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The salient feature of the splittings of the crystalline levels of a rare-earth ion in the iron garnets is the 
difference of their anisotropy from that of the g tensor for the Zeeman effect. This additional anisotropy arises 
from the dependence of the rare-earth-iron (RE-Fe) exchange interaction on the orbital state of the rare 
earth. On the assumption that the spin dependence of the RE-Fe exchange interaction is reasonably well 
described by the Dirac-Van Vleck effective spin Hamiltonian, we find that the Hamiltonian for this inter
action is 

21+1 

aCe-i -2 2 S3r(w,w')/«M(RE)5m^l(Fe), 

where the sum is over odd r and /mM (RE) are the components of either the spin or the total angular momen
tum of the rare-earth ion, and S (Fe) is the spin of the iron sublattice. The constants j3r are different for each 
rare-earth element; however, they do contain a set of constants, the exchange-potential parameters a kg (of 
which there are at most ten), which characterize the RE-Fe exchange interaction for all rare-earth elements 
(4/n) in the iron garnets. The relationship of these parameters to the exchange splittings of a Kramers' 
doublet is established, from which an empirical determination of the parameters will be possible when 
sufficient data are available. The determination of the parameters for specific models will be presented in a 
subsequent article. 

I. INTRODUCTION 

IN the iron garnets 5Fe203'3i?203, the rare-earth ion 
(Rd+) is surrounded by a cluster of oxygen (O—) 

and ferric (Fe3+) ions. The effect of the oxygen ions on 
the rare earth may be replaced by a crystalline po
tential ; the ferric ions, which are strongly coupled by a 
ferrimagnetic exchange interaction, form a sublattice. 
It is reasonable to assume that the rare-earth-iron 
(RE-Fe) exchange interaction does not affect the spin 
of the iron sublattice.1 This interaction may therefore 
be treated in the molecular field approximation, and 
we can think of an "exchange field" due to the resultant 
spin of the ferrimagnetically coupled ferric ions acting 
on the spin of the rare earth. The interaction between 
rare-earth ions is weak in comparison to the RE-Fe 
and Fe-Fe interactions, and thus may be neglected. 

From the g-tensor values for the Zeeman effect one 
can calculate the splittings of a crystalline energy level 
by an exchange field. For an isotropic exchange field, 
the splittings exhibit the same symmetry as for the 
Zeeman effect. However, from the recent spectroscopic 
studies of Wickersheim and White2-5 on the lowest 
doublets of the 2Fb/2 and 2F7/2 states of Yb3+, we see 
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that (1) the anisotropy in the exchange splittings in 
YbIG exceeds that due to the anisotropy of the g tensor 
for the Zeeman effect, as inferred from Yb3+ in YbGaG, 
and (2) for the lowest doublet of the 2F&/2 state, the 
ordering of the principal values of the exchange tensor 
differs from that of the g tensor. Since the splittings of 
the 2F5/2 and 2F7/2 doublets produced by the exchange 
interaction have the same angular dependence as those 
produced by a magnetic field, the exchange field has a 
first-rank tensorial behavior, and therefore arises from 
5-state ions, i.e., the Fe3+ ions. 

The g tensor for the Zeeman effect is a measure of 
the ease with which the magnetic electrons in a crystal
line field may be reoriented by a magnetic field. An 
anisotropic g tensor thus infers that the magnitude of 
the reorientation of the orbital state of the magnetic 
ion depends on the direction of the magnetic field with 
respect to the g-tensor axes. The difference between the 
exchange splittings arrived at by assuming an isotropic 
exchange field and those observed is due to the effect 
of the reorientation on the magnitude of the exchange 
interaction. We are therefore led to the conclusion that 
the RE-Fe exchange interaction depends on the orbital 
state of the rare earth. This was anticipated by Wolf, 
who reasoned that the interaction should be anisotropic 
solely on the basis of the spiked nature of the rare 
earth's 4 / orbital wave function. 

