.6 

In Sec. 2 we discuss the scattering problem of the 
system consisting of a primary electron and a conduc
tion electron, hereafter referred to as secondary. We 
shall consider only fast primaries (nonrelativistic) 
whose energy is much greater than the Fermi energy. 
Indeed, the situations of most practical interest1 are 
those where the primary energy Ep is of order 10 (272 
eV) and EP/EF of order 100. We are then justified in 
treating the Coulomb field of the two electrons as a 
perturbation and neglecting the effect of the surface 
potential on the primary wave functions. We shall, 
however, treat exactly the effect of the surface potential 
on the motion of the secondary in the final state which 
leads to the use of the well-known "incoming wave"3-7 

in the transition matrix element. The two electrons 
will be treated as distinguishable particles described by 
a product wave function, since we shall see that the 
main contributions to the SSE come from small-angle 
scattering for which exchange effects are not important. 

In Sec. 3 we use the small-angle scattering approxi
mation and derive the main result of the paper which 
expresses the secondary emission yield by the surface 
effect as an integral over the surface photoelectric yield. 
In Sec. 4 we illustrate this result by treating two ex
amples. In the first example we use experimental meas
urements on the SPE. In the second example we apply 
our formulas to the previously treated4,5 square-well 
potential model for the metal, and obtain the yield by 
the SSE which turns out to be in agreement with 
Baroody's unpublished result.8 

6 E Frohlich, Ann. Physik 5, 13, 229 (1932). 
7 See G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954); 

I. Adawi, Am. J. Phys. 32, 211 (1964). 
8 E . M. Baroody (unpublished report); and abstract in Phys. 

Rev. 92, 843 (1953). 

2. FORMULATION 

The unperturbed Hamiltonian of the system H0 con
sists of three commuting parts: Hi defined in (1.2), H2 

the kinetic energy of the secondary for the y and z 
motions, and Hz the kinetic energy of the primary. 
Thus, 

# 0 = # l + # 2 + # 3 , (2.1) 

H2=-i(d2/dy2+d2/dz2), (2.2) 

# 3 = - i V R
2 , (2.3) 

where r = (x,y,z) is the position of the secondary and R 
is the position of the primary. The perturbation po
tential Hf is given by the Coulomb field, 

£ r ' = l / | R - r | . (2.4) 

We consider as in Sec. 1 a metal plate defined by 
— L < x < 0 , and discuss the secondary emission from 
a square region of area D of the surface x ~ 0 which is 
bombarded by a uniform primary beam moving in the 
— x direction. The interaction volume is D and we 
normalize the primary wave function to unity in this 
volume. Thus the initial primary state is Z~3/2 exp (iK • R) 
with K = (—K, 0, 0). The initial state of the secondary 
has been defined, and we take for the initial state of 
the system the wave function \f/0 defined by 

H0\f/Q= 8\f/o, 

fa=L-* e x p i ( K . R + k r r ) 0 o ( * ) , (2.5) 

8=Eo+h(k±*+K*), 

where for any vector s, Sj. = (0,sy,sz). 
The solution \j/+ of the perturbed problem for out

going waves satisfies the scattering integral equation,9-10 

t+=h+Zl/(S-Ho+ie)lH^+. (2.6) 

If we write 
^ + = ^ o + ^ , (2.7) 

where \ps is the scattered wave, we obtain to first order 
in Hr that 

rPs=£l/(S-H0+ie)lH%. (2.8) 

We expand Hf in terms of the eigenfunctions of the 
primary and write the usual Fourier series, 

ff'= 1 / | R - r | = E . ( 4 T T A 2 ) L - 3 exppK- ( r - R ) ] , (2.9) 

in which the components of K are given by (2T/L) 
times an integer which is also the case for ky and kz. 

