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The density of states for a one-dimensional system of r identical 5-function atoms randomly distributed 
on iV lattice sites (lattice spacing d) is derived in the limit as r and N approach infinity by a nonperturba-
tional method. The case for which only one atom is allowed on a lattice site (F-D) and the case for which 
this restriction is dropped (B-E) are both treated. In the limit as r/N and d approach zero, keeping the 
average number of atoms per unit length fixed, a common limit for the density-of-states function is ap­
proached in the F-D and B-E cases. This limiting function is identical with the one found by Klauder using 
a Brueckner-like approximation. 

I. INTRODUCTION 

STUDIES of the behavior of an electron in a field of 
randomly distributed scattering centers are relevant 

to the understanding of solids with defects, disordered 
alloys, liquid metals, and the like. Since the application 
of finite-order perturbation theory to this problem leads 
to misleading results, it has been necessary to devise 
other techniques and to concentrate on rather simple 
models. 

A one-dimensional model that has been the focus of 
considerable interest assumes that identical scattering 
centers are positioned along the x axis according to a 
Poisson distribution and that the potential function 
describing the interaction between the electron and 
each scatterer is a d function. Lax and Phillips1 adapted 
the node-counting method of James and Ginzbarg2 to 
find the integrated density of states for this problem 
numerically. Frisch and Lloyd3 treated it analytically 
using methods from probability theory. Klauder4 used 
the Green's function method of many-body theory to 
investigate several models. He calculated the density 
of states for the one-dimensional 5-function model in 
detail using five different types of restricted diagram 
summations. Methods similar to Klauder's have been 
applied to the problem of electrical conductivity and 
to density-of-states calculations.5 

Throughout this paper we will use a saddle-point 
method originally put forward by Korringa and the 
present author6 to treat one-dimensional models of 
random binary alloys. The starting point for this 
method is the matrix formulation introduced by 
Kramers7 and developed to a high degree of generality 
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by James8 which has been used for several treatments9,10 

of the electronic and vibrational states of one-dimen­
sional lattices. We consider arrays of r identical 5-
function atoms randomly distributed on N lattice sites 
as r and N approach infinity. The case where only one 
atom is allowed on a lattice site (F-D) and where this 
restriction is dropped (B-E) is treated. 

In Sec. I I we briefly discuss the assumptions behind 
the saddle-point method and review the equations for 
the integrated density of states obtained from it with 
particular reference to the problems under considera­
tion here. An extension of the method whereby the 
density of states can be worked out directly from a 
knowledge of the saddle points is shown. The results 
of some calculations are given in Sec. I l l , and certain 
disagreements with the exact results of Refs. 1 and 3 
are pointed out. In Sec. IV we prove analytically that 
our results, for both cases, become identical with 
Klauder's Brueckner approximation in the limit as r/n 
and the lattice spacing approach zero in such a way 
as to keep the number of atoms per unit length fixed, 
and we discuss possible interpretations of our results. 

II. THE SADDLE-POINT APPROACH 

We will consider a one-dimensional lattice made up 
of N cells each having the same length d. We wish to 
find eigenvalues of the system, 

h2 d2 r fp d* n 
+ V(x) \fr=ty, 

L 2m dx2 J 

*(0) =*(#<*), *'(0) = * ' (M* ) , 
(D 

where the potential, V(x), is defined by specifying its 
form in each cell. This problem can be treated6-8 by 
investigating the trace of the product matrix P 
= XoXiX2* • *Xjv_i, where Xn is a 2X2 matrix that de­
pends on the potential in the nth. cell and on the energy, 

8 H. M. James, Phys. Rev. 76, 1602 (1949). 
9 H. Schmidt, Phys. Rev. 105, 425 (1957). 
10 D. S. Saxon and R. A. Hutner, Phillips Res. Rept. 4, 81 

(1949); E. H. Kerner, Proc. Phys. Soc. (London) A69, 224 (1956); 
J. Hori, J. Phys. Soc. Japan 16, 23 (1961); H. Matsuda, Progr. 
Theoret. Phys. (Kyoto), Suppl. 23, 22 (1962); R. E. Borland, 
Proc. Phys. Soc. (London) A77, 705 (1960). 
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E. The eigenvalues of the system defined in Eq. (1) 
are those energies for which f(E) = trace P = 2 . 

