
A130 J . S . F A U L K N E R 

verge. From general theorems7 about the trace func
tions, we know that they must oscillate rapidly as the 
energy traverses an allowed region with periods of the 
order of 1/N, maxima greater than 2, and minima 
less than —2. From our calculations on specific sys
tems, we know that the trace functions for the individual 
chains /* are given by 

f=2CN cos(Nd+5)+viy (31) 

where 

lim <^> = 0, (32) 
N,r->°o 

and C is larger than 1. There is nothing in the restric
tion of Eq. (32) that requires limNir^X)vi=0 or that 

I. INTRODUCTION 

THE purpose of this paper is to propose a theory of 
the electronic structure of alloys which is based 

on earlier work of Edwards and the author.1-4 In this 
earlier work, the electronic structures of various dis
ordered systems were discussed using a model of inde
pendent electrons moving in a total potential formed 
from individual ionic potentials which do not overlap 
each other. The positions of the ions are supposed to 
be given by some probability distribution. For example, 
in the case of a liquid the probability distribution can 
be taken as the distribution of given ionic positions as 
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prevents the vi from making a systematic contribution 
to the density of states. The only conclusion that can 
be drawn is that the vi must be of the same order of 
magnitude and must oscillate as rapidly as the cosine 
term in Eq. (31). Although it is fairly simple to devise 
a general argument that explains why our procedure 
does not give exact results, it is more difficult to devise 
one that also explains why it gives as good an approxi
mation as it does. 
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the liquid changes in time. The density of states can 
then be written down in terms of an average of the 
independent electron propagator over the distribution 
of systems. The averaging process can only be done 
approximately, but the approximation used is actually 
exactly true for a perfectly ordered system. The results 
obtained, therefore, give the correct limit in the case 
when the substance being considered has the form of a 
perfect crystal. The formalism is discussed in more 
detail later in this section. In the case of a perfect 
lattice this formalism is identical with that of Kohn 
and Rostoker,6 which in the manner it will be applied 
in this paper avoids some of the difficulties usually 
associated with d electron band structure calculations. 
In such a formalism it is not necessary to distinguish 
whether the electrons are localized or free, though it is 
always helpful if they do belong to one of the limiting 

s W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954). 
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A theory of the electronic structure of alloys is presented which takes proper account of the symmetries 
present or absent in the alloy and does not rely on using Bloch's theorem either for the alloy or for the host 
metal. The band structure is worked out in an approximation which is exact for an ordered alloy and which 
gives a simple picture for a disordered substitutional alloy. Using this theory the band structure for the 
d electrons of the transition metal alloys is qualitatively discussed. The rigid band model is shown to fail 
for alloy constituents having a large valency difference and it is shown that the theory of this paper agrees 
with the experimental results both for magnetic moments and specific heats in such cases. A simple physical 
interpretation of these results is given using arguments similar to those of the conventional tight binding 
approximation. It is suggested that the difference between NiAl and FeAl alloys might be due to the alumi
num conduction band lying above the nickel d band so that the latter fills, whereas the iron d band does 
not lie below the aluminum conduction band. No reference is made to theories of ferromagnetism, though 
it is possible that the methods used in this paper could be used to obtain a great deal more information from 
alloys of the transition metals than is available at the moment. 
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classes. The philosophy is to start from the t function 
rather than the potential. It is possible that one can 
estimate the former to a good degree of accuracy. 

The results of applying such a technique to alloys are 
naturally rather complicated. The problem is clearly 
already more involved than a pure metal band struc
ture calculation, which is by itself a formidable under
taking. It so happens, however, that the type of alloy 
in which the impurity atoms substitute for host atoms 
on randomly distributed lattice sites is especially simple 
to treat. Thus, even though the formalism (which is 
given in the Appendix) is valid for any type of alloy 
regardless of the ordering involved (i.e., solid solution, 
ordered, liquid, etc.), the remarks in this paper will 
deal only with this simple, but physically very im
portant, case. 

In order to emphasize the new features to which this 
theory leads, it is helpful to neglect many important 
physical effects. It is particularly desirable to avoid any 
band structure calculation, since the details involved 
there would completely cloud the general changes 
brought about by the formalism. It is fortunate that 
the transition metals, which are involved in most of 
the important alloys, possess a very useful simplifying 
feature. The d bands in these metals interact with their 
s and p band, but only in a way which does not seem 
to have many important consequences for the density 
of levels. Thus, following many band calculations, it 
is helpful to ignore any interactions between the d 
bands and the conduction bands. It is then possible to 
discuss the behavior of the alloy d bands in a qualitative 
manner without needing to do a band structure calcula
tion and without losing all the physical content of the 
theory. 

The problem of f erromagnetism is completely avoided 
in this paper. The remarks made about magnetic 
properties depend only on the filling or emptying of the 
d bands associated with the ferromagnetic elements 
and it does not matter how such filling leads to any 
given ferromagnetic effect. What one should do is to 
take the theories of ferromagnetism and repeat the 
calculations of this paper in a quantitative manner—a 
laborious task. 

The behavior of the d bands is found to be similar 
to the rigid band model in many cases, except when 
the atomic numbers of the components of the alloys are 
significantly different. Thus the new model predicts 
correctly the filling of the d band, i.e., the reduction 
in the magnetic moment per atom, which occurs when 
chromium, vanadium, or manganese are alloyed with 
cobalt or nickel. The difference between the rigid band 
model and that of this paper is not trivial, even when 
they lead to the same physical result. In the alloys just 
mentioned, the energy levels of the d states in both 
host and impurity atoms each form their own bands, 
though the theory of this paper in no way implies that 
the electrons in such bands are localized about the 

type of atom, the energy level of which gave rise to 
that band. Indeed, the concept of the position of any 
given electron cannot be properly discussed in the theory 
to be presented. It does seem, however, that some prog
ress can be made in such a discussion, and it is hoped 
that this calculation will be presented in a later paper. 

An apparently less complicated problem is that of 
the addition of aluminum or copper to iron or nickel. 
In the case of iron the impurity conduction electrons 
do not appear to go into the d band, whereas in nickel 
they do. The important feature here is the relative 
positions of the host and impurity energy levels. The 
suggestion of this paper is that the Fermi level is lower 
compared to the aluminum Fermi level in nickel than 
in iron. The reasons why this is so are not clear, but 
probably depend mainly on arguments concerning 
screening and electrical neutrality and fall outside the 
scope of this paper. 

A detailed discussion of the behavior of mixed s and 
p bands is much more difficult. The s and p bands are 
usually far from being tightly bound, which eliminates 
one possibility of providing a model of the bands. There 
are four energy levels involved and at least four pa
rameters indicating the widths of the bands in the 
pure metals. It is not clear that such a calculation can 
be simplified in any case in which it is not trivial. 
Without any simplification the problem is rather more 
difficult than that of a band structure calculation fol
lowing the method of Kohn and Rostoker. Only a rough 
analysis of this case is attempted in this paper, from 
which it does seem likely that a "rigid band" model 
such as was used by Cohen and Heine6 will in general be 
reasonable because of the large bandwidths involved. 