If in (2.8) we substitute for Hf and fa the expressions 
given by (2.9) and (2.5) and observe that the relation 

(S-Ho+ie)-1 e x p * ( K ' . R + k / . r ) 

= [ e x P ; ( K ' . R + k / - r ) ] 

XtS-^-UK't+kfiT1, (2.10) 
9 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
10 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 

(1953). 
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holds for a general K' and k', we obtain 

* . = E « e rp{ t [ (K- ie ) • R + ( k . + Kx) • r]} 

X ( 4 T / K ? ) I , - V ( K ) * ) > (2.11) 

*C K,X) = / G+(E'; x,x')eu**'<}>a{x')dx', (2.12) 

G+{E')^{E'-Hx+h)-\ 

0!= — KXK— §KX
2 — Ki2— k f Kx , 

(2.13) 

(2.14) 

(2.15) 

which reduces the problem to a one-dimensional prob
lem, since the Green's function G+(Ef) contains only 
the Hamiltonian of the x motion. 

To obtain the secondary current we examine the 
asymptotic behavior of \f/8 for positive large %. For large 
x and finite xr we have as in I that, 

£ + ( £ ' ; %jt)~ ( ^ ) - V ^ ( V ) , (2.16) 

where v(x) is the "incoming wave" defined as the 
incident wave exp(-iqx) plus the reflected and trans
mitted waves due to the potential V(x). From (2.16) and 
(2.12) 

<t>(K,x)^(iq)-lMeiqx, (2.17) 

M= / v(x)eiK*x<l>o(x)dx^{v*\exp(iKxx)\<l>o). (2.18) 

From the cylindrical symmetry of the problem, the 
total secondary particle current is in the x direction, 
and we need to calculate, therefore, the current element 
dlx contributed by \f/s and threading the area L2. Using 
(2.17) in (2.11) and the usual formula, 

dlx{x)~ 
1 

21 
$8* yps WMydz, (2.19) 

L dx dx J 

we obtain 

dIx=HK 16T2K~4\M l2^-1^-7. (2.20) 

Notice that in (2.19) the y and z integrations give Z,2, 
the R integration gives D, and the orthogonality of the 
primary final states eliminates any interference terms 
between different values of K. The total current Ix is 
obtained by summing (2.20) over the conduction elec
trons in the volume D, and if we replace the summations 
by integrations we obtain 

I^Ir1 [(d*k/2wz) f (2/Tr)d*K(K-*\MIV1) > (2-21) 

where the k integration is extended over the Fermi 
hemisphere and the K integration is restricted by the 
condition that q is real. 

If the normally incident primary is to lose energy to 

the secondary, KX must be negative. Furthermore, co of 
(2.15) must exceed the metal work function o>i before 
any secondaries can be emitted directly by the present 
mechanism. This implies that some screening of the 
Coulomb field is automatically included in the model 
and we see from (2.15) that, to a good approximation, 
all K<COI/K do not contribute.11 

The SSE yield 5, which is the number of secondaries 
emitted per incident primary, is obtained by dividing 
Ix by the primary current K/L, namely, 

5= (2/TTK) (d*k/2<ir*) / dh{K-\~l\M\2). (2.22) 

To show clearly that 8 is independent of L as L —><*>, 
we must investigate the nature of M in this limit. I t 
was shown in I that in discussing electron emission 
from the surface x = 0 , a finite plate model with two 
surface barriers, one at x=0 and the other at x= — L, 
reduces in the limit L—>oo to a semi-infinite model 
with one barrier at x=0. The limiting "incoming wave" 
v(x), which must be used in (2.18), is a solution of the 
wave equation for this limiting potential for x>— L, 
and is zero for x<— L. Thus inside the metal v(x) 
oc exp(-ikjx) where a cutoff is implied to render v(x) 
zero as x—><*>, and where kx'

2= q2+2Vo= kx
2+2a>. The 

integrand in (2.18) for x<0 is of the form 

expi(—kx'zLkx-\-Kx)x 

for which the phase cannot vanish, since kj>kx and 
KX<0, and hence the integral cannot display a delta-
function-type singularity which, if it were present, 
would bring a length12 L in \M\2. Obviously, the inte
gration in (2.18) over x between x=0 and x= <*> is con
vergent since <t>o(x) is a damped wave for large x. We 
conclude that except for thin films, to which still the 
present formulation can easily be adapted, \M|2, and 
8 are independent of L, and we can set formally L— 1 
in the preceding equations. 