We develop in this paper a Hamiltonian for the 
RE-Fe (4/— 3db) exchange interaction on the assump
tions (1) that the spin dependence of the superexchange 
interaction between a rare-earth electron and the ferric 
ions is well described by the Dirac-Van Vleck effective 
spin Hamiltonian s(4/)-S(Fe), and (2) that the de-
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pendence of this interaction on the orbital state of the 
rare earth is accounted for by an exchange potential. 
This exchange potential is expanded in a set of irre
ducible tensors (similar to spherical harmonics). The 
orbital and spin variables of the rare earth are coupled 
together and the final Hamiltonian is expressed in 
terms of either the total angular momentum J (RE), 
or the spin S(RE). The extension to Afn electrons is 
made under the assumption that each electron experi
ences the same exchange potential. 

In order to relate the empirical parameters in the 
exchange potential to the data on the above-mentioned 
splittings the Hamiltonian is evaluated in a Kramers* 
doublet. At the present time the six observed splittings5 

are insufficient to determine the ten parameters akQ; 
thus, to determine the parameters relationships between 
them must be derived on the basis of models of the 
RE-Fe3 + exchange interaction. Specific models from 
which these relationships are derived will be discussed 
in a subsequent paper. 

II. THE RARE-EARTH-IRON EXCHANGE INTER
ACTION FOR ONE 4 / ELECTRON 

The exchange between the 4 / rare-earth electrons 
and the 3d iron electrons is probably not direct, but 
takes place by some indirect mechanism via the oxygen 
ions. The Dirac-Van Vleck vector model of the exchange 
energy of two electrons on different ions is valid for 
several types of superexchange, and its validity in the 
case of the RE-Fe3+ exchange mechanism forms the 
basic assumption in the following analysis. 

The Dirac-Van Vleck vector model leads to an 
effective Hamiltonian of the form6 

^ - * [ l + 48(i) .8(i)] / fy, (2.1) 

where Kij= Coulomb integral and J a—exchange 
integral. 

When this Hamiltonian is applied to the electron 
exchange interaction between two atoms, the depend
ence of the exchange integral on the orbital states of 
the electrons is commonly neglected. If one takes into 
account the orbital states, Van Vleck7 has shown that, 
in general, the resulting exchange Hamiltonian will be 
anisotropic. The particular case of exchange between 
two 5-state ions is, however, an exception to this rule. 

For two 5-state ions, the appropriate form of the 
spin-dependent part of the Hamiltonian (2.1) is7 

F i 2 = 4 i 2 S r S 2 , (2.2) 
where 

2 »1 «2 

and Ui= number of electrons to a half-filled shell, which 
is just 2 ^ + 1 . 

6 J. H. Van Vleck, The Theory of Electric and Magnetic Suscepti
bilities (The Clarendon Press, Oxford, 1932). 

7 J. H. Van Vleck, Revista de Matematica y Fisica Teorica 
(Tucuman, Argentina, 1962), Vol. 14, p. 189. 

When only one of the ions is in an S state the appro
priate extension of Eq. (2.2) is 

5 C e x = - 2 i : ^ / s ( i ) - S , (2.3) 

where 
1 2Z+1 

ft i — 2~i J ij j 

2 / + 1 i=i 

and S= total spin of a half-filled shell. The third bar on 
an equal sign denotes a definition. Since the magnetic 
shell of the ferric ion is half-filled, this form of the 
Hamiltonian is applicable to the RE-Fe3+ exchange 
interaction and shows that no matter how complicated 
the precise form of the interaction, the spin of the ferric 
ion always enters linearly. 

Van Vleck7 displayed the anisotropic exchange inter
action between an atom with a p electron and one with 
and S-state electron in terms of the total angular mo
mentum j of the p electron and the spin s of the 5-state 
electron. This section is an extension and generalization 
of this example for the anisotropic exchange interaction 
between one rare-earth 4 / electron and the half-filled 
shells of a cluster of ferric ions. 

