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A previous calculation of the scattering amplitude for the scattering of spin waves by magnetic defects 
in a simple cubic lattice is simplified and extended to body-centered and face-centered cubic lattices. Ex
pressions are given for the mean free path, and the thermal resistivity due to defect scattering is calculated 
by a method which takes some account of spin-wave interactions. 

I. SCATTERING THEORY 

IN a previous study1 (which will be referred to as I), 
the general theory of the scattering of spin waves 

by magnetic defects was discussed, and results were 
obtained for the cross section and mean free path in 
simple cubic lattices. In the present note, the cumber
some procedures of that calculation are both simplified 
and generalized, and the results are extended to include 
body-centered cubic and face-centered cubic lattices. 
This is of particular interest since several of the recently 
discovered ferromagnetic insulators are face-centered 
cubic. The thermal resistivity produced by defect 
scattering is calculated by a method which includes 
some of the effects of spin-wave-spin-wave interactions. 

The theory of the scattering of spin waves by mag
netic defects is an application of the general theory of 
the scattering of excitations by imperfections in solids. 
An account of this theory is being published elsewhere.2 

Therefore, the present discussion will contain only as 
much of the theory as is required to make the applica
tion of those results to a spin-wave system intelligible. 

We consider a spin system described by a simple 
Heisenberg exchange Hamiltonian with nearest-neighbor 
interaction only: 

H=£ /(R;, R,+A)S(R,)- S(Rd-A). (1) 

Neither external fields nor dipole-dipole interactions 
are included. The system is said to contain a magnetic 
defect if at some site Ro (which we choose as the origin), 
there is an atom whose spin Sf is coupled to its neighbors 
by an exchange integral J'. For the remainder of the 
atoms, these quantities are S and / , respectively. The 
quantity A is a vector connecting a lattice site with one 
of its nearest neighbors. 

The excited states of the system which contain a 
single spin deviation can be described by a set of func
tions <£(R) s u ch that |<£(R)|2 gives the probability of 
finding the spin deviation on site R. It was shown in 

* Supported by the U. S. Air Force Office of Scientific 

! J . Callaway, Phys. Rev. 132, 2003 (1963). References to 
previous studies of the spin-wave-defect interaction are given 
there. 

2 J. Callaway, J. Math. Phys. 5, 784 (1964). 

Ref. 3 that $(R) satisfies the equation 

^ ( R I ) = 2 E A / ( R I , R I + A ) [ 5 ( R I + A ) 0 ( R I ) 

-{5(Rz)5(R,+ A)}1/V(Rz+A)]. (2) 

In this equation S(Ri) is the "magnitude" of the spin 
on the site Rj in that the eigenvalue of S2(Rz) in the 
ground state is S (RZ) [S (RJ )+1 . ] - Equation (2) can be 
written as a Schrodinger equation in the form 

Ez(w|^-Ho|0*(Ri)=Ei(w|7|0*(Ri), (3) 
in which 

(m\E-H0\l)= (E-2JSz)8ltm+2JSd^mA (4) 
and 

(m\V\l) = 8im^2Sz(J/-J)8l>o+2(J,S/-JS)8lA'} 
-2[r(5 ,5)1/2~/5]5,_w,A(5z,o+5m,o). (5) 

Each atom is assumed to have z nearest neighbors. 
The subscript l—m refers to Rj— Rm. 

The solutions of this equation for energies, E, within 
the continuous spectrum of Ho have been shown to 
have the following asymptotic form: 

*(Ri)= 
(2x)3'2L R, A 

(6) 

provided the energy is low enough so that the energy 
wave vector relation (energy band) for spin waves is 
spherical: 

E=yk\ (7) 

y=2JSai, (8) 

in which a is the cubic lattice constant. The quantity / 
may be interpreted as the scattering amplitude for spin 
waves. It may be expressed as a sum of scattering ampli
tudes for partial waves transforming according to one 
of the irreducible representations of the crystal point 
group: 

f-Hfife, (9) 

in which ft denotes an irreducible representation. The 
partial-wave scattering amplitudes are 

h-
2TT2 

yDp pn 
L vfi,pnp^,nm E c^*(k',Rp) 