For completeness, we give now the results of the 
time proportional transitions method in discussing the 
scattering problem. A detailed derivation can be found 
in Gell-Mann and Goldberger,10 or obtained by other 
means. The transition from the initial state \J/Q of (2.5) 
to the plane-wave final state \pf of energy 8', where 
^ / = e x p i ( K , . R + k , - r ) , K ^ K - K and k'=(q,kv',k,')9 

is determined by the transition matrix element T/o 

11 For a uniform electron gas screening sets in for momenta 
<cop/K where a>p is the plasma frequency, see, e.g., H. A. Kramers, 
Physica 13, 401 (1947), J. Lindhard, Kgl. Danske Viedenskab. 
Selskab, Mat. Fys. Medd. 28, 8 (1954). In the surface problem 
under consideration, the electron density, plasma frequency, and 
dielectric constant are variable in the region of interest, and it is 
not deemed worthwhile to discuss screening beyond what naturally 
occurs in the problem. 

12 Notice that as L~>oo, 2irb{k)=f-n2L1,'iLdxQxp{ikx)i and 
2ir\b(k) |2 is interpreted as L8(k). If M had a delta function be
havior the sum over kx would have to be restricted to a length da 
and not L, where ds is a characteristic escape depth for the second
ary, but then we would be really discussing a volume effect! 
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which is given by 

T/0=(4,,\H'+V\4+). (2-23) 

After some algebra (2.23) gives to first order in Hr the 
result, 

Z/0=<*/ i#' l*o>, (2.24) 

where \pf~—v* (x) expi (K' • R + k / • r), the only differ
ence between (2.24) and the simple version of the Born 
approximation is the replacement of exp(iqx) by v*(x). 
The R integration in (2.24) gives 4:TK~2, and the y and z 
integrations give Kronecker deltas, since momentum is 
conserved for these directions, and we have 

T'fo=4:TrK-2M8ky> ,kv+Kyhz' . M - , , . (2.25) 

By summing the transition rate, 2x | T/o \ 28(8'— 8), over 
ky and &/ holding K fixed, and integrating over q we 
obtain 16W2K~*\M\2q~l, which when summed over K and 
k gives exactly Eq. (2.21) for the total current (with 
L=l). 

3. RESULT 

The yield d of (2.22) is controlled mainly by the Cou
lomb scattering which is proportional to K~4, and by 
the matrix element M which is the Fourier transform 
of wfo, where v and <£0 are eigenfunctions of Hi whose 
energy difference is co. The problem is basically the 
same as the ionization of atoms by fast electrons for 
which the physical principles are well established.13 We 
shall here use the energy ^ 2 as a characteristic energy 
to obtain order of magnitude estimates, in much the 
same way as the binding energy is used in atomic 
collisions. For KX=0, M=0, and for small KX we write 
exp(iicxx)^l-\-iKxx, and we have the well-known dipole 
approximation, 

M^iKx(v*\x\4>o). (3.1) 

From the commutation relations, [x,Hi] = d/dx=D, 
and [D,Hi] = dV/dx, we can rewrite3 (3.1) as 

M^-iKxOi-Wi, 

For Kx^>kF the binding effect of the potential V(x) 
should become negligible, and the conduction electrons 
can be treated as free electrons. Since we know that in 
such a situation no secondaries can be emitted,6 we 
conclude that M must decrease very rapidly as KX 

becomes large. This coupled with the fact that the 
Coulomb field strongly favors small momenta transfer, 
leads to the conclusion that the major contributions to 
the yield come from those values of K for which K ^ & F 

13 H. A. Bethe, Ann. Physik 5, 325 (1930). See also N. F. Mott 
and H. S. W. Massey, The Theory of Atomic Collisions (Oxford 
University Press, New York;, 1952), 2nd ed., Chap. XI ; L. D. 
Landau and E. M. Lifshitz, Quantum Mechanics, translated by 
J.B. Sykes and J. S. Bell (Addison Wesley Publishing Company, 
Inc., Reading, Massachusetts, 1958), Chap. XV. 

and oo^kF2. The dipole approximation (3.1) applies and 
there is no need to consider large values of KX. 