The principal feature of the theory to be presented 
here lies in the choice of potential to be used. One is 
used to describe the potential in a pure metal by sup
posing that a self-consistent calculation has been carried 
out to take into account the electron-electron inter
actions. The resulting potential and the independent 
quasiparticles moving in it are the basis of band struc
ture calculations. It is an empirical fact that this 
description of the pure metal can lead to excellent agree
ment with experiment. Now suppose that a similar 
self-consistent calculation has been carried out in any 
given alloy. The potential at any given site will depend 
both on the type of atom at the site and on the atoms 
occupying the neighboring sites. The dependence of a 
given potential on the occupants of the neighboring 
sites is probably not large. In any case, the theory 
depends on there being no local deviations from the 
lattice structure due to either small or large impurity 
atoms. This absence of deviation from perfect lattice 
structure will be assumed throughout, as will the inde
pendence of any given potential on the types of atoms 
in its neighborhood. The work of Friedel7 suggests that 

6 M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958). 
7 J. Friedel, Advan. Phys. 3, 446 (1954). 
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FIG. 1. Schematic representation of the alloy potential used. 

this assumption is best in the transition metals. Thus, 
at each host atom site, there will be one potential and 
at each impurity atom site another. The potential thus 
defined for a given atom will alter from alloy to alloy 
and even as the solvent/solute ratio changes. Such 
alterations will probably be small and their effect may 
well be less than that due to the changes in lattice pa
rameters on alloying. Both these effects will be ignored 
in the rest of this paper, despite the fact that the lattice 
constant is always a parameter in the formalism. When 
the structure of the crystal changes, however, the 
potential may well change significantly and this change 
must be borne in mind. 

Thus, the picture of the alloy potential which one 
has after making the calculation self-consistent and 
neglecting some of the less important features is as 
shown in a schematic one-dimensional representation 
in Fig. 1. I t is convenient, but not necessary to ignore 
the fact that the value of the potential midway between 
two atoms may depend on what types the atoms are. 
This value of the potential may then be chosen as the 
zero of energy so that the atomic potentials can be 
assumed (1) spherically symmetric and (2) zero outside 
a certain sphere, the radius of the spheres being such 
that the potentials do not overlap. Such potentials 
are commonly used in pure metal band structure 
calculations.8 

The alloy potential has, therefore, been reduced to 
having the following four properties: 

(1) The potential at each site is spherically sym
metric and zero outside a certain radius. 

(2) The potentials on two neighboring sites do not 
overlap. 

(3) The potentials corresponding to sites occupied by 
atoms of any specific kind are identical. 

(4) The potentials depend only on the structure of 
the crystal and not on the lattice constant or relative 
concentrations of the alloy constituents. 

Condition (4) is a simplifying assumption which could 
be relaxed should it be necessary. Given a crystal po
tential satisfying conditions (1) to (4), it is a fairly 
straightforward piece of algebra to extend the theory 
of I to the alloy problem. This extension and a dis
cussion of the geometric approximation used in the 
theory is given in the Appendix. I t is not necessary to go 
any further into the theory in this introduction since in 
the case of disordered substitutional alloys, with which 

8 F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961). 

the bulk of the paper is concerned, there is a simple 
physical picture using concepts similar to those of the 
tight binding approximation which leads to the same 
result. I t will be helpful if the reader has some idea of 
the work presented in I, but it is hoped that this paper 
will be, for the most part, understandable without 
knowledge of I. The algebra presented in the Appendix, 
however, depends closely on the details of I. 

Before proceeding to the details of the calculation, it 
is perhaps worthwhile to give a simple illustration of the 
way in which it is suggested that the rigid band model 
is inadequate. One way of viewing the tight binding 
approximation is to consider the ions which are to 
form the lattice dispersed so far apart that they have 
no effect on each other. Consider a single bound energy 
level. If now the ions are moved together, the bound 
energy levels are all the same if one is considering a 
pure metal, and therefore, being degenerate, will actu
ally split to form a band. The total density of levels in 
the band will stay constant, equal to the number of 
ions present (forgetting multiple occupancy due to spin 
or angular momentum degeneracy). As the ions come 
closer and closer together, the band broadens further 
and further and reduces its height. 

If the same process were to be carried out in an alloy 
of two types of ion, then what happens depends on the 
relative positions of the energy levels in the different 
ions. Consider now one bound level in each type of ion 
(one is, of course, thinking of the d levels in transition 
metals). When the ions start to approach each other, 
but at such a density that they are still well separated, 
the degeneracy will split the levels into bands, one band 
for each of the types of ion present. These bands will 
be narrow and will not overlap. The electrons in either 
band will be localized around the type of ion from 
which that band has originated. What happens when 
the ions come closer together now depends on the band-
widths and on the splitting between the energy levels. 
If the bandwidths are very much greater than the 
splitting, then the separate bands will merge into a 
composite band holding one electron level for each ion 
present. This is just the rigid band model. If, on the 
other hand, the splitting is much greater than the 
bandwidths, the bands will to a good approximation 
stay separate, each holding one electron level for each 
ion of the appropriate type present. 

These two limiting cases are illustrated in Fig. 2, in 
which the pictures for infinitesimal densities, extremely 
small densities 5, and metallic densities are compared. 
These pictures will be seen later to be very similar to 
those which arise from the theory of this paper. This is 
not surprising, since it will be seen in what follows that 
the situation considered is akin to a tightbinding situa
tion and merely rewrites the arguments presented above, 
but using a firmer mathematical foundation. 

The relevant parts of the previous work will now be 
briefly reviewed in order that some of the formulas may 
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be used later. In I the density of states, p(k,£), written 
in the form 

K M )^(^7< I m r ( k ) ) ' 
where (1) 

T(k) = f exp(-fk[x-x ,])r(x,x ,)^xJx / , 

and where T(x,x') is the total scattering matrix of the 
electron on the crystal, is expanded in terms of the 
total scattering matrices (or / functions) for each indi-
vidul potential. Dirac brackets denote the averaging 
over the distribution of systems. p(k,E) is defined for 
all k, and is not restricted to any Brillouin zone so that 
one is dealing with free electrons and not with Bloch 
waves. The density of levels of the system is given by 

n{E) -fa M)dk. 

The result given in I for the density of states is written 
in terms of (i) a matrix G which depends on the struc
ture of the lattice and on k and E, but is in no way 
dependent on the potential and (ii) a diagonal matrix t, 
the elements of which are the angular momentum com
ponents of the / function or total scattering matrix for 
the potential and are not dependent on the lattice. 
Then according to I, 

(r(k)) = ^ ( 4 7 r ) 2 i : F L ( k ) F ^ ( k ) { / z ( ^ ^ ^ 
LL' 

+[t(^,£1/2){G+GTG+G^GTG+- - •} 

Xt(2P'',*)]LL'>, (2) 

where T=t(£1/2,£1/2). This result includes all multiple-
scattering terms and is an expansion in terms of some 
disorder parameter rather than any potential strength. 
Higher multiple-scattering terms are not always cor
rectly dealt with in the disordered case, as will be dis
cussed shortly. Equations (1) and (2) may be considered 
to describe a procedure for evaluating the density of 
states for a lattice of potentials in the case when the / 
function for the potentials is known. It is therefore in
structive to observe that one can construct such a t 
function as follows: Consider a disordered substitu
tional alloy with a proportion d of solute atoms so that 
the solvent atoms are present in the proportion (1 — d). 
As the electron moves through the lattice (in a free-
electron-like manner) it will scatter off the lattice sites. 
Since the potentials are not small the electron may 
resonate with them so that it is necessary to describe 
the scattering by the total scattering matrix of that 
site, i.e., the t function of the potential there. But when 
the electron arrives at any site there are probabilities 
(1—d) and d that there will be solvent or solute atoms 
present on that site. The alloy, therefore, scatters the 
electron rather as if it were a pure metal with a poten-

n(E) 
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FIG. 2. The density of levels formed by n\ ions with bound 
state Ei and n^ ions with bound state E2 as the density, o-, in
creases from near zero to metallic densities, (a) bandwidth5>>energy 
splitting, (b) bandwidth<<Cenergy splitting. 