XCV0)(£o,-Rm). (10) 
3 T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963). 
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In this equation, the functions C(0)(k,R) are sym
metrized linear combinations of plane waves (12/87r3)1/2 

Xexp(ik«R) transforming according to the ẑ th row of 
the jSth irreducible representation. These functions are 
characterized by wave vectors k0 and k', in which k0 
is the wave vector of the incident wave and k' is a 
vector of magnitude ko parallel to Rj £see Eq. (6)]. We 
can write 

Cp^(k,Rm) = 1 ; U(t3y,Rm)e*-*™, (11) 
(2TT)3 '2 

in which the^quantities U(i3v,Rm) are the matrix ele
ments of a unitary transformation. The prime on the 
summation in Eq. (11) indicates that the vectors Rm 

which are included are those which can be found from 
any one of them by rotation with all the operators of 
the point group. (Only distinct vectors are considered.) 

The quantities VptPn are given by 

^.p»=X)' U(pM(p\V\n)UK&nA), (12) 
p,n 

in which Z7f is the adjoint of the matrix U. Vp,pn is 
independent of the row of the representation v. The 
remaining quantities are found as follows. We consider 
the Green's function, g(Rz—Rn), which satisfies 

Z(m\E-HQ\l)9(Ri-Rn) = dmn, (13) 
i 

and define 

r / J ii„=2: / ^05„Ri)g(Ri-R„)J7t(Rn,/j,). (14) 
In 

Then, considering only those values of the indices 
/, m, such that Vp,im is not zero, we construct the matrix 

Qpam—blm—YL T ^ . Z n ^ . w m . ( 1 5 ) 
n 

The summation in (10) and (15) includes one term for 
each different symmetrized combination of plane waves. 
The quantities Pp and Dp occurring in Eq. (9) may now 
be defined by writing the matrix inverse to Q as 

LQr-1lfi.im=Dfr
lPfi.u», (16) 

with 
Dfi=&et(Qfd = det£l-TfiV£l. (17) 

The quantity Dp determines the locations of possible 
scattering resonances or localized modes. Let E' (in 
general, a complex number) be a solution of 

Dfi(Ef) = 0. (18) 

Put E' = EB-iY/2. Then, if T>0, EB is the energy of 
a scattering resonance, and T is the width of the reso
nance. If T = 0 (which occurs only outside the continuum 
of eigenstates of Ho), we have a localized mode. 

In the case of spin waves, the perturbation V ex
tends only to nearest neighbors of the defect. The 

irreducible representations which occur in the sum over 
(3 in Eq. (7) have been determined for cubic lattices2,3: 
They are Ti, Tu, and Ti2 for a simple cubic lattice; 
Ti, T15, r25', and IV for a body-centered cubic lattice, 
and Ti, TIB, IW, TI2, and F25 for face-centered cubic.4 

The k dependence of the partial-wave scattering ampli
tude fp at low energies can be studied by expanding the 
symmetrized combinations of plane waves Cpy

(0)(k,R) 
in powers of k. One finds that 

CpW(k,R)«(kRyKeyti(dy<l>), (19) 

in which KpVti is a Kubic harmonic belonging to the 
vth row of the /3th irreducible representation, and is a 
linear combination of spherical harmonics of order I.5 

For Ti, 1=0; for Ti5, /= 1; for T12 and T25', /= 2, and for 
IV and r25, /=3 . We conclude that (since |k0 | = |k ' | ) 

/ / »«*" , (20) 

unless there are cancellations among the elements F, P 
which raise the power of k in (20). We do not expand 
Dp since this contains the possible resonances. 

For spin waves we find that the ^-wave amplitude 
(rie) is proportional to k2, but cancellations do occur 
for the s-wave amplitude (Vi)9 which then turns out 
also to be proportional to W. Other (dj) partial waves 
give terms proportional to k4 and &6. Hence, the total 
amplitude is proportional to k2 for small k. 