The expression (2.15) for co will now be simplied. To 
estimate various terms, we recall that for a fractional 
energy loss A by the primary and for a scattering 
angle 0 we have # ' « (1-§A)2T, -KX=%(A+®*)K, and 
K I « ®K. The term \K£ can certainly be neglected. The 
term ki»Ki is zero on the average, and it is small com
pared to -KXK for @ 2 «A-£ F

2 / - £ 2 or Q<kF/K. For 
®^>kp/K, Acx

2^>>Kj.'ki. We can, therefore, neglect the 
term Kj/ki without committing a serious error. Equa
tion (2.15) now takes the approximate form 

com— KXK—Ki2, (3.3) 

whose accuracy will be later discussed. 
By using (3.2) and (3.3) in (2.22) we can hold K 

fixed and integrate over k, and we can write 

8= (w'aK)-1 (dh K2oTly(o>) , (3.4) 

where, by definition, 

y(a) = liraor1 f (d^k/2^)q~l \ M112, (3.5) 

and a= 1/137. To identify y(co) we shall use the results 
of I on the first-order SPE. For a monochromatic 
radiation beam of angular frequency co and polarization 
(E vector) in the plane of incidence, we find by sum
ming Eq. (2.15a) of I over k that the photoelectric cur
rent density Ii is given by 

/i=137/*;y(co)sin20, (3.6) 

where n is the number of photons/unit volume in the 
incident beam, and d is the angle of incidence. By 
dividing Ii by no cos0 which is the normal component 
of the photon current density, we obtain the SPE yield 
Y(o)fi)j namely, 

Y(a,$) = y(a)) (sin2<9/cos6»). (3.7) 

Thus, y(co) is the SPE yield for 6=cos"11[ ( 5 ) ^ - 1 ] 
= 51°50'. 

The azimuthal integration in (3.4) gives 2w. The re
maining double integral is written using the new vari
ables, co= —KXK—KX

2 as in (3.3) and U=KL
2, and we have 

/.W2 

6=(27ra£ p ) - 1 / (<fo/w);y(«)F(«), (3.8) 

where 

F(a>) = 2Ep dull+Ep Y(u+u)2+2Evu~]-\ (3.9) 
Jo \ dEp/ 

Here, O)2=KXOK, where KXO is a maximum value of —KX 

consistent with the approximation — KX<<C^F, and Uo 
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= 0)2—co. Performing the integration in (3.9), we obtain 

o)Ep
112 u—Ui 

p (w) = In 
(£p+2o>)3/2 u-u2 

2Ep[_(Ep+o>)u+o?~] p 

(Ep+2u)lu2+2(Ep+u)u+a22\o ' 
where 

« l t 2 = - (E p +co)± ( £ p
2 + 2 £ > ) 1 / 2 . (3.10) 

For ^2/Ep<^.u0<^Ep, Eq. (3.10) gives 

F(co)«l+(co/E p ) l n ( l + 2 ^ o £ > - 2 ) . (3.11) 

I t is evident that F(cS) is a slowly varying function of 
co and UQ and hence the SPE yield in (3.8) controls the 
SSE yield. I t is well known that2,3 y(oo) reaches a peak 
for CO^&F2 and drops rapidly with increasing frequency. 
If we take Kxo^kF/4: we see that o)2^>kF

2 for K/k^A 
and co2 may be replaced by <*> in (3.8). This shows that 
the important values of co are of order kF

2 and that the 
emitted secondaries are of low energy. If uo<<Ca)2/Ep, 
(3.10) shows that F(u>) is small, but then y(oo) is small 
since w£$>kF

2 and these values of o) are not decisive in 
determining 8. We set ^o=co2 in (3.11) and neglect the 
one in the logarithmic term, and substitute the result 
in (3.8) to obtain 

d-ViraEp)-1 (dco/co)y(co) 

X[l+(co/Ep)ln(2co2Epco-2)]. (3.12) 