tial at every site described by the t function 

/(alloy) = ( 1 - d)t (solvent)+dt (solute). (3) 

This / function for the alloy need correspond to no real 
potential and even if it should correspond to a potential, 
that potential will almost certainly be pathological. 
Given the t function of the alloy one can then insert it 
into Eq. (2) and Eq. (1) to find the density of states. 
The more elaborate calculation presented in the Ap
pendix yields exactly the same answer, but does so in 
a way which gives one greater confidence in the ap
proximation and also enables one to discuss the dif-
fuseness which is actually present in the density of 
states. This part of the problem is discussed in Sec. II. 
The important approximation which has been made in 
deriving Eq. (3) is that, although all order multiple-
scattering terms have been included, those terms 
where, for example, the electron scatters off the poten
tial at Ri, then off potentials elsewhere and finally 
returns to scatter again off the potential at Ri are not 
correctly evaluated. Experience in the simpler cases 
suggests that this approximation is liable to give the 
detailed shape of band edges incorrectly, though not 
seriously so and is elsewhere a very good approximation. 

The important difference between the foregoing re
marks and many earlier theories is that the solvent 
and solute atoms are treated on an equal footing. Thus 
it has not been assumed that the electrons move in the 
Bloch states of the host metal and are scattered by the 
impurity atoms. What happens in a pure metal is that 
the concept of Bloch waves is replaced by the p(k,E) 
of Eq. (1) defined for all k and this represents the split
ting of Bloch waves with crystal momentum k' into 
their components with real (free electron) momentum 
k== (k'+K*), where K* is any vector of the reciprocal 
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lattice. Thus the waves equivalent to Bloch waves hi 
the alloy are built up from various parts of p(k,E), 
which is now defined in terms of the alloy t function (3). 
I t will indeed be seen later that the alloy bands often 
have little resemblance to the pure metal bands. 

In Sec. I I an especially simple model is discussed of 
lattices with vacancies, and the behavior of d bands in 
such lattices described. This is then extended to binary 
alloys in Sec. I l l and to a discussion of the transition 
metals in Sec. IV. Section V contains a brief discussion 
of the behavior of nontransition metal elements alloyed 
with transition metals. 

II. LATTICES WITH VACANCIES 

In order to get some feeling for the techniques to be 
used in discussing the density of states, it is useful to 
begin by analyzing an even simpler problem than that 
just presented in the Introduction. Suppose that the 
impurity being substituted in the alloy had an ex
tremely weak potential, so weak that it could be ig
nored compared to the host potential. Then the alloy 
would be made up of only one type of potential, with 
vacancies appearing at random lattice sites. While this 
may not really seem to be a good model of any alloy it 
will be seen later that the mathematical problem to 
which it leads is part of a better model of such an alloy. 
Even so consider, for example, FeAl. The iron d elec
trons are fairly deeply bound and are mostly concen
trated about the Fe ions. The aluminum ion, however, 
has no bound d state, so that even when the d electrons 
stray as far as the Al ions they will interact only slightly 
with the potential there and will certainly be far from 
any resonance. Thus, the d electrons are influenced only 
by the Fe ions and the Al potential may be taken as 
zero when calculating their properties. I t will be seen 
later that the d electrons of FeAl behave exactly as sug
gested by this simple argument. This model of vacancies 
in a perfect lattice will be discussed in the remainder of 
this section. 

Given that the model alloy consists of only one type 
of potential, the theory of I is directly applicable to it. 
The potential involved is that of the Fe ion and is the 
same as in the pure metal. The lattice structure too is 
the same except that the vacancies correspond to cer
tain of the lattice points being absent. Thus, the matrix 
G in Eq. (2) is different in the alloy. G depends linearly 
on the correlation function 

where v is the number of Fe ions and the summations 
are taken over all occupied lattice sites. This correla
tion function can be evaluated by writing it in terms of 
the totality of lattice sites and of the unoccupied sites. 
Thus, if the lattice sites are denoted by xa and the 
vacancy positions by v«, the correlation function 

becomes 

• 1 
— V eH' (Vtf—r/s) _|_ V* eij • (vo-Vjg) \ (4 ) 

Given that the proportion of vacancies is d and that 
they are randomly distributed, there is a probability d 
of any given site ra being a vacancy v«. Thus each sum 
over vacancy sites gives, upon averaging, the same sum 
over lattice sites reduced by a factor d. So in terms of 
the pure-metal correlation function 

1 
c°(j)=—< E 6« •<'*-'*>), 

where N is the number of sites in the lattice, one has 

C G ) = ( i - < * y ( j ) . (5) 

Hence, finally, because of the linear dependence of G 
on c, one has 

G « = ( l - d ) G * , (6) 

where superscripts a and p will be used to denote the 
alloy and pure metal, respectively. So the matrix G in 
Eq. (2) is different in the alloy case. The matrix t, corre
sponding to the potential involved, is unaltered. 

I t is clear that, because of the randomness of the 
vacancies, the density of states will not be in the form 
of a relation between E and k. Particles moving in 
states of a definite energy or a definite momentum will 
be scattered in an incoherent manner by the vacancies. 
Yet such concepts as the alloy Fermi surface are fre
quently discussed, so it is of interest to see whether it is 
possible to make any sort of an attack on this point. 
To do this it is necessary to use some more formulas 
from I9 [(14.5), (14.6), (14.9), (14.10)] which give 

<ImT(k)) = iV(47r)2E F L (k)F L , (k ) 
LL' 

Sl{k) 
-[M]-1 ; 

sv(k) 

where 

M = ( + F i J ) F ; - 1 - + F i J ) + F I 

WE 1 ' 2 ) / \ s (£ 1 / 2 ) J 
(V) 

and 
V^G-iE^S E>0 

- G £ < 0 . 

FR and Fj are the real and imaginary parts of F and 
the functions si are related to the t function. In the 
case of a perfect lattice Fj has the form of a set of 5 
functions and the density of states is then nonzero only 
when det(E1/2/s+Fi2) = 0. In all cases other than a 

9 Equations from Ref. 4 are numbered as in that paper, but 
with the prefix I. 
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perfect lattice the distinction between positive and 
negative energies is a little troublesome. Consider first 
E>0. Equations (6) and (7) then give 

F«=G«-iE1/25= {l-d^-diE1^ 
and 

-dEll28 
[M«]-i = (8) 

[£1 / 2 /s+ (1 - d) FRvJ+ (E^2d)28 

which means that the density of states is no longer 
nonzero only along a line in E,k but is distributed 
about the line 

det[£1/2/8+(l-d)Fj8p] = 0, (9) 

with a width at constant energy given approximately by 

Ak=&i*d/Z(l-d)(dFB*/dk) | k 0 ] , (10) 

where E,kQ satisfy Eq. (9). This is not a very useful 
expression, since Eq. (8) is defined everywhere in E,k 
space and the whole result for p (k,E) is extremely com
plicated. It is unlikely that any worthwhile comparison 
of this expression with experiment could be made. 
Following Eq. (7), the density of levels must be worked 
out by integrating Ma from Eq. (8), multiplied by a 
weighting factor, over all k space. In this integration 
over k, the Lorentzian shape of Eq. (8) will not have a 
violently different area from the 5-function shape it 
would have if the width were taken to be zero. In 
other words, the well-defined Bloch wave has been 
spread by the disorder into something of the nature of 
a wave packet. Unless these wave packets by some 
chance interact strongly, they will contain the same 
number of electrons as the original Bloch waves. The 
width may therefore be ignored in calculating the 
density of levels, even though one cannot yet show that 
it is everywhere small. From Eq. (10) it is seen to be 
small for low concentrations of impurities. 