For the models that we are interested in, the poten­
tial is defined by giving the number of identical 5-
function atoms in each cell. If the nth. cell contains q 
atoms, then in the interval nd^=x^(n+l)d, 

V(x) = -q(h2P/nid)d(x- (n+i)d), 

where P is a positive quantity. The exact form of the 
matrix Xn will depend on the method used to construct 
it. Using the method of James,8 we obtain for a cell 
containing q atoms 

Aq=A0+qJ), (2) 
where 

( cosad. —a sinad\ 

)> (1/a) sinad, cosad I 
and 

/ — sinad, — a:(coSG!d+l)\ 

^ (cosad— l ) /a , — sinad / 
D=(P/ad)[ 

witha=(2mE)^2/h. 
Let us first consider a system in which r atoms are 

distributed over the N cells with the restriction that 
no more than one atom can be in a given cell. The 
product matrix for such a system is of the form 
P*(A7,r) = AoAoAi«--AiAoAi, where the order in which 
the Ao and Ai matrices appear in this product is the 
same as the order in which the empty and filled cells 
appear in the crystal. The superscript i indicates which 

of the f J distinct crystals that can be formed in this 

way is meant. We know that the eigenvalues for a 
particular crystal are those energies for which /*(£) 
= trace P*=2. Although each crystal will have a dif­
ferent set of eigenvalues, we feel sure that in the limit 
as N and r approach infinity, the distribution of eigen­
values (as described by a density of states or integrated 
density of states function) will approach a limiting 
distribution for all but a fraction of the crystals which 
goes to zero in the limit. We make the statistical as­
sumption that this limiting distribution can be found 
from the asymptotic form of the ensemble average of 
the trace functions, 

<fh 

and is in fact the distribution of the energy values for 
which lini2v,r-*oo(/)F-D=2. We will sometimes loosely 
refer to these energy values as the eigenvalues of the 
random system. This assumption is also discussed in 
Sec. I, and possible difficulties with it are given in 
Sec. IV. The coefficient of zr in the expansion of 
(Ao+zAi)^ is the sum of all possible products of (N-r) 
matrices Ao with r matrices Ai. Also, the sum of the 
traces of a set of matrices is the trace of the sum of the 

matrices. Thus, the average trace can be found from 

< / ) P - D = trace(P)F-D, (3) 

where 

< P > F - D = ( ) — y ^ A o + A i s ^ a r ^ d s , (4) 

the contour of integration enclosing the origin. The 
subscript F-D is used for this case because the scatter­
ing atoms are distributed as noninteracting particles 
obeying Fermi-Dirac statistics. 

The r atoms can also be distributed over N cells in 
such a way that any number of atoms (up to r) can 
appear in a cell. To describe such distributions by the 
matrix method it is necessary to use the matrices Aq 

of Eq. (2) with £=0 , 1, 2 • • •, r. The sum of all possible 
products of N matrices such that J^qqX (number of 
times Aq appears) — r is given by the coefficient of zr 

in the expansion of (Ao+Ais-fA22
2+A32

3H ) N , and 
the number of such products that can be formed is r; 
be found from 

r> Thus, the average trace for this case can 

</)B-E==trace(P)B-E, (5) 

where 

<P>B-E = 
/N+r-ly1 1 

) ^ / ( A -
+A l 2+A222+-.-)N 

Xz-^dz. (6) 

The atoms in this case are distributed as noninter­
acting Bose-Einstein particles, which accounts for the 
subscript. I t must be admitted that the B-E case has 
no physical meaning because of the superposition of 
atomic potentials, but it is useful for discussing some 
formal questions that have been raised by other treat­
ments of this problem. 

The integrals shown in Eqs. (4) and (6) could be 
used to find (P) for any kind of atomic potential. They 
simplify considerably for 5 functions, however, because 
of the particularly simple form that the matrices Aq 

take for this case. Using Eq. (2) and the Taylor's 
expansion for 1/(1—2;) we can rewrite (P)(F-D^ and 
(P)B-B in the form 

( P ) F - D = ( ) — rf"(l+2)^Mi^2r^&, 

(P )B 

where 

( ) —- f (l-z)-NM2
Nz~r~1dzJ 

(7) 

M 1 = A 6 + Z D / ( l + 2 ) , 

M 2 = A 0 + z D / ( l - 2 ) . 
(8) 

There are a number of ways to evaluate the A^th power 
of the matrices Mi and M2, but we will use a method 
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adapted from the work of Luttinger.11 The matrices 
Gi and G2 are defined by 

where 

Gi= (Mi—cos^I)/i sin/>, 

G2= (M2—cosgI)/i sing, 

cos^=JtraceMi cosq=§traceM2, 

(9) 

(10) 

and I is the unit matrix. From Eq. (9) and the fact 
that G i 2 =G 2

2 =I it can be shown that Mi=exp(ipGi) 
and M2 = exp (iqG2); hence, 

Mi*=cosNpI+i sinTV^Gi, 

M2
N=cosNql+i smiVgG2. 