To simplify (3.12) we treat the logarithmic term as a 
constant in which we set a)2=PikFK and co=comax, 
where ft is a small fraction and comax is the angular 
frequency for which the SPE yield y(oi) is maximum. 
We can write comax=/32&i?2 where ft is of order unity, 
and denote ft/ft2 by a new parameter ft We obtain 
the result, 

8^(2TraEp)~
1 (do)/u)y(a>) 

X [ 1 + (o)/£p) li${Ep/Ep)*i*l. (3.13) 

The leading term in (3.13) would have been obtained 
if we neglected the term KX

2 in (3.3). The logarithmic 
term gives a correction term of order %(EF/EP) 
X\n(Ep/EF) which is about 25% for Ep/EF~20. 

Let us now return to the approximations made: 

(a) kx«Ki term: This is the most bothersome term in 
the calculation and was neglected in (3.3). We can 
estimate the error by including this term in (3.9) and 
averaging the denominator over k to obtain (u+co)2 

+2u(Ep+EF/5) for the new denominator. The integra
tion can be carried out and we obtain the correction 
term, (EF/5EP) ln/3(Ep/EF)s/2, to be added inside the 

bracket of (3.13). Since this correction is smaller than 
the second term retained in (3.13), we can ignore it. 

(b) Large KX: If in (3.10) we set UQ=EP—O) which 
would allow for the primary to lose all its energy we 
obtain (for co<<CEp) that 

F(a>, Ep-o>) « (4 /3 )+ (a>/Ep) ln(4E„2/3co2). (3.14) 

Comparing (3.14) and (3.11) we see how little the large 
momenta transfers contribute to the effect. Since the 
dipole approximation of (3.2) is expected to overesti
mate M for large KX, Eq. (3.14) cannot be trusted and 
will be discarded. 

(c) —^Kx2 term: This term can easily be included in 
(3.3). The resulting integral is similar to (3.9) and can 
be evaluated exactly. We find that F(oo) of (3.11) 
remains the same (except that 1 is replaced by \ inside 
the logarithm) and (3.13) is not altered. Equation 
(3.14), however, now takes the form, 

F(co, £ „ - c o ) ~ (5 /3 )+ (o)/£p) ln(8Ep
2/3co2) , (3.15) 

to which the previous remarks apply. 
Thus our approximations are good, and we conclude 

that the simple formula, 

/•OO 

5~(2xaE2 ))-1 l (dw/w)y(w), (3.16) 
J (til 

is quite satisfactory, and that (3.13) contains the major 
corrections to the SSE yield 8. 

4. EXAMPLES 

A. Experimental 

To obtain an estimate of (3.16), let us use the experi
mental yield curves F(co,0) for Na and K which are 
reproduced in Weissler's review article.14 From the 
relation (3.7) we obtain y(co). By a crude numerical 
integration we find that the yield integrals, fy(u)du/u 
are — 6.7X 10 -4 and 4 X 1 0 - 5 for Na and K, respectively, 
which lead to the values 8^\.SX\0~2/EP and 0.9 
X10~3 /£P , respectively. This shows clearly that the 
effect is entirely negligible, since the observed values1 

of 8 are of order unity for E ^ I O . 

B. Theoretical 

A theoretical calculation of 8 is possible for a square-
well potential model. Let V(x)= — V0 for x<0, and 
V(x) = 0, for # > 0 . The wave functions v and <£0 can be 

14 G. L. Weissler, Bandbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 21, p. 351. For Na we use 
the measurements of Maurer at 0 = 60°, and for K the measure
ments of Suhrmann and Theissing at 0 = 65°. The yield curve for 
K has to be cut off, since a true SPE must asymptotically drop 
rapidly with frequency. For square well potential, for example, 
y(co) occo~7/2 as co —> oo as can be deduced from Eqs, (4,4) and (4.5), 
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written down easily as in I, namely, 

/ 2q q-kj 
v(x) = [ e-ikx'x e-iqx_\ 

q+k, 

<t>,{x) = 2-^t 

\q+kx' 

kx—ip 

-piqx 1 

-ihxxjL_pikxx 
£R>x 

(4.1) 

+e1' 
kx-\-ip kx-\-ip J 

for x<0 and # > 0 , 

where the propagation constants have been previously 
defined. By using (4.1) in (2.18) we obtain after some 
lengthy algebra: 

| M12= 32Kx
2q2kx

2(kx'-q) {kx'+q)~yR, 
(4.2) 

R^ ( 2 c o - 2 ^ / + ^ 2 ) 2 [ 4 c o 2 + ^ 2 f e 2 + 4 ^ 2 - 4 c o ) ] . 