A. Exchange Potential for Rare-Earth-Iron 
Cluster Interaction 

The exchange interaction between the rare-earth 4 / 
electron and either one ferric ion or the entire sur
rounding cluster has the form8 

3Cex= -2^ i( / ,w z ,m/) 0pS(i)-S(Fe) , (2.4) 

where Ai(l,nii,nii)ov will be called the "generalized 
exchange potential operator" because it describes the 
dependence of the exchange interaction on the orbital 
state of the rare earth. The angular dependence of the 
generalized exchange potential is expanded in a set of 
irreducible tensorial operators9 Tq

[k](i) which act on 
the orbital part of the rare-earth wave function, and 
are defined by their matrix elements [see Eqs. (2.6) 
and (2.7)], 

21 k 

AiQ,mhml')OSf=Z £ «*«ZV«(t), (2.5) 
&=0 q=—k 

where k is even as shown in Appendix B, and the otkq's 
are parameters that can be evaluated empirically.10 

Tensors of rank k>2l need not be considered as they 
do not satisfy the triangular condition implied in the 

8 In the garnets the iron sublattice is ferrimagnetically coupled 
so that the spins of the ferric ions are either parallel or antiparallel 
to one another. Denoting the spin of the iron sublattice by S(Fe), 
the spin of each ion S may be written as S = d=constant S(Fe). 

9 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959). 

10 A theoretical determination of these parameters requires 
additional assumptions about the superexchange mechanism. 
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matrix elements of Tq
[k] within an / manifold [see Eq. 

(2.6)]. 
From the Wigner-Eckart theorem9 the matrix element 

of the generalized exchange potential, i.e., the gen
eralized exchange constant, is 

A i (J,mhm{) =(lmi\Ai (l,mhmi)ov \ lm{) 

21 k 

= ( - ! ) * - " " £ £ «*9(/| |Ti«||0 
k=0 q=-k 

k even 

XVillk^-mim/q). (2.6) 

The Fano and Racah V symbol is the same as Wigner's 
3-j coefficient except for a phase factor. For conven
ience in later applications the Tq

[k] are defined by 
setting 

(/||T™||/) = 1 1*0. (2.7) 

This definition is arbitrary only to the extent that 
defining the reduced matrix element as being real does 
not alter the intrinsic time-reversal symmetry of the 
Hamiltonian Eq. (2.4). This point will be discussed in 
Appendix B. 

The largest possible number of different exchange 
constants, A(l,mi,m/), is ( 2 / + l ) ( / + l ) ; the number of 
adjustable parameters akQ equals the number of ex
change constants (2.6). The expansion is therefore 
consistent and unique, and thus can be inverted to find 
the parameters akq in terms of the matrix elements; 
the result is 

akq=(2k+l) f (~iy~^A(l,mhq) 
mi=—l 

XV(llk;-ml,ml-q,q), (2.8) 

where q=mi—mi and condition (2.7) has been used. 
The sum11 

£ E ? ( » * ; -mtnn'q)?(Uk'; -mm/q') 
ml ml' 

t>kk'&<iq'8(l,l,k) 

( 2 * + l ) 
' , (2.9) 

where 5 (1,1,k) is zero unless k is an integer and 0 ̂  k ^ 21, 
was used to derive (2.8) and expresses the orthogonality 
of the operators used as the basis of the expansion (2.5). 
The advantage of using irreducible tensor operators in 
defining the exchange potential is apparent; they sim
plify the transformation (2.8) as the Tq

[k]'s are a com
plete set of orthogonal operators [rather, 

(lmi\TQW\lmi')= (-iy~mlV(llk; -mm/q) 

is the orthogonal set]. If nonorthogonal operators were 
used to find the parameters the solution would lead to 
a set of m simultaneous equations, where m is equal to 
the number of the independent parameters. 

11 See Ref. 9, p. 51, Eq. (10.17). 

B. The Hamiltonian for the Exchange Interaction 

With the Hamiltonian (2.4) and the exchange po
tential operator (2.5), one finds 

X e x = - 2 I E akqTq™(i)s(i)-S(Fe). (2.10) 
/fc=0 q=— h 

To find the matrix elements of this Hamiltonian in a 
coupled representation of the rare earth, i.e., \jm3), 
one can either uncouple the rare-earth wave functions 
into their orbital and spin states,12 or couple the 
operators Tq

[k](i)s(i) and express the irreducible 
products as operator equivalents Jm

[p] which act on 
total angular-momentum wave functions. The first 
approach, although feasible for electrons with low 
orbital quantum numbers, i.e., for l—s or p, becomes 
too unwieldy for a 4/w configuration; the second ap
proach has therefore been adopted. 