We will now determine the scattering amplitude to 
this order for simple cubic, body-centered cubic, and 
face-centered cubic lattices. The ^-wave portion i 
simplest because only one term appears in the summa
tion over p, m} and n in Eq. (8). From this fact x 
follows, with the use of Eq. (16), that the only satrim 
element of P is unity. Hence Eq. (10) has the for it 

/ „= (-2**/yD9)Vv.vL E C*,<0>*(*',tfi) 
V 

XC,,<M(*o,Xi). (21) 

The rows of the triply degenerate Ti5 representation 
contain functions transforming as x, y, or z. In each of 
the three lattices we have in the small k limit 

CPx= [01/2/(27r)3/2]v2^xa, (22) 
etc., and 

Vp,u= - 2 / 5 [ l - (J'S'/JS)1. (23) 
Then 

/ „= (Q/2irDpa%l- (J'S'/JS)lk2a2 cosfl, (24) 

in which 6 is the angle between k and k'. 
It is now necessary to express the determinant Dp 

in terms of the Green's functions. If (£,?/,r) are the 
rectangular components of (Rj— Rw)/a, we have for 

4 Notation for the irreducible representations of the point group 
is in accord with L. P. Bouckaert, R. Smoluchowski, and E. 
Wigner, Phys. Rev. 50, 58 (1936). 

s F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612 (1947). 
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the three lattices: 

Simple cubic, 

Dp= 1 - I C 1 - ( / 'S ' / /S ) ] [g (0 ) - 9(2,0,0)]; (25) 

body-centered cubic, 

DP=I-KI-(J'S'/JS)1 

X[g(0)+9(1,0,0)- g ( l , l , 0 ) - 9(1,1,1)]; (26) 

face-centered cubic; 

Z>,= 1 - J [ l - ( / '5 ' /J5)][g(0)+29( | , i ,0) 
-29 (1 ,U) -9 (1 ,1 ,0 ) ] - (27) 

We infer from these results that for the same value 
of the lattice constant a, the scattering amplitude de
pends on the lattice structure partly through the cell 
volume O which has the value a3, a3/2, and #3/4 in the 
simple body-centered, and face-centered cubic lattices, 
respectively. In addition, more complicated dependence 
on structure is contained in the determinants, Dp. 

We now turn to a consideration of the s-wave ampli
tude. This calculation is quite tedious and will not be 
given in detail. For each lattice, the relevant quantities 
V, P are 2X2 matrices. The symmetrized linear com
binations of plane waves are given by 

C.<°>(ft,0) = ff/2(2ir)- •3/2 (28a) 

Equation (28b) can be expressed in terms of the spin-
wave energy E(k), since 

JE(ft) = 2J5[«-EA exp(ik-A)]. 
Hence, 

Cs<°> (kfr) = ^/z)^{2ir)-^{z--E/2JS). (29) 

Equation (29) enables us to eliminate the functions 
Cs

(0) from the s-wave amplitude. In addition, it is 
possible to express all the combinations of Green's 
functions which enter into Ds and Ps in terms of 9(0), 
with the aid of certain identities which were derived in 
Ref. 3. Since Q(0) can be expressed in terms of the 
density of states G(E), 

9(0)= 
G(E')dE' fi r d*q fG(E')c 

{2TT)SJ E-E(q) J E-E' 
-wG(E) 

-go/4JS, (30) 

this means that the s-wave amplitude can be deter
mined from the G(E) without explicit reference to 
E(k). The relevant identities are 

s-1 E< S(±<) = [ 1 - (£/2/&)]S(0)+ (1/2/&) 
^-gi/^JS, (31) 

Zi 9 ( A - Aj) = [ 1 - (E/2JSz)2 E< S(±<) 
= - g 2 / 4 / S . (32) 

In these equations, Aj and Ay indicate sites which are 
nearest neighbors of the defect site (the origin). Only 
the particular combinations of Green's functions appear
ing in (30), (31), and (32) are involved in the $-wave 
amplitude. 

In addition, we have 

/ € 77\M 

\7}\/z p J 

1 - g2p~Z7jg1 z1'2 (gorj+gw) \ 

(gie+g2??) 1-goe-zrigi/' \*1/2(gl6 

in which 
6 = 4 8 ( 1 - / ' / / ) , 
n=*[(/ ' / /) ( 5 ' / 5 ) ^ - i ] , 
p = | ( l - / ' 5 ' / / 5 ) . 