We see that if JACCC
2<3CCO, R^ 16O>4 and 

| M12~2K2q2k2(kx'-q) (kx'+q)-ia>-*, (4.3) 

which is precisely the dipole approximation of (3.2) 
with which we could have started. The advantage of 
giving the exact \M\2 is to show how good are the 
approximations of Sec. 3. I t is evident from (4.2) that 
for a finite w and large KX, | M |2 oc KX~6 which justifies 
the neglect of large values of KX. 

I t follows from Eqs. (4.3), (3.2), and (3.5) above, or 
from Eqs. (3.9) and (3.10) of I, that 

y (o>) = (16a/ir) (O>/EF)-VI(CO) , (4.4) 

Ji(<*) = - [ (l-e)(€+0-^/2 

2v 

Xe1/2[(e+12)1/2- (e+tt-^Jde, (4.5) 

where Q=CO/EF, C = (VO+EO)/EF, and 77 = VQ/EF. 

If we substitute (4.4) and (4.5) in (3.13), define the 
parameter X by 

\=(EF/Ep)lnt3(Ep/EFr*, (4.6) 

and introduce the integration variables e and f where 
f =e+12—77, we have 

rjJo Tr2Ep7)J 

i 
Jo 

Xf1'2 (l-e)eWS(\,t,e)de, (4.7) 

where 

Expanding S in a power series of e and integrating 
term by term we obtain 

16 f 1 
S = — r r h l 2 —vC- i \+ 

<K2Ep { 15 

« / —4\ 1 

n=0 \ 71/ 

3X 

2 ^ + 3 (w+l)(2w+7). 
where 

Cn= (r1 / 2[(r+i)1 / 2-f1 / 2]2(r+i)- ( 4 + n )^r 

/ 1/2 \ 2n+9 8 

(2^+5) 

Cn , (4.9) 

= ( 
/ 1/2 \ . 

-, (4.10) 

5(X,f,€)= ( l y + f - e ^ + X ^ + f - e ) - (4.8) 

\n+2/2n+6 ( 2 ^ + 5 ) ( 2 ^ + 3 ) ' 

C _ I = 7 T T / 8 - 8 / 3 = 0 .0822 , C0= ( 3 T T / 1 6 ) - 8 / 1 5 = 0.0557, 

d = ( H T T / 1 2 8 ) - 8 / 3 5 = 0.0414. 

The leading term in (4.9) is 5^0.06(7r2Eprj512)-1 which 
is of order 10~3/EP since 77 is about 2. The relative error 
committed by neglecting terms in X is of order 
[?7(C_i/Co)+9/7]X^4X, which could amount to 25% 
for EP/EF~ 100 (if we take 0 = 1 ) . 

This agrees with Baroody8 who obtained the first two 
terms of (4.9) with X = 0, by using the same method as 
did Viatskin, but making an independent evaluation of 
the final integral. I t also agrees surprisingly well with 
the estimate obtained above from the measurements on 
the surface photoelectric effect of potassium. 

Note added in proof. Equation (3.16) predicts that 
the energy loss of the primary (essentially co) by SSE is 
nearly peaked at the energy value for which 3>(co)/co is 
maximum, and this is usually of order 5-10 eV. I t 
would be interesting to investigate if such an energy 
loss can be detected in experiments on the character
istic energy losses of electrons in thin foils. Since the 
relative intensity of the scattered primaries by this 
effect is of order 10~2— 10~3/Z£P, primary energies Ep of 
order 10 (i.e., 272 eV) are preferable, if experiments 
with these energies are now feasible. 
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