The transformation of the Hamiltonian (2.10) to 
the coupled form (2.20) is readily accomplished by 
using Racah's algebra, and it may be divided into three 
steps: 

(1) The direct products in Eq. (2.10) are coupled 
into irreducible products. By definition of an irreducible 
product13 

am
[h]bm2^ = T, (mim2|if»)[Atti x B ^ ] m M , (2.11) 

jm 

where 

(jm | m\m^ = (mim^ \ jm) = (j\m\,jtfn<i \ jiJ2,jrn) 

is a Clebsch-Gordan coefficient and ami
[h\ bm2

{h] are 
the components of the tensorial sets A[?l1, B[?'2]. 

With the components of the first-rank tensorial set 
defined by Fano and Racah,14 i.e., 

5 i W = ( - i S , + 5 y ) / V 2 , S0
[l] = iSz, 

S^=(iSx+Sy)/^2, 
(2.12) 

one finds that 

7V*J(0s(i)-S(Fe) 

= \ S [ T ^ ( i ) X [ S W ( * ) X S W ( F e ) ] ^ ] f l i * i . (2.13) 

(2) The operators acting on the rare-earth electron 
may be written in terms of the total angular momentum 
or spin by recoupling the irreducible products, as (2.13), 
so that operators referring to the rare-earth electron 
are together. The triple product of irreducible tensors 

12 Wickersheim and White (see Ref. 5) have chosen to uncouple 
the rare-earth's wave functions 2F5/2 and 2F7/2. The relationship 
between their notation and that adopted here is 

aoo=-(J7i/*)s/aEr., 
«2o= -3{3X5Xl)ll2gpHeG20, 
a22=-3(2X5X7yi*g(3HeG2*. 

13 See Ref. 9, p. 36, Eq. (7.10). 
14 See Ref. 9, p. 24, Eq. (5.15). 
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is recoupled with the aid of the Racah coefficient,15 i.e., one finds 

[ [A[ J ' l ] xB^]^2]xC^ ] ] T O ^ 7y*i (*)»(*) "S(Fe) 

a=g(-)ii+/H-/H-y[(2j-11+i)(2iM+l)]i/« = ( - i ) w £ ( l ){ 2 j ? + 1 T 2 

XCA^X[B^xC^]^3]]mm. (2.14) x011CT[*]XS^]wil/) 
01|J[p]lliO 

The Racah coefficient with one zero element is 
X[J[p](*)XSW(Fe)]f lw. (2.19) 

W(jiJ2Ji2/JzkO) = Using this result in the exchange Hamiltonian (2.10) 
[(2fc+l)(2i2+l);P one finds 

X5(iij2,ii2), (2.15) 2l h k+1 

where d (j\,32,312) = 1 if the following conditions are *=o <?=-* p=|fc-U 
S a t i s f i e d : XCJ""«XSW(Fe)] 9^] , (2.20) 

h+h+ju= integer, ( 2 1 6 ) w h e r e 

h+h>i^\h-uU ^ ^ r2j,+i-|'/MillCT^xSm]M||i0 

if these conditions are not satisfied 7kqr— ( l ) p ata ,. l l ? r ...... 
L26+1J 0P t p l lb) 

The reduced matrix element of the irreducible product 
The inequality in Eq. (2.16) is known as the triangular (2.18) is 16 

condition. By using the Racah coefficient (2.15) •nr ' iwwsr iu-MMll ; -'\ 
(jl=k, j 2 = i 3 = l , ju=p) in Eq. (2.14), one finds M E T 1 * 1 toXS"(i)]™\\kij ) 

= [(2i+l)(2/+l)(2/,+ l)]i/2 
J+I r 2 i > + l l 1 / 2 X(5 < | |SW| |* i )X(BftA i s i l / i /#) , (2.21) 
E (-D1 

*>H*-H L2^+lJ where (l\\T^\\l) = 1, and XQlk/siSil/jj'p) is a 9-j 

raW(*)8(*)-S(Fe) = (-l)w-1 E ( -1 )1 

symbol.17 The index i is retained on the 5 so as not to 
X[[T 1*1 (*) XS w (0] I p l X S Pi (Fe ) ] 9 w . (2.17) c o n f u s e t h e s p i n of t h e r a r e - e a r t h electron with that of 

the ferric ion or iron sublattice. The off-diagonal element 
(3) With the aid of the Wigner-Eckart theorem, one of t h e r educed matrix of Ji*\ i.e., of Sc*] is18 

finds 
(lSij\\j[p]\\lSif) 