(33) 

(34) 

(35a) 
(35b) 
(35c) 

C.fotfiH (0/z)1'2(2x)-3'2 E A exp(»k- A). (28b) i n w M c h 

After a rather tedious calculation, we obtain for the 
s-wave portion of the scattering amplitude to lowest 
order in k 

27rDsaUJS\j/\ S/ 

= ̂ —f—Vl W , (36) 
4TDsa

2\J/\ SJ 

Z>.= l+- (g i -*o) ( l + ( l ). (37) 
2 \ / / 4 / 5 \ JS J 

It will be observed that fs goes to zero as k2 at low 
energies. This is the result of cancellation among some 
of the terms and of the Green's function identities (32). 
The expression (37) for D8 is exact. We do not expand 
Ds (or Dp) since they contain the possible low-energy 
resonances. 

The total amplitude to order k2 is the sum of (36) 
and (24): 

/ = / . + / p 
-ori (J'\/ _s\ 
4:wa2LDs\j)\ s) 

J'S'\ 2 / J'S' 

Dp\ JS . 
\ cosd \k2a2. (38) 

It will be observed that the amplitude in this order 
depends on the lattice structure in an obvious manner 
through the cell volume. There is, however, an equally 
important structure dependence incorporated in the 
function Ds and Dp. The higher order (in k) terms in 
the amplitude also exhibit a significant dependence on 
the lattice structure since different representations 
appear. In general, it does not appear to be possible to 
express the scattering amplitude solely in terms of the 
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angle between the incoming and outgoing wave vectors 
when higher order terms are included. 

When the scattering amplitude is considered only to 
lowest order in k, so that it depends only on the angle 6 
a simple calculation of the mean free path ID, for scat
tering of a spin wave by a defect is possible. This has 
been shown to be determined by the momentum transfer 
cross section <jn which is given by 

| /(0) |2(l-cos0>/12. (39) 

Then6 

h-^Nnan, (40) 

where ND is the concentration of defects. We obtain 

22kU 1 / / \ 2 / S'\ 

4/ 

D$\
2\jJ\ S/ 

DJA 
^ > 

J'S'y 
JS) 

J'S'\ 

JSJ 

2\J/\ S/\D*DP D8Dp*/j\ 

If we suppose that the denominators D3 and Dv can 
be set equal to unity, thereby neglecting the possibility 
of resonant scattering, we obtain 

4TT! [(T)K 

( 

sv 

* 

J'S'\/ J' 2J'S'\ 
) ( l + ) | . (42) 

JS/\ J JS -)]• 
II. THERMAL CONDUCTIVITY 

In this section we consider the thermal conductivity 
of a system of spin waves in interaction with each 
other and containing ND magnetic defects per unit 
volume. We hope to consider spin-wave-phonon inter
actions in subsequent work. Unless explicitly stated, 
the system will be assumed to be of infinite extent. 

We propose here to calculate the thermal conductivity 
of spin waves by the same techniques which have proved 
to be reasonably successful in application to lattice 
thermal conductivity.7 We will consider each scattering 
process to be described by a relaxation time, but ex
plicit account will be taken of the conservation of 
crystal momentum by normal spin-wave-spin-wave 
scattering processes. 

The distinction between normal and umklapp proc
esses in spin-wave interactions is just as vital as it is 

6 J. M. Ziman, Electrons and Phonons (Oxford University Press, 
Oxford, 1960). 

7 J. Callaway, Phys. Rev. 113, 1046 (1959); J. Callaway and 
H. C. Von Baeyer, ibid. 120, 1149 (1960). 

in the case of phonon-phonon interactions. Since normal 
processes conserve the total pseudomomentum of the 
spin-wave system, they cannot, if acting alone, produce 
a thermal resistance. This statement is essentially inde
pendent of the details of the dispersion relation for the 
magnons. I t is true that the interactions between mag-
noris do not conserve the heat flow at the microscopic 
level (as is the case for phonons if a linear dispersion 
law is assumed). A statistical argument shows, however, 
that a thermal resistance will not appear. An explicit 
demonstration is given in the Appendix. 

Nevertheless, it is not permissible to neglect normal 
processes in studying the thermal conductivity. Their 
contribution may be pictured qualitatively as that of 
converting some of the low-frequency magnons into 
high-frequency magnons which may easily be scattered 
by defects. We will show that in the limit of strong 
normal processes, the thermal conductivity becomes 
limited by the defect scattering in a fashion similar to 
that obtained by Ziman8 for lattice thermal conductivity. 