( ID 

These expressions can be inserted in Eqs. (7), and the 
trace taken to find ( / ) F - D and ( / )B-E- Since trace 
Gi=trace G 2 = 0 for all z, the second terms in Eqs. 
(11) do not contribute. We obtain, then, 

with 

(f)^=K++K~, 

< / ) B - E = £ + + Z T , 

expNg±dz, 

/N+r+ly1 1 r 
= ( — A , 

\ r / 2iri J 
expNh±dz, 

and 
g±=±ip+hi(l+z)-(£+l/N)]m, 

h±=ztiq-\n(l-z)-^+l/N)\my 

(12) 

(13) 

(14) 

where £ = r/N. 
Since our primary interest is in infinite crystals, it is 

natural to use the saddle-point method to evaluate the 
integrals in Eqs. (13) asymptotically in the limit as 
N and r approach infinity. 

For the F-D case the equations for the saddle points 
of K+ and K~, dg±/dz=0, lead to the same quartic 
equation. After factoring out 1+3, the following cubic 
equation is obtained: 

n—0 

F^-2R+P(l-28), FQ=-2PX28, 

F 2 = - P ( l + 2 £ ) + 2 X [ 2 £ - P ( l - 2 £ ) ] , (IS) 

F1=±XP8-2X2(R+P8), 

where X = f / ( l - £ ) , R=ad cotad, and 8 = {md2/WP2)E. 
In terms of the dimensionless energy 8 introduced above, 
R can be rewritten in the form R= (IS)1'2 cotP(28)^2. 

If the energy is such that Eq. (15) has one real and 
two complex-conjugate roots, and investigation of the 
function Reg+ shows that the saddle point which must 
be used to evaluate K+ is one of the complex roots 

11 J. M. Luttinger, Phillips Res. Kept. 6, 303 (1951). 

which we will call L The Riemann sheets that make 
g± single valued can be chosen such that g_(s*) = g+*(z). 
The saddle point for K~ turns out to be t* and K~ 
= (K+)*. The average trace can now be evaluated for 
this case: 

</>F-D = Qi cos(iWi+Si) expT^Ti, (16) 
where 

^ = I m g + ( 0 , 

e i = 2 [ f ( l - f ) ] 1 / 2 | g +
, , ( 0 h 1 / 2 , (17) 

7 i = R e g + ( 0 - M i , 

8 i = - J a x K +
/ , ( 0 . 

The quantity m and other factors in these equations 

were taken from an asymptotic expression for f J 

which can be found from Stirling's approximation or 
the saddle-point method 

( ^ ) = [ 2 7 r i V K l - S ) ] - 1 / 2 e x p ^ i , 

M i = - ( l - $ ) l n ( l - £ ) - * l n £ . 

From the fact that the saddle-point method gives the 
leading term in an asymptotic expansion, it follows 
that 7i must be positive. Also, although it has no 
effect on the value of the integral in Eq. (16), it is 
convenient to choose our Riemann sheets in such a 
way that 0i is a nondecreasing function of the energy. 

If the energy is such that Eq. (15) has three real 
roots, it can be shown that | ( / ) F - D | is greater than 2. 
We will call such energies forbidden. Energies for which 
Eq. (15) has one real and two complex roots will be 
called allowed. 

In accordance with our statistical assumption, we 
take the eigenvalues of the random system to be those 
energies for which ( / ) F - D = : 2 . From the form of Eq. 
(16) it can be seen that if S± is a nondecreasing function 
of the energy then the number of eigenvalues of the 
system having energies less than some allowed energy 
8 is N6I(8)/TT. In order to compare with other work, 
we will be interested in the number of states per atom 
having an energy less than 8, i.e., the integrated density 
of states 

tfi(S)=(lM)0i(S). (18) 

Since there are no eigenvalues in the forbidden energy 
regions, the above definition can be extended if we 
define 0i in such a region to be a constant equal to the 
maximum value that it took on in the preceding 
allowed region. Thus, by solving Eq. (15) for a large 
number of energies and using the saddle points to 
evaluate 0i, we can plot the integrated density of 
states as a function of the energy. The energy depend­
ence of other functions in Eqs. (17), such as 71, can 
also be investigated, but we will not make use of them 
in this paper. 