[TW(«)XSW(i)3»lPl L(_i)^1+y+P[(2y+l)(2/+l)]1 /2 

01|[Ti«XSW]w||i ;) X (4\Slp]\\si)WUfP/siSit), (2.22a) 
= ~ Jm[p], (2.18) 

( i l |J [ p ] l l iO where as the diagonal element of the reduced matrix 
of J M is 

where 
(MII[p]IIM=(il|Jwlli). (2.22b) 

JJp^JJvi for j=f, 
=Sm

lp] for j^f, The r educed matrix elements of the a ^th-rank 
irreducible tensorial operator for angular momentum 

and Jm
[p] and Sm

[p] are irreducible tensorial operators may be derived by repeatedly applying the relation for 
defined by the reduced matrix elements (2.24), (2.25). tensorial operators which act on the same system19 

The dot over the equal sign signifies that the equality is 
restricted to states within j and f. (jKA[kl]XB™]{k]\\f) 

Placing the operator equivalents (2.18) in Eq. (2.17) = ( - )^ '+*[2*+l] 1 ' 2 I > UWk*\\j") 
and forming the irreducible product of JmM and Sm>[1], X 0*"||B[k*]\\j)W(jfk/k2fiij") (2.23) 

16 See Ref. 9, p. 84, Eq. (15.4). 
16 The recoupling of irreducible tensors is independent of the 17 See Ref. 9, Sec. 12. 

component of the product and depends only on its rank j ; the 18 See Ref. 9, p. 85, Eq. (15.7'). 
component m has been added for completeness. 19 See Ref. 9, p. 86, Eq. (15.15). 
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to the expressions 

(il|Jtollli,)=[(2i+i)/3]1'2i(i+i)3^, 

(ill Jl1111/)=€i(i+1) (2j+i)ji%r, 
U\\JmW (2-24) 

= r (2i+3) (2i+2) (2j+l)2j(2j-1)-]'/2 

24 

For p=2n=even, ( ^ 4 ) , one finds 

(i||JP»]||/) = ( - ! ) * « - » 

X8i; 

x(i||J [2] I ) » n (4M-46+1)1'2 

«=0 

XF( j , i , 2 (» -e ) /2 ,2 ( W -6 - l ) , i )5 j y , (2.25a) 

and for odd p, (p~£ 3), the result is 

OIIJlPlll/)=*| — 
4(2^-1) J 

X ( i | | J ^ | | i ) * i : (2.25b) 

The irreducible products in the Hamiltonian (2.20) 
can be written explicitly in terms of the conventional 
angular momentum operators, i.e., Jx, Jyy Jz and SX} 

Sy, Sz, but this course will not been followed here, as 
the Hamiltonian that results would be unwieldy. 

When evaluating the matrix elements of the Hamil
tonian (2.20) with wave functions of the rare-earth ion, 
it is necessary to uncouple the irreducible products 
[J [p ]XS [1 ];y* ]. From the definition of an irreducible 
product (2.11) one can rewrite the exchange Hamil
tonian (2.20) as 

2Z+1 

3CeX=2 £ £ pr(mm')JmM(RE)Sm,M(Fe), (2.26) 
r = 0 mm' 

where 
( - l ) ' (2 r+l )"» 

3r (mm)= 

U\\m\f) 
r+1 

x E (illCT^xSw]w||/) 

X E (-I)3 akqV(rlk; mm'-q). (2.27) 
q——k 

The reduced matrix elements in the coefficient (2.27) 
are given by Eqs. (2.21) and (2.22). 

To summarize, the transformation of the Hamil
tonian (2.10) to the coupled form (2.20) may be 
divided into three steps: 

(1) The components in the Hamiltonian (2.10) are 
coupled into irreducible products (2.13). 

(2) These products are recoupled (2.17), so that the 
operators that act on the same electron are coupled 
together. 