In the case E < 0 the matrix F is given by 

Fa=(l-d)Fp, (11) 

so that the imaginary part, Fr, as in the perfect lattice 
consists of a sum of 6 functions. Thus, the density of 
states is nonzero only where Eq. (9) is satisfied, so that 
no width appears in this case. What has happened here 
is that a width only appears when higher order terms 
are taken into account in the geometric approximation. 
However, a general analysis of that approximation sug
gests that the higher order terms are usually only im
portant near the edges of bands, which in turn suggests 
that the width is, in general, small except near the band 
edges. Evaluating Eq. (10) in the tight binding approxi
mation [which is inconsistent since E>0 in Eq. (10)] 
one observes that (dFitp/dk) is proportional to (dE/dk) 
and this too implies that the width is greatest at the 
band edges. Therefore, provided one only discusses the 
density-of-states problem, and does not discuss, e.g., 
transport coefficients, it seems reasonable to ignore the 

width on the density of states with the proviso that 
detailed conclusions are not drawn near band edges. 
Since the band structure is then given by Eq. (10) in 
both cases, it is most convenient to evaluate the density 
of states for E < 0 and to make a formal extrapolation 
of the result to the region E>0 when this region is of 
interest. This procedure will be followed for the rest of 
the paper. 

One can now return to the simple physical interpreta
tion, given in the Introduction, of the manner in which 
the electron moves through the lattice. In the case of 
the lattice with vacancies the average t function at any 
given site is (1—d)tp and this may be used in Eq. (2) 
to give the density of states. A little care must be exer
cised in doing this, however, principally because the t 
function of Eq. (2) and the function s(k) of Eq. (7) are 
not linearly related. 

In the lattice with vacancies problem the density of 
states is nonzero only where Eq. (9) is satisfied. This 
gives a definite relation between E and k but it is 
important to note that the density of levels is no longer 
given by the usual integral 

n(E)= f f- -dS, (12) 
J J (grad^l 

taken over constant energy surfaces in the Brillouin 
zone. This is most conveniently seen in the tight binding 
approximation. Concentrate on that part of Eq. (9) 
corresponding to the angular momentum of the tightly 
bound state. In order to avoid complications with 
matrices, one may take the state to have angular mo
mentum zero, the extension to higher angular momenta 
being trivial. It is then necessary to solve 

Elf2/s0(E
1f2)+(l-d)FR

p(k,E1i2) = 0, 

Near the bound state energy E0, E1/2/so(E1/2) has the 
form (E—Eo)/(—y) where y is proportional to an overlap 
integral. The dependence of FRp(k,E) on E is ignored 
in the crudest tight-binding approximation. Thus, one 
has 

E=E0~y(l-d)FB
p(k,Eo), (13) 

whereas in the pure metal, one would have had 

E=E0-yFRv(kiEo). 

Hence the effect of the presence of the vacancies can 
be interpreted as a reduction in the overlap integral. 
In the pure metal this reduction would have the effect 
of narrowing the bandwidth by a factor (1—d), but 
increasing the height of the density of levels by a factor 
1/(1—d), the number of electrons in the band thus 
remaining constant. Equation (13) does indeed show 
that the bandwidth in the vacancy case is reduced by 
a factor (1—d). It is important to what follows to note 
that the band shape does not change in its features, 
only in its linear dimensions. However, it will now be 
shown that the height of the density of levels does not 
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increase in the alloy, so that the number of electrons in 
the band is reduced by a factor (1—d), which is, of 
course, correct. The argument hinges around the func
tion s(k), which from I can be written in terms of the 
matrix element 

Jo 
si(k)a I ji(kx)v(x)Ri(x)x2dx. 

Jo 

B.ereji(kx) is a radial Bessel function, v(x) the potential, 
and Ri{x) the radial wave function of the electron in the 
potential. In particular, 

^K^1/2) = 7r-1tanr7z, 

where rji is the phase shift. I t was remarked above that 
the effect of the (1—d) factor was to reduce the overlap 
integral. This corresponds to a reduction of si(E112) by 
a similar factor. The point to be made is that Si(k) will 
change only slightly when this happens, because the 
reduction in the overlap integral corresponding to the 
bound electron can, in general, be achieved by a very 
slight change in the shape of the potential, and this 
need hardly affect si(k) which corresponds in a certain 
sense to an electron of positive energy. Thus, the last 
three factors in the first of Eqs. (7) 

s(k) r E112 1 

-5\ -+(1-^)F^J-s(£1/2) LsCE1'2) Js(£1 / 2) 

give 
s(k) £1/2 

Lm-^sCE1 
l(l-d)s(E^)l L[_(l-d)s(E^)-] 

8(ft) 

-F** 

X- = (l-d)n'(E). (14) 
[ ( l - J ) s ( E 1 / 2 ) ] 

This is (1—d) multiplied by the factor which would 
have given the density of states in the pure metal, 
n'(E), with a smaller overlap integral. The extra factor 
(1 — d) in Eq. (14) shows that, though the bandwidth 
is reduced by (1—d), the density of states does not 
increase. In other words, the effect on the band of re
placing certain of the pure metal ions with vacancies, is 
to decrease its width without changing its shape [as 
will be seen by the factor nf(E)\ in such a way that it 
holds the correct number of electrons. Though the 
argument has been given in the tight-binding limit, it 
will be nearly true in other cases; the bandwidth will 
be reduced with only a slight change in band shape. 
This result will be useful in the next section where the 
behavior of binary alloy systems is discussed. 

III. BINARY ALLOYS 

Consider once more the model of an alloy discussed 
in the Introduction. The electron moves as if it were 
in a perfect metal alloy with a potential at each site 

possessing the / function 

t'={l-d)tl+dt\ (15) 

where tl and t2 are the t functions for the solvent and 
solute potentials, respectively. Then by neglecting the 
diffuseness of the density of states, as discussed in the 
previous section, one sees that the density of states is 
nonzero only when 

det 
r E112 

Ls'(E1/2) 

p]=o, (16) 

where s' (Em) is given by 

Sl
f{Eli2)^-Eli2 Ret/iE1'2^2). (17) 

The feature of s' and t' which is important in the work 
to follow is that they both have singularities at the 
bound states of the electron in either solvent or solute 
potentials. This is clear from Eq. (15) since a singularity 
in either tl or t2 implies a singularity in t'. 

I t is necessary to simplify Eq. (16), since its solution 
is still harder than an ordinary band-structure calcula
tion. This process can be begun by noting the form of 
¥R in bcc and fee lattices. In the case that s-, p-, and 
d-bound states all exist in one or another of the com
ponents of the alloy, F is a (9X9) matrix. The (4X4) 
part of F which corresponds to the s and p bands and 
the (5X5) part corresponding to the d band happen to 
be numerically much larger than the (4X5) and (5X4) 
"off-diagonal" elements. Thus it seems reasonable to 
neglect the latter and hence to split the problem into 
two parts, corresponding to the s- and ^-bands problem, 
and the d-band problem. This is a common approxima
tion in the transition metals: the interaction between 
s and d electrons is rarely considered. So far as this 
paper is concerned, the aim is to expose the important 
features of the model and not to attempt a rigorous 
calculation. As mentioned in the Introduction, this 
approximation should not be too serious. 