I t is useful to notice that the density of states 
pi(8) = dNi/d8 can be found from the saddle points 
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without going through the process of numerically dif­
ferentiating Ni(E). Using Eq. (17), we have 

ddi 

dS -*£W dg+ dt dg+\ 

dt dS 68/ 

but dg+/dt=0 because this is just the equation that 
defines the saddle-point /. The only explicit energy 
dependence of the function g+ comes from the function 
p defined in Eq. (10). Carrying through the differentia­
tion, we have 

X R e { [ l + ( ^ - l ) / / 2 P < S ( l + 0 ] / r 1 / 2 } , (19) 
where 

f1=28+2Rt/P(l+t)-t2/(l+t)2, 

and R was defined following Eq. (15). 
An analysis similar to the above can be carried out 

for the B-E case. The equations for the saddle points 
of L+ and L~~, dk±/dz=0, again lead to the same 
quartic equation. After factoring out 1—z, the follow­
ing cubic equation is obtained: 

Y,Bnz
n=0, 

Bs=-2R-P(l-28), £ 0 = - 2 P F 2 £ , 

B2=-P(l+28)+2Y[_2R+P(l-28)l, (20) 

B1=4YP8-2Y2(R-P8), 

where F = £ / ( l + £ ) and the other quantities were de­
fined for Eq. (15). The energies for which this equation 
has one real and two complex-conjugate roots are 
called allowed, while those for which it has three real 
roots are called forbidden. For all forbidden energies, 
| ( / ) B - E | > 2 . The saddle point that is used to evaluate 
L+ for allowed energies is one of the complex roots of 
Eq. (20) which we will call u. The corresponding saddle 
point of Lr is w*, and L~= (£+)*. The average trace 
for this case is 

< />B-E= (?2 cos(Nd2+d2) expNy2, (21) 
where 

62 = Imh+(u), 

e2=2K(i+OT/2iv,wi-l/2, 
72=Re^+(^)-M2, (22) 

We have used the asymptotic expression 

fN+r-l\ r:> [27r^( l+l)]- 1 / 2expiVM2, 

where 

w=(l+£)ln( l+£)-$ln{. 

FIG. 1. Integrated density of states for negative energies, 
e = 0.1. The solid curve is calculated from Eqs. (25) and (26) 
and represents the continuum case. 

The integrated density of states for this case is given by 

N2(8)=(IM)62(8), (23) 

and the density of states can be calculated from 

p2(8) = -Re{Zl+(R-l)u/2P8(l-u)-]f2-v*}, (24) 

where 
f2=28+2Ru/P(l-u)~u2/(l-u)2. 

III. RESULTS OF CALCULATIONS 

We will describe our calculations in terms of the 
dimensionless variables, e and 8, used in Refs. 1, 3, 
and 4. I t is easy to show that the average number of 
atoms per unit length in the models we are consider­
ing is given by n=£/d. The wave function and energy 
of the bound state of an isolated 5-function atom as is 
used in Sec. I I are given by ^ o ^ exp(—KQ\X\) and E0 

= — (h2/2fn)Ko2, where Ko=P/d. The dimensionless den­
sity e is denned by e=n/Ko=£/P. We have already 
used the dimensionless energy 8=—^E/E0 in Sec. I I . 

Inserting P = £ / e into the expressions of Sec. I I we 
have calculated the integrated density of states as a 
function of 8 for F-D and B-E models using various 
values of £ and e. Some of these calculations, for e = 0.1, 
are shown in Fig. 1. I t can be seen that the curves for 
the F-D and B-E cases approach the same limiting 
curve as J approaches zero. This approach is even 
more rapid in the positive energy region which is not 
shown in the figure. From the construction of our 
models it is clear that the distribution of scattering 
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TABLE I. Integrated density of states for 
positive energies e = 0.1. 