The importance of distinguishing normal and um
klapp processes has been stressed here because it has 
been ignored in other calculations of the spin-wave 
thermal conductivity.9 We contend that such work may 
have yielded an erroneous thermal resistance. 

We begin by considering the Boltzmann equation in 
the form 

fdN\ dN 
— 1 - V k - V r — = 0 , (43) 

\ dt J c dT 

in which vT is the temperature gradient, N is the dis
tribution function, and Vk is the group velocity of the 
spin waves 

V k = ^ 1 V k £ ( k ) . (44) 

The first assumption of the present approach is that 
the collision term (dN/dt)c may be approximated as 
follows: 

/dN\ N(l)-N N0-N 
— ) = + , (45) 

\ dt / c Tn Tu 

in which N(X) is a displaced Bose distribution 

iV r (^ )={exp[ (E-Ot -k ) / iS : r ] - l} - 1 . (46) 

No is the usual Bose function; rn is the relaxation time 
for a single mode via normal processes, and ru is the 
relaxation time for all those processes which do not 
conserve the crystal momentum.10 We assume that 'X is 
small so that N(X) may be expanded, and only first-

8 J. M. Ziman, Can. J. Phys. 34, 1256 (1956). 
9 A. Quattropani, Phys. Kondens. Materie 1, 125 (1963). 
10 R. E. Nettleton, Phys. Rev. 132, 2032 (1963), has partially 

justified this approximation for lattice thermal conductivity. In 
applying Nettleton's discussion to the present calculation, one 
should note that in spite of appearances, an explicit expression 
for the normal process relaxation time, TN, is not required to ob
tain our essential results, Eqs. (60) and (67). The quantities which 
are required are TD and rc. 
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order terms in ^ are retained. Put 

a,= -SVT/T, (s is a constant) (47a) 

(47b) 
/ E \ 2 e ^ * T 

iv-iv0=»i=-i'Vk-vri — i \KTJ (eEIKT-l)2 

' Tu ~T~Tn (47c) 

(These equations are definitions of s, v, and rc.) We 
also require the group velocity. We continue to use a 
quadratic dispersion law 

so that 
Vk=2(7/ft)k. 

(48) 

(49) 

The constant term e in (48) does not play an important 
role in the mechanics of the thermal conductivity calcu
lation and has been ignored in computing scattering 
amplitudes, but it is important in preventing the quan
tity E—X'k in (46) from becoming negative for low 
energies. I t is therefore important to realize that a 
nonzero value of e is always obtained, since the material 
is magnetized. One has, approximately,11 

6 = g /3[ (V3)M+ffext ] , (50) 

where M is the magnetization and #ext is a possible 
external field. 

Equations (45)-(49) are substituted in the Boltz-
mann equation, which then gives a relation between v 
and s. This is 

v=rc[_l+hs/(2yrNE)^. (51) 

The thermal conductivity of the system is 

K = [1 / (2TT) 3 ] jYk
2v(k) cos20Csw(k)d*k, 

3w2ft) f = (2y2/3ir2h) / k*p(k)C8W(k)dk, (52) 

> / = (27
2/37r^2) / ¥rc[\+Sh/{2yrnE)~]Csw{k)dk. 

We have assumed cubic symmetry and also employed 
(49). Csw(k) is the contribution to the specific heat 
from a mode of wave vector k. Evidently another rela
tion between v and s is required. This is obtained from 
the requirement that the normal processes do not 
change the total wave vector of the system: 

/ ( 
— ) kd*k = / kd*k = 0. (53) 
dt / N J TN 

1 1T. Holstein and Primakoff, Phys. Rev. 58, 1098 (1940); S. H. 
Charap and E. Boyd (to be published). This dispersion relation is 
only approximate since in the presence of dipole-dipole couplings, 
the spin-wave energies are anisotropic, 

This condition leads to the relation 

eEIKT 

ft 

r k r 2yvR 
/-(k.vr)L-

J TN L (e EfKT_ I)2 
-iPk=0. (54) 

Only the component of k parallel to the temperature 
gradient survives on integration over solid angles. We 
substitute (51) and solve for s 