The d bands alone can be discussed fairly well. Since 
they are close to being tightly bound, the behavior of 
sf(E112) can be approximated quite closely. I t is useful 
to assume the d bands to be so tightly bound that they 
all have the same shape, this shape being mainly deter
mined by the lattice structure. Consider first the solu
tion of the relevant part of Eq. (16) 

r £1/2 -] 
det r + F B * \ = 

Ls2'(£1/2) J 
0. (18) 

In the pure metal Ell2/s2f(E112) has the general form 
(E—Ei)/(—yi) near the bound d state at Eh giving 
an equation which may be written formally as 

E=E1+y1FB*. 

This is really a matrix equation but will for the moment 
be treated as a scalar equation. F is bounded as a func-
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tion of k, showing that E lies within certain limits. The 
remainder of the terms in Eq. (7) for p(k,£) will give 
the shape of the band. 7 determines the width of the 
band. Now add an impurity to this metal, the impurity 
having a bound d state at E2 with overlap integral 72. 
For the alloy 

£1/2 - 1 

,/ (Ei/2) ( l - r f ) [ 7 l / (E -E 1 ) ]+ r f [ 7 s / (E -E 2 ) ] 

-(E-E1)(E-E2) 

where 

E(d) = 

y'lE-E(d)-] 

(l-d)y1E2+dy2E1 

lies between Ei and E2, and 

y'=(l—d)yi+dy2. 

Figure 3 shows sketches for the behavior of Ell2/s'{E112) 
both for the perfect crystals of metal potentials 1 and 2, 
and for their alloy. It is clear that the behavior is con
siderably more complicated in the alloy case than 
in the pure substances. There is a singularity at the 
energy E{d) where, because the function F is bounded, 
the density of states is zero. (Since this constitutes a 
band edge the geometric approximation is suspect in 
this region and one should perhaps understand by zero 
the phrase "much smaller than expected.") Away from 
E(d), the alloy Ell2/s'(E1/2) becomes asymptotic to 
WlE-ZEi+ErEid)!). 

-**E 

n(E) 

(a) 

n(E) 
E(d)| (E,+Ez-E(d)) 

(c) 

- * - E 

(d) 

FIG. 3. Curves showing the behavior of Em/s'(Em) for both pure 
metals and for the alloy. 

FIG. 4. An idealized representation of the density of states in 
the cases of two pure metals, (a) and (b), and for their alloys 
(c) when the bandwidttO>>energy splitting, and (d) when the 
bandwidth<<Cenergy splitting. 

The calculation has yet to be reduced to manageable 
proportions. Consider, therefore, the following model. 
The band structure is determined as the solution of the 
equation 

£1/2/s'(£1/2)=--F 

and the density of states increases as the absolute size 
of F decreases. Thus, for crystals of potentials 1 and 2 
the densities of states are as given in Figs. 4(a) and 4(b). 
The widths of the bands are given by 2yi | Fmax | and 
the heights are inversely proportional to the widths. 
For the alloy this model possesses two parameters, 7' 
and \Ei~E2\. The width 27'| Fmax | is a weighted mean 
of the widths of the constituents, and this must be 
compared with the energy difference \Ei—E2\. The 
two limiting cases are very different: 

(a) W i d t h » | £ i - £ 2 | 

Here E1,2/s' (E112) is asymptotic to 

(l/y'){E-ZEi+E2-E(d)l} 

and is only very different from that line in the neigh
borhood of E(d). Thus, in this case, the band is as 
drawn in Fig. 4(c), having width 2-y71 Fmax | and being 
centered on the energy Ei+E2—E(d). There is a sudden 
decrease to zero at the energy E{d) which lies about 
halfway up the band for a symmetrical band. This de-
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FIG. 5. The suggested 
behavior of the density 
of states in the nickel al
loys (a) NiZn, (b) NiFe, 
(c) NiCr, (d) NiMn. 
The dotted line repre
sents the position of the 
Fermi surface prior to 
alloying. 

(c) (d) 

crease is a consequence of the approximation, in general 
one would expect noticeable decrease in n(E), but not 
right down to zero. 

(b) W i d t h < < | £ i - - E 2 | 

In this case one is only interested in the behavior 
of E112 / sf (E112) when it is very small. This happens 
nearE xandE 2 , where -Ell2/sf(El'2) = (E-E1)/(l-d)y1 

and (E—E2)/dy2} respectively. This leads to the situa
tion as presented in Fig. 4(d). These two cases are 
clearly closely connected with the simple tight-binding 
discussion of the alloy problem given in the Introduc
tion. What the theory presented above has enabled one 
to do is to discuss the approximations involved in the 
case of an alloy. I t would further enable one to put the 
whole calculation on a quantitative basis were the ion 
potentials sufficiently well known. 

Before considering the cases intermediate between 
(a) and (b), one should consider the behavior of the 
real shape of the bands rather than the model bands 
just discussed. The important feature described in the 
last section for the single band in the presence of va
cancies was that, though changing its width, it did not 
change its shape or height. By this means the band 
managed to contain the correct number of electron 
states. I t is not unreasonable to assume that the same 
effect occurs here. Thus, it is presumed that s' (k) is not 
changed on alloying, while s'(E112) is changed, so that 
the bands given in Fig. 4(d) and by the dashed line in 
Fig. 4(c) will have the characteristic shape of the 
tightly bound d bands. In each case the band heights 
actually adjust themselves so that the bands contain 
the appropriate numbers of electrons, i.e., 5 in Fig. 4(c); 
5 (1 — d) in the Ex band and Sd in the E2 band of Fig. 4 (d). 

In intermediate cases the bands of Fig. 4(c) go into 
those of Fig. 4(d) by moving apart and changing their 

relative sizes from holding an equal number of electron 
states to holding numbers proportional to the number 
of atoms possessing the energy level in question. These 
conclusions are, for the most part, in contradiction to 
the rigid band model, which corresponds to the dashed 
line in Fig. 4(c). Thus it will be seen in the next section 
how the breakdown of the rigid band model in alloys 
between transition metals of much different valences 
can be explained simply by the model presented in this 
section. 

The real band-structure problem is not quite so 
simple as has just been suggested, because the shape 
of the band is not symmetrical about the energy level 
Ei, due to Brillouin-zone effects. Thus, the gap at E(d) 
will not appear in the middle of the band (in term of 
numbers of electron states) even when the energy levels 
are close together. I t is perhaps better to say that the 
gap appears at E(d) which for small concentrations of 
impurities is close to the impurity bound-state energy. 

When the bands are not tightly bound there will be 
other complicating features, which really need much 
more detailed calculation before they can be described. 

Finally, in this section, it is necessary to make a few 
remarks about the spatial localization of the electrons. 
Even though an electron lies in a band which is formed 
around the energy level associated with a given type 
of atom, it is not true that the electron is actually local
ized around atoms of that type. The electrons will all 
spend some time on one type of atom and some on 
another. What one can say, however, from the tight 
binding type of approach to the two-band picture, is 
that the electron will spend most of its time near to 
one particular type of atom, unless its energy happens 
to lie roughly in the middle of the two levels. Thus it is 
important that talking of a "Ni band" or a "V band" 
does not imply any localization of electrons in space, 
but only the position in energy of the band in question. 

The results derived above will now be applied to the 
problems of actual transition-metal alloys. 