Lax and Continuum 
(2S)1/2 Phillips case 

0.05 TT L044 1.0607 
0.10 TT 1.442 1.4428 
0.15 7T 1.882 1.8767 
0.20 x 2.342 2.3283 

atoms approaches a continuous distribution if £ and d 
approach zero in such a way as to keep n fixed. We will 
call this the continuum case. 

Under the assumption that £ is very small the ex­
pressions of Sec. I I simplify. The quantity R can be 
expanded in a Taylor's series, R= 1 — § £2(§/e2H . The 
saddle points for the F-D and B-E cases become equal 
and proportional to £. Thus, t=u=%v, where D is a 
complex root of 

2ev*+(l+28-4:e)v2+2(e-2g)v+2g=0. (25) 

The density of states and integrated density of states 
are given by 

p(S) = l A a R e / - ^ , 

iV(5) = l /«Re/ 1 ' »+ l /x Im( t>- l i i t> ) > 

where 

/=2(S+«>). 

We have no doubt that this limiting process is con­
vergent because the integrated density-of-states curve 
calculated from Eqs. (18) and (23) for e=0.1 and £ 
= 0.01 is so close to the one calculated from Eq. (26) 
that it could not be displayed in Fig. 1. In the next 
section we will show that this expression for the den­
sity of states for the continuum case is identical 
with one obtained by Klauder using the Brueckner 
approximation. 

Klauder has already compared his results with the 
exact results of Refs. 1 and 3 so only a few points will 
be touched on here. I t seems certain that the dis­
tribution of scattering atoms is the same for our con­
tinuum model as in the Poisson model. 

For €>1 our N(8) curves for the continuum case 
agree very well with the exact results for both positive 
and negative energies except that their curves show a 
small tail extending down to arbitrarily low energies. 
The occurrence of very low energy eigenvalues that 
would cause such a tail has been attributed to the 
superposition of atomic potentials. For finite £ we do 
get a tail extending toward low energies for our B-E 
model, but this disappears as £ approaches zero. Since 
the results for the B-E and F-D models become 
identical as £ —» 0, it can be seen that the superposition 
of atoms has no effect on the integrated density of 
states per atom for the continuum case in our results. 

For e < l our continuum results agree with the exact 
results for positive energies as is shown for € = 0.1 by 

the values of N(8) given in Table I. For negative 
energies, however, there are serious discrepancies. To 
illustrate this we plot the data points from Refs. 1 
and 3 for e = 0.1 in Fig. 1. The disagreement between 
these curves can be discussed in terms of three main 
features: (1) The exact results predict an infinity in 
the density-of-states function for 8=— f (the energy 
of the bound state of the S-function atoms in dimen-
sionless units). This agrees with a formula first derived 
by Schmidt9 and improved by Lax and Phillips. The 
Schmidt formula was also derived from Frisch and 
Lloyd's expressions by Morrison.12 According to our 
calculations the density of states for the continuum 
case has a maximum in the negative energy region for 
e < | . For e=0.1 , the maximum value pm a x= 1.35259 
occurs at an energy 8= — 0.124; for €=0.01, pm a x 

= 3.25318 at <S= - 0 . 4 5 6 ; and for €=0.001, / w 
= 10.08699 at § = - 0 . 4 9 6 . From the trend shown by 
these numbers, it can be seen that our results agree 
with the exact ones only in the limit as e—>0. (2) 
Klauder has already pointed out that the integrated 
density of states for the continuum case at 8=0, iV(0), 
becomes equal to 1 for all e ^ | . Since we have an ex­
pression for N(8) [Eq. (26)] we can go even further 
to show that for any e 

iV(0)=(^+sin^)/7r, (27) 

where 
cos^=l— j e . 

In Table I I we compare the exact values for N(0) with 
those obtained from Eq. (27). We also show calcula­
tions of this quantity based on the Schmidt approxi­
mation mentioned above and the optical model pro­
posed by Lax and Phillips and rederived from their 
respective points of view by Frisch and Lloyd, and 
Klauder. Our expression for N(0) becomes identical 
with the optical model for large e. I t can be seen from 
this table that the results of Eq. (27) agree better with 
the exact results over the whole range of e than those 
of either of the approximation methods, but the agree­
ment is still not good. Our results also show a band of 
forbidden energies in the neighborhood of E = 0 for 
€ < | that is not found in the exact results. (3) The 

TABLE II. Integrated density of states for 8 = 0 and various e. 