_2yf 
fiJ 

EWeEIKT 

TN (eEiKT-\Y 

r ri 

-dk/ 
2 / 

r r l / TC\ kHElKL -i 

U TN\ rJ(eEIKT-l)2 J 
(55) 

We combine (55) and (53), substitute for the spin-
wave specific heat 

^ sw -^-(±\' eEIKT 

(56) 

\KT) {eE'KT-\fr 

introduce the change of variables 

x=yk2/KT, 5=e/KT, 

replace the relaxation time by mean free paths, 

lc=VkTc, 

etc., and obtain our final expression for the thermal 
conductivity: 

K(KTy 

6ir2yft 
I x 

Jo 

pX+8 

(x+d)2lt 

r*™ lc (x+8)ex+8 -*2 

+1 / x3/2 dx 
r- fX 

IN (e-,x-\-d, 

(e*+d-l)2 

/ 

-dx 

r rxm h rxm h x2ex+h -|1 
/ dx\\. 

h Uu(e*+S-1¥ J J 
(57) 

The upper limit xm for these integrals is determined by 
an argument analogous to that establishing the Debye 
temperature for a crystal lattice and is given by xm 

= (y/KT)(67r2/0)2/3. We will consider here only tem
peratures low enough so that the upper limit can be 
made infinite. 

The dependence of the thermal conductivity on an 
external magnetic field can be obtained from (57). A 
magnetic field decreases the thermal conductivity by 
reducing the probability of excitation of spin waves. 
I t is evident from (57) that in the limit of large 5 (low 
temperatures or strong fields), the thermal conductivity 
must decrease as 5ne~8; here the exponent n will depend 
on the scattering mechanism. Further discussion of the 
field dependence of the conductivity will be reserved 
for subsequent work. 
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There is a great similarity between Eq. (57) and the 
corresponding expressions which are obtained in the 
theory of lattice thermal conductivity. In particular, 
we observe that if the relaxation time for processes 
which do not conserve the wave vector becomes very 
long, the thermal conductivity of the spin-wave system 
increases without limit. If only normal processes were 
present, there would be no thermal resistance. 

I t follows that in the limit in which the mean free 
path for normal processes is very short compared to 
that for processes which do not conserve the wave 
vector, the thermal conductivity will depend sensitively 
on the latter processes. This is the Ziman limit. To 
obtain the thermal resistance in this limit, we drop the 
first term of (57) and neglect the contribution of lu 

to L. Then 

1 67r27^ 
W=-=-

x+5 

K K(KT)2J lu (ex+8-l)2 
-dx 

/ #3/2 dx (58) 

One interesting consequence of (58) is that the ther
mal resistance in the Ziman limit is the sum of additive 
contributions from each possible type of "U" process. 
In particular we consider defect scattering, for which 
the mean free path is given by Eqs. (40) and (41). 
We will not consider here the effects of possible scatter
ing resonances which could increase the thermal re
sistance substantially. We abbreviate the mean free 
path due to defect scattering as 

ID-^NDAV, 
in which 

A--
02j 

47T2I 3 \ / JS •)]• 

(59a) 

(59b) 

We can evaluate the thermal resistance due to defects 
approximately by neglecting 5 in (58). We get 

Wn = -
(yw2hNDA r°° x*ex 

Ky 

6^NDAfi 

rx xlex ir i"° xwex 

\ dx/\ 
Jo {e*-\f I U 0 ( e * - l ) : 

r(5)f(4) 

-dx 
•i)» J 

Ky [ r ( 7 / 2 ) f ( 5 / 2 ) J 
-=38.6-

NDAti 

JSKa? 
(60) 

In the last step of (60), we have substituted Eq. (8). 
The thermal resistance due to the defects is inde

pendent of temperature. This expression is valid in the 
limit in which defect scattering is weak compared to 
normal magnon-magnon scattering. Our treatment has 
included the effects of magnon-magnon scattering on the 
distribution function, and thereby has taken account 
of these interactions implicitly. Our formula, Eq. (60), 
does not depend explicitly on the details of the magnon-

magnon interaction. I t does differ somewhat from the 
expression for the defect resistivity if these interactions 
are neglected. The situation in which defect scattering 
is weak compared to boundary scattering and normal 
processes are ignored was examined in I. In that case 
a thermal resistance WD due to defects was obtained 
which is independent of temperature, and differs from 
(60) only in respect to the numerical constant. That 
result is12 

WD' = 20TT2-
NDAh f(5) 

Ky [ f (3) ] 2 
= 70.8-

NDAh 
3 . 
JSKa2 

(61) 

I t will be noted that the thermal resistance due to 
defects given in (61) is larger by a factor of almost 2 
than that of Eq. (60). This situation should be con
trasted with that which obtains in the theory of lattice 
thermal conductivity where the contribution to the 
thermal resistance from defects is, in the Ziman limit, 
larger by a factor of 25 than when umklapp scatter
ing dominates. 