IV. THE TRANSITION-METAL ALLOYS 

The discussion of the previous section has provided a 
qualitative picture of the way in which the d bands of 
alloys behave when both constituents of the alloy have 
bound d states. The most important physical situations 
in which this occurs are in the alloys of the transition 
metals. All that remains is to determine the positions 
of the d electron bound states in these metals, after 
which one is able to describe the predictions of the 
model for such alloys. The model will be seen to give 
significantly different results from those of the rigid 
band model in just those cases in which the latter fails: 
where the valency difference between the alloy con
stituents is large. 

In the free atoms the binding energy of any given level 
increases as the atomic number increases. Thus, going 
from vanadium to nickel in the transition metals, the 
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s state goes from ^ 7 . 5 to ^ 9 eV while the d state goes 
from ^ 16 to perhaps 25 eV. (These figures are roughly 
estimated from the ionization potentials.) This sug
gests that in the crystals of these metals the d levels 
will move lower with increasing atomic number. The 
decrease per unit change in atomic number will prob
ably be less than in the free atoms, partly because the 
d levels are raised relative to the s levels by the manner 
in which the crystal potential of our model is formed. 
But it seems reasonable to choose a value of between 
1 and 1J eV lowering of the d level for unit increase in 
atomic number. 

The d band itself in the transition metals has a width 
of the order of 4-8 eV depending on the source used, 
so that if it is assumed that the band is roughly sym
metrical about the energy level it is possible to analyze 
the behavior of the various alloys in detail as follows: 

(a) Nickel Based Alloys 

(1) Copper and zinc. Here the splitting between the 
host and impurity energy levels is small compared with 
the bandwidth so that the situation of Fig. 4(c) applies. 
The band will be of the same shape as the nickel band 
except for the gap between the energy levels [see Fig. 
5(a)] . The band will fill just as in the rigid band picture 
and the magnetic moment will decrease according to 
the electron/atom ratio. There is no change from the 
rigid band model. (See also next section.) 

(2) Cobalt and iron. Again the energy level splitting 
is small so that the band shape is roughly unchanged. 
The gap will now lie above the nickel energy level 
[Fig. 5(b)] , but the band will be filled to a point above 
the gap where the situation is just like that of the rigid 
band model. The magnetic moment will increase as the 
electron/atom ratio decreases, according to the usual 
two-band picture of ferromagnetism. Note, however, 
that for large iron concentrations a behavior similar to 
that of manganese is found, which is a deviation from 
the solution proposed here. 

(3) Chromium and vanadium. These elements have 
valences considerably different from that of nickel and 
the rigid band model does not explain the behavior of 
their magnetic moments. According to the model of 
this paper, since the energy splitting is large, the situa
tion of Fig. 4(d) will apply, the band becoming two 
bands, one about each energy level. On this picture the 
lower band will contain ~ 10 states per nickel atom, so 
that, since the electrons will fill the lowest available 
states, the band around the nickel energy level will be 
filled by the impurity d electrons, as shown in Fig. 5(c), 
so that these elements behave in a similar manner to 
copper and zinc. This filling of the band accounts for the 
decrease in magnetic moment observed experimentally, 
in contradiction to the rigid band model where the band 
empties . (See Fig. 6, in which the heavy line shows the 
behavior predicted by the rigid band model.) 

(4) Manganese. One might expect the behavior of 

FIG. 6. The number of unpaired spins per atom plotted against 
electron/atom position in the periodic table, fee crystals are to 
the right of the dashed line, and bec crystals to the left. See, e.g., 
the review by J. Crangle [Electronic Structure and Alloy Chemistry 
of the Transition Elements, edited by Paul A. Beck (Interscience 
Publishers, Inc., New York, 1963)]. 

manganese in nickel to be anomalous even given the 
crudity of the model used here, since the manganese 
energy level, and hence the gap in the density of levels, 
is near to the nickel Fermi level [see Fig. 5 (d)]. Without 
a more detailed calculation involving some theory of 
ferromagnetism, it is impossible to suggest exactly 
what the model predicts. One of many explanations is 
perhaps worth mentioning. The nickel band is assumed 
to just overlap the manganese energy level, so that at 
first an almost common band is formed with the result 
that the moment increases as increased proportions of 
manganese reduce the electron/atom ratio. As the 
nickel bandwidth decreases it will pull away from the 
manganese energy level to such an extent that the 
model of Fig. 4(d) is appropriate, so that the manganese 
d electrons will fill the nickel band, reducing the mag
netic moment as in NiCr (see Fig. 6). The behavior 
of nickel-manganese alloys is indeed anomalous, some 
magnetic ordering changes being involved. These order
ing changes may not be entirely unrelated to the dis
cussions of this paper, since each of the d subbands 
will separately behave as in Figs. 4 and 5. The band-
widths will vary between the subbands and so vary 
the energy splittings. One must clearly have a much 
more detailed understanding of the band structure in 
the pure metals before being able to make definitive 
statements about the magnetic-ordering question. 

(b) Cobalt Based Alloys 

(1) Iron, nickel, and copper. As in the nickel alloys, 
provided the energy splitting is sufficiently small, the 
rigid band model gives a correct explanation of the 
band shape, the gap in the band predicted by the model 
discussed above being well clear of the Fermi level. 

(2) Chromium and manganese. The picture here is 
the same as for NiV and NiCr, the d band forming 
around the impurity d level loses its electrons to the 
band around the cobalt d level, which thus fills up. 
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FIG. 7. Suggested specific 
heat of VNi plotted against 
electron/atom ratio. 

(c) Iron Based Alloys 

(1) Manganese, cobalt, vanadium, and chromium. Here 
again the rigid band picture prevails, so that only the 
electron/atom ratio is important. 

(2) Nickel. The behavior of FeNi is not really well 
described by this model, since the band gap should be 
well clear of the level to which the band is filled. One 
would expect the rigid band model to work correctly. 
An effect similar to that involved in NiMn might be 
the cause of this behavior. 

I t will be seen, therefore, that this model explains in 
a qualitative manner nearly all the magnetic moment 
results for the transition-metal alloys. In order to get 
the model in its proper perspective, it is useful to see 
to what extent such a model could arise from other view
points. The approach to alloys which is usually adopted 
is one in which the effect of an impurity potential on 
the band structure of the host crystal is analyzed. Such 
calculations involve screening and other effects by 
means of which good agreement with experiment can 
often be obtained. A result very similar to the one given 
above has been given in such terms by Friedel.7,10 What 
happens in Friedel's picture is that in, e.g., CoCr, the 
Cr d shell becomes a resonant level above the Fermi 
energy and at least one of its magnetic subbands will 
become empty, the electrons going mainly into the d 
band with the opposite spin direction. The remaining 
electrons in the Cr d band must then be considerably 
extended in space to account for the neutron diffraction 
data,11 which shows that the reduction in magnetic 
moment occurs around the Co atoms and not by an 
increase in the moment of the Cr atoms in the opposite 
direction. Such a viewpoint is not too far different from 
that discussed in this paper. 

If the model suggested above is correct for the 
transition metals, then the specific heat for metals of 
large valency difference should be different from that 
predicted by the rigid band model, especially near the 
lowest electron/atom values. As the low-atomic-number 
energy band empties, one should observe a peak in the 
specific heat such as drawn in Fig. 7 for VNi. l l a 

Thus, the picture given in this paper, crude as it is, 
can explain fairly well the behavior of the d electrons 
in the transition-metal alloys. With further refinement, 

and probably with some more detailed understanding 
of the pure-metal band structure, it seems likely that 
these alloys could contribute much to one's understand
ing of the problem of magnetism. 