6 

0.01 
0.10 
0.25 
0.50 
1.00 
2.00 
5.00 

10.00 

Lax and 
Phillips 

0.986 
0.892 
0.768 
0.607 
0.456 
0.320 
0.200 
0.141 

Continuum 
case 

1.0000 
1.0000 
0.8183 
0.6090 
0.4406 
0.3150 
0.2005 
0.1421 

Schmidt 

0.9901 
0.9112 
0.8107 
0.6982 
0.5774 
0.4874 
0.4465 
0.4445 

Optical 
model 

4.5016 
1.4235 
0.9003 
0.6366 
0.4502 
0.3183 
0.2013 
0.1424 

12 J. A. Morrison, J. Math. Phys. 3, 1 (1962). 
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tail on the integrated density-of-states curve extending 
into negative energies becomes more pronounced for 
smaller e. A similar effect occurs for our B-E case for 
finite £, but it vanishes as £ approaches zero. 

IV. DISCUSSION 

An alternate approach to this problem is provided 
by the fact that the density of states for an electron 
moving in an array of scattering centers is propor­
tional to the trace of the Green's function for the 
system. Klauder used this approach, making the sta­
tistical assumption that the density of states for a 
random system can be obtained from the ensemble 
average Green's function. He was then able to recast 
the problem into the form of a Fermi field (the electron) 
interacting with a Bose field (the scattering atoms). 
Diagrammatic methods can be used to analyze the 
calculation by perturbation theory of the Green's func­
tion for such a system. This problem is simpler than 
the ones that normally occur in solid-state theory be­
cause the bosons do not interact with each other and 
there is only one fermion. 

For the one-dimensional problem with 5-function 
potentials Klauder was able to calculate the density 
of states for five different types of restricted diagram 
summations. He called his highest order approxima­
tion the Brueckner approximation because of the struc­
ture of the terms included. In this approximation he 
obtained 

P (£ ) = Im25/(7r€), (28) 

where 2 5 is a root of the cubic equation 

2(§S 5
3-2((S+€)S5 2+S 5-1 = 0. (29) 

Comparing Eqs. (26) and (28) it can be seen that the 
results for our limiting case are the same as Klauder's 
if the identification 

2 5 =C2(£+€f l ) ] - 1 / 2 (30) 

can be made. Substituting this expression for 2& into 
Eq. (29) leads to an equation for v that is identical 
with Eq. (25). 

I t is interesting to note that the expression for the 
density of states obtained from Eqs. (30) and (28) 
has the same form as that of the optical model of Lax 
and Phillips except that the quantity ev in 2 5 is replaced 
in their expression with e. Their optical model de­
scribes the motion of an electron in a constant average 
potential which, in dimensionless units, is just e. Re­
placing e with ev is equivalent to using an average 
potential that is both complex and energy-dependent. 
We are thus led in a natural way to a formulation of 
our results and Klauder's that is like the optical model 
used in scattering theory. 

For the problems that we have been considering 
here, the primary difference between the Green's func­
tion method and the matrix method is that the two-
point boundary conditions for the eigenvalue problem 

are incorporated into the Green's function at the 
outset, whereas boundary conditions at only one point 
(e.g., defining the solution and its derivative at one 
point) are used in the matrix method. Since the 
Kramers' matrix gives the solution and its derivative 
at one end of the crystal in terms of the values at the 
other end, the two-point boundary conditions that 
serve to define the eigenvalues can be invoked at a 
later stage of the calculation. 

At the present time, we do not know why the results 
that we get by treating an average trace function in a 
manner that appears to be exact in the asymptotic 
limit are identical with the results Klauder obtained 
by leaving out certain terms in the evaluation of an 
average Green's function. This Brueckner approxima­
tion seems to occupy a special position in the hierarchy 
of approximations to the Green's function in that the 
technical difficulties encountered in trying to go beyond 
it appear rather fundamental. From the comparison of 
our results with the exact calculations, it appears that 
averaging the trace functions performs a smoothing 
process on the density-of-states function. If one as­
sumes that the average Green's function will give the 
exact density of states if it can be completely evaluated, 
it follows that the omission of diagrams which lead to 
the Brueckner approximation performs exactly the 
same smoothing process as averaging the trace func­
tion. Such a relationship is surprising, and an investi­
gation of it might lead to a better understanding of the 
meaning of the Brueckner approximation for this 
problem. There is also the question as to whether the 
saddle-point approach will give the same results for 
other one-dimensional problems as the Green's func­
tion method when the latter is evaluated to the level 
of approximation discussed here. An affirmative answer 
to this question will mean that we have a simple 
method to investigate the gross features of the density 
of states and integrated density of states for a large 
variety of one-dimensional problems as described in 
I. On the other hand, the possibility cannot be ruled 
out that averaging the Green's function performs the 
same smoothing process on the density of states as 
averaging the trace function. This would provide the 
simplest explanation for the identity of the results, 
but it would mean that the ensemble average Green's 
function could not be used even in principle to find the 
exact density of states for a random system. I t is 
harder to see how this smoothing would arise in the 
manipulation of Green's function than with trace 
functions. 