Next, we will discuss the thermal conductivity in the 
opposite limit in which the defect scattering is strong 
compared to magnon-magnon scattering. This requires 
a more detailed knowledge of the combined mean free 
path lc, including normal processes. The interaction of 
two spin waves can produce bound states,13 and prob
ably scattering resonances. A complete theory of the 
scattering of two spin waves has not yet been given, 
but for an introduction, we can make use of a calcula
tion reported by Dyson.14 Dyson showed that, to the 
extent that resonances and such may be neglected, the 
mean free path for a spin wave of wave vector k due 
to spin-wave-spin-wave interactions, may be written as 

l=BT^k\ (62) 

This expression is valid at low temperatures. The quan
tity B is a rather complicated function of / and S, 
and is given by 

3 f ( 3 / 2 W 3K Y ' 2 

B = , (63) 
zuS2 \2TrJSzix/ 

in which 

w=( l ,3X2- 5 / 3 , 2 - 1 / 3 ) , 

/*= ( l , 3 X 2 - w 2V»), 
(64) 

for the simple cubic, body-centered cubic, and face-
centered cubic lattices, respectively. 

With the use of (62) and (59), we have a combined 
mean free path including defect scattering and magnon-
magnon scattering 

lc~
l=BT^k2+NDA¥, (65) 

12 A factor of (Kt;(3))~l was omitted in the statement of this 
equation in Ref. 1. 

is M. Wortis, Phys. Rev. 132, 85 (1963); J. Hanus, Phys. Rev. 
Letters 11, 336 (1963). 

14 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 
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In the limit Zc<$Cl which corresponds to defect scattering 
strong compared to magnon-magnon scattering, we can 
drop all but the first term of (57). This follows since if 
we consider both lc and lu to be proportional to some 
small constant a, the first term of (57) is proportional 
to a, whereas the second term is proportional to a2. 
We then substitute (65) into (57), let 5 —-»0, and obtain 

Ky rXm x2 ex 

•2hNDAj0 x+y(ex-l)2 * ' 6w2hN. 
(66) 

in which y=ByT^2/NDAK. 
We consider this integral at temperatures low enough 

so that the upper limit may be made infinite. Even so, 
the integral needs to be approximated if we are to avoid 
numerical computation. We follow the procedure used 
under somewhat similar circumstances in I, in which 
we replace x2ex/(ex—l)2 by 1 for x<l, and neglect y 
for x>l. This is valid only when ;y<<Cl, but if this con
dition is not satisfied, it is not legitimate to neglect the 
second term in (57). Hence 

Ky r r1 dx r00 xe* 

•2hNDAUo x+y Jx (ex-6ir2hN. 

Ky 

-dx 
x+y 

1 

(ex-l)2 

6w2hN 

KJSa2 

3**N. 

—Tln(l+->W£ ^(1+-)] 
DAL \ y/ n=i \ n/ A 

So2 r / NDAK\ -1 
ln( 1 + 1+1.0407 . 

DAfL \ ByT*'2/ J 
(67) 

Evidently, in this limit, the temperature dependence of 
the thermal conductivity is weak. 

APPENDIX 

In this appendix, we give an explicit demonstration 
that for magnons whose energy is related to the wave 
vector by Eq. (48), normal scattering processes (N. P.) 
cannot, by themselves, produce a thermal resistance. 
We recall that a normal process is one in which the total 
wave vector of the excitations involved is conserved. 
I t is to be distinguished from an umklapp process, for 
instance, in which the wave vector changes by a re
ciprocal lattice vector. 