Before leaving this topic it is of interest to compare 
the theory presented so far with an approach used by 
Hubbard12 to a different problem. The problem con
sidered by Hubbard is that of the effect of correlations 
on narrow energy bands. He takes first only s bands and 
extends the theory in a second paper13 to include d 
bands. The particular correlation effect which Hubbard 
considers is the effective repulsion felt by electrons of 
opposite spin because of exchange integral effects. Thus 
an electron of given spin sees a different potential de
pending on whether the ion in question is or is not 
already occupied by an electron of opposite spin. Hence 
the problem of determining the band structure for 
electrons of spin-up (say) is like an alloy problem, and 
will be given by curves like Figs. 4(c) or 4(d) depending 
on the parameters involved. The band structure for 
spin-down electrons can then be determined in terms 
of the spin-up electrons and the whole treated self-
consistently. Such a treatment is outside the scope of 
this paper, but it is worthy of note that the curves of 
Figs. 3 and 4 are almost identical with those derived by 
Hubbard. 

V. ALLOYS OF THE TRANSITION METALS 
WITH OTHER ELEMENTS 

Following the remarks of the Introduction, and the 
proof given in the Appendix, the behavior of an alloy 
is described by the t function 

t'=(l-d)tl+dt\ (19) 

10 J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958). 
11 C. G. Shull, Congres Solvay^ Bruxelles, 1954 (unpublished). 
l l a Note added in proof. Experimental results on VNi alloys do 

not show this structure (T. M. Srinivasan, unpublished). 

compounded from the / functions of the alloy constitu
ents. In the last section the d part only was considered 
for the transition metals. Consider now the alloy FeAl 
discussed already in Sec. I I . The t function for the Al 
ion will contain only a very small d part, since the 
lowest d state in aluminum is a resonant state far above 
zero energy. Thus for the d levels one has t'c^(l—d)t2, 
precisely as was discussed in Sec. I I . Thus, in the case 
of alloys between transition metals and lighter elements, 
one expects the d band to behave as discussed in that 
section, the bandwidth reducing, but the shape re
maining constant. 

The behavior of the s and p bands has thus far been 
neglected. The / functions for both s- and ^-angular 
momenta will have pairs of singularities corresponding 
to those of the constituent t functions. The bands will 
be mixed just as in the ordinary metal case, so the 
behavior of the alloy s, p bands is likely to be extremely 
complicated. The only possibility of a simplifying fea
ture in this case is the large width usually associated 
with these bands. If this dominates the splitting be-

12 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963). 
» J. Hubbard, Proc. Roy. Soc. (London) A277, 237 (1964). 



ELECTRONIC STRUCTURE OF ALLOYS A141 

tween energy levels, then one might expect a rigid band 
type of theory to work except for isolated alloys where 
the Fermi surface lies close to one of the gaps. The pre
scription suggested by this theory is as follows. The / 
functions for the s and p bands in the alloy have to be 
formed separately from those of the pure metals. One 
must then consider the mixing of the bands correspond
ing to these averaged t functions. It will be noticed that 
the work of Cohen and Heine,6 which gives such good 
agreement with many experimental results, could be 
considered to use just such a prescription. The policy 
in this paper is to neglect the s-p band problem alto
gether and to derive only those results which do not 
need a discussion of this point. Thus in the alloys 
among the transition metals, discussed in the preceding 
section, it was implicitly assumed that the alloying did 
not change significantly the general shape of the s-p 
band and in particular the number of s states available 
below the top of the d band. 

Such an assumption concerning the s and p bands 
can also be made in the case when the alloy constituents 
are not both transition metals. In this case, however, 
one must be careful to fix the position of the modified 
bands with respect to the d band. Define the "solvent 
Fermi level" by putting into the modified s and p 
bands the number of electrons appropriate to the solvent 
atom. When solute atoms are added to the solvent 
crystal, the levels will adjust themselves to minimize 
the energy. If the bands arising from these levels are 
filled with the number of electrons appropriate to the 
solute, one will find a "solute Fermi level." If this 
level lies above that of the solvent, then electrons will 
spill over into the solvent bands. Thus, in the NiV 
alloys discussed earlier, the vanadium "Fermi level" is 
considered to lie above that of nickel. 

The suggestion of this paper concerning the difference 
between FeAl and NiAl alloys can then be stated in the 
form of a comparison of the Fermi levels involved. 
What seems to happen is that the aluminum Fermi 
level adjusts itself in iron, and in other host metals to 
be nearly the same as the solvent Fermi level. This 
would mean no spill over of electrons into the iron d 
band, which contains, therefore, the same number of 
electrons/atom with the result that the magnetic mo
ment per iron atom does not change.14 This last conclu
sion depends upon the result of Sec. II which showed 
that only the bandwidth and not the band shape changes 
with increased impurity concentration. Also the low-
temperature specific heat does not change in agreement 
with experiment. That this does not work for nickel15 

would seem to be due to the aluminum Fermi level lying 
above that of nickel, so that the nickel d band is filled, 
the magnetic moment being reduced. It would certainly 
seem that it is the behavior of NiAl which is anomalous 
rather than FeAl. One possible reason for the solvent 

14 A. Arrott and H. Sato, Phys. Rev. 114, 1420 (1959). 
15 R. M. Bogarth, Ferromagnetism (D. Van Nostrand and 

Company, Inc., New York, 1951). 

and solute Fermi levels being equal could be simply that 
the aluminum prefers to be electrically neutral, so that 
the appropriate number of electrons arrange themselves 
to stay near to the Al ions. 

The conclusions just drawn may well not work for 
the lighter transition elements, since the d bands there 
are not too tightly bound and the results of Sec. II will 
not apply. Thus, the behavior of TiVAl ternary alloys 
is not in contradiction to the above remarks. 

VI. CONCLUSIONS 

It has been shown how the rigid band model for the 
d electrons of transition metals may be improved to 
account for the experiments on the magnetic moments 
of alloys involving transition-metal elements having a 
large valency difference. The theory proposed has been 
discussed only in a qualitative fashion, but seems to 
fit the results quite well. A simple physical picture of 
how the rigid band model breaks down has been given 
by analogy with a pure-metal tight-binding calculation. 

All this is not very startling, and could even be de
scribed as an empirical correlation of the experimental 
results. This is, however, not quite fair, since the theory 
itself is based on approximations which are probably 
valid in the cases discussed and which could be worked 
out quantitatively if such an elaborate calculation were 
justifiable. 

The principal virtue of the whole scheme is that it 
does open the possibility that the transition-metal-
alloy experimental results may be of great value in 
understanding the phenomena in the pure transition 
metals. This has already occurred in the dilute alloys 
of the transiton metals in other substances, which have 
introduced several new features into the problem of 
ferromagnetism. 
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APPENDIX 

(a) The Geometric Approximation with Two 
Types of Potential 

The symbolic series (12.2) for the T function may be 
written in the same form 

T=^2 ^«+S taGotp-)r 2 taGotpGoty-{-•••, 

where more than one type of potential is present, but 
now ta is the t function, centered on the position Ra, 
corresponding to the type of potential present on the 
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site Ra. To make this point explicit and to assist in the 
summation of the series it is necessary to split T into 
four parts, given by 

T11 = E *«* + E ta1G^+ E ta
1Got^y1 + 

(Al) 
T12= E *«1G„tf+ E ta1Gitfi^t+---, (A2) 

with similar definitions for T21 and T22. Here /«* is given 
by the £ function corresponding to the potential viy 

when the atom at a is of type i, and is otherwise zero. 
Tij corresponds to that part of the total T function in 
which the electron scatters firstly off an atom of type i 
and lastly off one of type j . Each internal summation 
in the third and higher order terms will also split into 
separate summations over the atoms of types 1 and 2. 
(These and the following remarks may be extended in 
a trivial manner to alloys with more than two types of 
atoms present.) 