Since the results of Frisch and Lloyd for infinite 
systems agree almost exactly with those of Lax and 
Phillips for systems made up of only 500 atoms, it is 
clear that the density of states per atom for most 
random chains having a given density e must converge 
very rapidly to the asymptotic function for chains 
with that density. Since our results do not agree with 
theirs, it follows that the trace functions do not con-
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verge. From general theorems7 about the trace func­
tions, we know that they must oscillate rapidly as the 
energy traverses an allowed region with periods of the 
order of 1/N, maxima greater than 2, and minima 
less than —2. From our calculations on specific sys­
tems, we know that the trace functions for the individual 
chains /* are given by 

f=2CN cos(Nd+5)+viy (31) 

where 

lim <^> = 0, (32) 
N,r->°o 

and C is larger than 1. There is nothing in the restric­
tion of Eq. (32) that requires limNir^X)vi=0 or that 

I. INTRODUCTION 

THE purpose of this paper is to propose a theory of 
the electronic structure of alloys which is based 

on earlier work of Edwards and the author.1-4 In this 
earlier work, the electronic structures of various dis­
ordered systems were discussed using a model of inde­
pendent electrons moving in a total potential formed 
from individual ionic potentials which do not overlap 
each other. The positions of the ions are supposed to 
be given by some probability distribution. For example, 
in the case of a liquid the probability distribution can 
be taken as the distribution of given ionic positions as 

* Research partially supported by the U. S. Advanced Research 
Projects Agency, Contract SD-131-B. 
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prevents the vi from making a systematic contribution 
to the density of states. The only conclusion that can 
be drawn is that the vi must be of the same order of 
magnitude and must oscillate as rapidly as the cosine 
term in Eq. (31). Although it is fairly simple to devise 
a general argument that explains why our procedure 
does not give exact results, it is more difficult to devise 
one that also explains why it gives as good an approxi­
mation as it does. 
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the liquid changes in time. The density of states can 
then be written down in terms of an average of the 
independent electron propagator over the distribution 
of systems. The averaging process can only be done 
approximately, but the approximation used is actually 
exactly true for a perfectly ordered system. The results 
obtained, therefore, give the correct limit in the case 
when the substance being considered has the form of a 
perfect crystal. The formalism is discussed in more 
detail later in this section. In the case of a perfect 
lattice this formalism is identical with that of Kohn 
and Rostoker,6 which in the manner it will be applied 
in this paper avoids some of the difficulties usually 
associated with d electron band structure calculations. 
In such a formalism it is not necessary to distinguish 
whether the electrons are localized or free, though it is 
always helpful if they do belong to one of the limiting 

s W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954). 
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A theory of the electronic structure of alloys is presented which takes proper account of the symmetries 
present or absent in the alloy and does not rely on using Bloch's theorem either for the alloy or for the host 
metal. The band structure is worked out in an approximation which is exact for an ordered alloy and which 
gives a simple picture for a disordered substitutional alloy. Using this theory the band structure for the 
d electrons of the transition metal alloys is qualitatively discussed. The rigid band model is shown to fail 
for alloy constituents having a large valency difference and it is shown that the theory of this paper agrees 
with the experimental results both for magnetic moments and specific heats in such cases. A simple physical 
interpretation of these results is given using arguments similar to those of the conventional tight binding 
approximation. It is suggested that the difference between NiAl and FeAl alloys might be due to the alumi­
num conduction band lying above the nickel d band so that the latter fills, whereas the iron d band does 
not lie below the aluminum conduction band. No reference is made to theories of ferromagnetism, though 
it is possible that the methods used in this paper could be used to obtain a great deal more information from 
alloys of the transition metals than is available at the moment. 