I t is fairly easy to see intuitively that if only N. P. 
operate, the crystal relaxes to equilibrium subject to 
the condition that the total crystal wave vector be 
nonzero and constant J2k k ^ k = K (in which n* is the 
number of particles in a state of wave vector k). There 
must be a flow of heat in the direction of K. 

The simplest mathematical justification of this in
tuition can be found by returning to the derivation of 
the Fermi-Dirac (F. D.) and Bose-Einstein (B. E.) dis
tribution functions for an ideal gas using the micro-
canonical ensemble. A system of weakly interacting 
excitations is considered. 

To obtain the distribution function nu we maximize 
the entropy, <r, subject to the constraints imposed by 
conservation laws.15 We do this by multiplying those 
quantities gy(^k) which must be conserved by Lagrange 
undetermined multipliers Xy. Then we add their varia
tion with respect to nk to the variation of a and set the 
whole equal to zero. Thus, 

da dgj 
-+lx,—=0. 
5^k §^k 

(Al) 

Let the upper/lower signs represent B. E . /F . D. sta
tistics, respectively. We have 

6o-/5#k = l n ( ^ k ~ 1 ± l ) . (A2) 

Let us choose the following conserved quantities: 

£ k 7 * k = ^ ; E k £ k ^ k = £ ; Z k k ^ k = K . (A3) 

We vary these quantities, multiply by Lagrange multi
pliers, and substitute together with (2) in (1) to obtain 

*-K—sr-H • (A4) 

where the multipliers of N, E, and K have been written 
in the conventional manner. (If the number of particles 
is not conserved, we should set ju = 0, and this must be 
done for magnons and phonons.) 

Clearly, since E k = £ _ k , modes with k parallel to X 
contain more particles than modes with k antiparallel, 
so we expect a net heat current Q in the direction of X. 

To demonstrate this we consider the expression for 
the heat current 

Q = ZkEkVknk. (A5) 

We will evaluate this approximately on the basis of 
the dispersion relation16 

Ek = ykn+e. (A6) 

In this equation the relevant values of the exponent n 
are 1 and 2. If n= 1, we have a situation approximately 
describing low-energy phonons (also e = 0 in this case). 
The case n=2 characterizes spin waves, but now e^O; 
a nonzero value of E is provided by the magnetization 
(M) plus any external field (5eXt), as was described in 
the main text [see Eq. (50)]. With the use of (6), we 
obtain for Q 

ny r 
Q = / • 

(2irYhJ 

(ykn+e)kkn~2 

d*k. (A7) 
{iTrfhJ {exp{[ykn+e-X-\L]/KT}-l} 

15 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 
New York, 1963), p. 192. 

16 The importance of including e is that if it is not present, the 
argument of the exponential in (A4) will become negative for 
small k when n = 2. 
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The total wave vector K is 

1 r k 
K = / fflk. (A8) 

(2TT)3J {exp{Zykn+e-X-kyKT}-l} 

Neither of these integrals is zero. If n—\, (e=0) it is 
easy to see that 

Q = ( 7 / * ) K . (A9) 

For n=2, (e^O) the situation is somewhat more com
plex. The substitution q=k— Xjly enables the inte
grals to be transformed to a form in which the portions 
which vanish on integration over angle can be readily 
separated. The results are 

3i /KT\zi2r$KT 

4ir2h\ y / L 3 

+ (e+—W0,*)], (AlOa) 

3t / i m 3 ' 2 

K = I J(*o,l /2) , (AlOb) 
87r27\ 7 / 

in which 

I(xo,v) = T(v+l)Z (All) 

a n d i a £ 0 = e - A 2 / 4 . 
Equation (A 10b) may be used to eliminate X from 

the expression for Q. In the limit in which e and X are 
both small, we obtain a simple result 

Q = C(KT/h)yK, (A12) 

in which C is a numerical constant. 
We have shown that in the absence of processes 

which do not conserve the total wave vector, there is a 
constant nonzero heat current in the presence of non
zero total crystal wave vector. A state with a nonvanish-
ing K, once established, could not be changed by 
collisions. Since no thermal gradient was assumed, this 
means that in the absence of umklapp processes there is 
no thermal resistivity. There is no conflict with the 
result of the analogous classical problem of the thermal 
conductivity of gas in a cylinder, since in that case a 
state of nonzero momentum is not established. 