Now proceed exactly as in I. Each t function is 
analyzed into its angular-momentum components and 
the angular integrations, involving Go, carried out 
[cf. (12.7)]. The summation corresponding to (12.8) is 
now complicated by the presence of the two different 
potentials. The approximation to be used is, however, 
still the same; each Sa^(i]1 is replaced by its average 
value. The bracketed superscripts here indicate that the 
S in question lies between t functions corresponding to 
potentials of types i and j . Thus, each Sa^{ij) will be 
replaced by 

1 
S<& = — E S°f>™, (A3) 

where Ni is the number of atoms of type i. As in I, 
this approximation leads to the correct answer in the 
case of a perfect lattice (i.e., an ordered alloy) and is 
rather hard to discuss in any other case. It should be a 
good approximation in the case of a substitutional alloy 
with a small proportion of impurities. In the case of 
alloys in which the two components appear in propor
tions of the same order, the approximation should again 
be fairly good provided that the electronic mean free 
path is much longer than some local "range of ordering." 
As suggested in the text, the approximation is likely to 
predict least accurately the details of the density of 
states near band edges. 

Each Sm is now treated as in (12.10) to (12.14) and 
the radial integrations performed [cf. (12.15)]. There 
are now two sets of radial integrals for tl and t2. Finally 
(Al) and (A2) take the forms: 

r " ( k ) = (4*0 E ^ F L ( k ) F L , ( k ) { ^ ( ^ ) 
LL' 

+ [t1(£,£1/2){G11+E G^VG*1 

»=1,2 

r» (k)= (4TT)2 E N1YL{k)¥v(k)lt1{k,E?lt) 
LLf 

X{G12+ E G»T*Ga+ • • • }t\E^,k)-]LL., 
4=1,2 

where ^i=ti(Ell2,E112), with similar expressions for 
T21(k) and T22(k). Care must be taken in summing 
these series, for the GiJ' are already matrices (with re
spect to angular momentum) without regard for the 
superscripts i,j. The sums are in terms of two de
nominators Mi and M2 

Mi - (1 - G2 V) (G1 V) - 1 (1 - G1 V) - G2 V , 

M2= (l-G^iG^-Hl-G^-G^2, ( M ) 

and are explicitly 

r*(k) = (4TT)2 E Ni7L(h)Yu(k){tf(ft,*)5LL, 
LL' 

+[t1 (&,£1/2)Mf H G21+ (1 - G2V) (G12*2)-^11} 

X W ' 2 , * ) ] ^ } , (A5) 

r 2 ( k ) = (4TT)2 E N1YL(k)YLf(k){t'(k,E^)M1-
1 

LL' 

X [G22+ (1 - G2V) (G1 V ) - ^ 1 2 ] ^ (E^k)} LU. 

(A6) 
T22(k) and T21(k) are found by interchanging super
scripts 1 and 2 throughout Eqs. (A5) and (A6). 

These expressions for T(k) are clearly too compli
cated to be of any real general use, even though in any 
specific problem once the potentials and their distribu
tion are known, the calculation of p(k,E) is not a great 
deal harder than a similar calculation involving only a 
single type of potential. The dominant features can be 
obtained from the zeros of the denominators, i.e., when 
|Mi |=0 , |M 2 |=0 . (The zeros of |Mi| and |M2 | are 
actually identical.) For substitutional alloys the equa
tions are a little simpler, and in the particular case of 
disordered substitutional alloys, to be discussed in part 
(b) of this Appendix, can be reduced to a useful form 
which has the straightforward physical interpretation 
discussed in the text. There is a good chance that in the 
ordered case too a useful expression could be derived. 
This has not so far been attempted. 

(b) The Substitutional Alloy 

If it is supposed that the atoms forming the alloy are 
distributed on a perfect lattice, in such a way that the 
solute atoms are randomly distributed on the lattice 
sites, then the above formulas can be reduced to more 
convenient proportions. Following (15.2), S w can be 
written in terms of the correlation functions 

C(tf>(!) = / _ £ ^l-CRa-R^A 
\Ni am / 
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The superscript to R indicates the type of potential 
which must be present at the site R in order that the 
term be included in the sum. In the case being considered 
here, all the c(iD are the same to within factors involving 
the proportion of the solute present, d. Such a correla
tion function was evaluated explicitly in the text [see 
Eqs. (4) and (5)], and the details will not be given here. 
In terms of the perfect-lattice correlation function c°(l) 
the results are 

,(ll)(l) = ,(21) ( 1)= ( 1_^0 ( 1 ) j 

As was discussed in the text, following Eq. (7), it is 
now necessary to decide whether to discuss the case 
£ > 0 or the case E<0. The former case leads to the 
density of states having a width, which is physically 
correct, whilst the latter leads to the simpler expressions 

where the reality of t*(^,g) for E<0 has been used. 
Now, by comparing with (12.16) in the same region of 
energy, one is able to see that Eq. (A8) is the density 
of states for a perfect lattice having a pseudo t function 
given by 

t ' ^ t M - ^ - ^ t 1 , (A9) 

and this is exactly the result predicted by the simple 
physical arguments of the Introduction. 

In this approach one sees more clearly the approxima
tions which have contributed to the derivation of Eq. 
(A9). They are: 

(1) The geometric approximation, which implies that 
certain terms have been wrongly evaluated. These 
terms are those in which the electron scatters off one 
potential (all multiple scattering terms are included by 

for the density of states. It will again be assumed here 
that the error involved in neglecting the diffuseness in 
the density of states is small and that it can be ignored 
without serious error. 

Thus for £ < 0 , the function G° of (12.14) for the 
perfect host lattice is the only way in which the lattice 
structure enters the problem, the Gi3' being given from 
(A7) by 

G22=G12=</G, G u =G 2 1 =( l -d )G . 

The matrices Mi and M2 simplify a great deal now, 
becoming 

M 1 = [ ( 1 - ^ ) G I : 2 ] - 1 [ 1 - J G ^ 2 - ( 1 - ^ ) G T 1 ] , 

M2= [_dG^[l-dGJ- ( 1 - ^ G T 1 ] , 

so that, finally, the important factor in the expression 
for p(k,E) is given by 

the use of the / function), moves away to scatter else
where, then returns to scatter off the original potential. 
It has been suggested, without any real proof, that this 
approximation only leads to significant error when the 
energy being considered lies in a band gap or near to 
a band edge. 

(2) The neglect of diffuseness in the density of states. 
This is very similar to the suggestion that there exists a 
reasonably well-defined Fermi surface in alloys. This 
was discussed to some extent in the text where once 
more the error seemed likely to be largest near the band 
edges. However, this width in the density of states is 
heavily involved in transport properties and must be 
carefully considered when calculations of transport 
coefficients are being attempted. 

Im(r(k)) = Im< E T<^(k)) = iV(47r)2E FL(k)F^(k){[Jt2(^,E1 / 2)+(l-J) t1(^1 / 2)] 
i/=l,2 LL' 

X l m C l l - C ^ + C l - ^ T n G j - i G l W C E ^ ^ + C l - ^ t 1 ^ 2 , ^ ) ] } ^ , (A8) 