(3) The portion of the irreducible product that 
refers to the rare-earth electron (2.18) is expressed in 
terms of an operator equivalent Jm

[p3(RE). 

III. THE AT-ELECTRON HAMILTONIAN FOR THE 
RARE-EARTH-ION EXCHANGE INTERACTION 

The one-electron Hamiltonian (2.4) will now be used 
to derive the rare-earth-iron exchange Hamiltonian for 
n equivalent electrons. In this derivation the one-
electron approximation is made, i.e., each equivalent 
electron is assumed to experience the same exchange 
potential. The population of the orbital and spin states 
available to the n equivalent electrons is governed by 
the requirement that the wave functions satisfy Pauli's 
exclusion principle. 

A. The Derivation of the n-Electron Hamiltonian 

The ^-electron Hamiltonian for rare-earth-iron 
exchange interactions is the sum of one-electron 
Hamiltonians (2.4, 2.5). If one makes the one-electron 
approximation, the exchange-potential parameters akq 

are assumed independent of the particular electron 
referred to, and the ^-electron Hamiltonian may be 
written as 

JLe: 2 E E «.,Er,w(0»(i)-S(Fe),(3.1) kq L-i M Q 
k=0 q=—k t=l 

where S (Fe) refers to one ferric ion or a cluster of ferric 
ions. 

With the same procedure as in Sec. II B, one finds 

21 k k+l 

3Cex=2E E E Y*flr[J
[rI(*)XSm(Fe)y", (3.2) 

&=Q q=—k T=\k—1| 

where now 

ykqr=(—l)T+kaki 
r 2 f + l - | l / 2 

L2&+ a 
( J | |E [T£*}(* )XS^] M I | / ' ) 

X-

and 
(/| |JM||/ ') 

2Z-4-1 

3Cex=2 E E ^(wOT')-/mt'-I(RE)^'[11(Fe))(3.3) 
r = 0 mm' 

J3r(mm')=-
( - l ) ' ( 2 r+ l> 1/2 

(/| |JM||/ ') 

r + 1 n 

x E (/||E [T^^xsw©]"!!/') 
k=\r—1| i=l 

k _ 

X E (-l)«akqV(rlk;tnm'-q), 
q~—k 
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where the reduced matrix elements (/||j [ r ] | |/ ') are 
given by Eqs. (2.25), and 3[r](i) refers to the total 
angular momentum of the rare-earth ion, and not of 
one electron. 

The only terms in the exchange Hamiltonian de
pendent on the configuration are the reduced matrix 
elements 

(/ECT^KOXSW^wil/O. (3.4) 

It remains to evaluate these for 4/n configurations 
either by the general Racah approach using fractional 
parentage techniques,9 -20,21 or by applying a technique 
which is feasible only for a state of maximum multi
plicity, i.e., S=Smax, which is the case for the ground 
state of a rare-earth ion. 

B. The Evaluation of the Reduced Matrix Elements 
Using Coefficients of Fractional Parentage 

The reduced matrix element (3.4) may be generalized 
by replacing the first rank tensor S[l] by a tensor of 
rank K and fn by ln. Consider one L, S multiplet, i.e., 
L = L' and S=S'; similarly, to Eq. (2.21) one writes 

(M^/| |i; [T^©xsw©] [ r ] l l ^^0 

= Z(2J+l)(2J'+l)(2r+l)Ji* 

X(lnLS\\i:TW(i)SW(i)\\lnLS) 

XX(LLk/SSK/JJ'r). (3.5) 

T[/b](f)S[K](f) is called a double tensor. This relation is 
not a direct extension of Eq. (2.21). The exclusion 
principle requires a multielectron wave function to be 
antisymmetric with respect to the interchange of 
equivalent electrons. Due to the construction of the 
antisymmetrized wave function }lnLMlLSMs), L and 
S are still partially coupled in Eq. (3.5) although T[k] 

and S[K] have been uncoupled as regards their irre
ducible tensorial product. 

The reduced matrix element of the double tensor in 
Eq. (3.5) was evaluated by a method analogous to the 
one used by Elliott, Judd, and Runciman22 for the spin-
orbit interaction. Their procedure removes one electron 
from the ^-electron wave function and allows the single-
particle operators T[k](i) and S[/cl(i) to act on this 
fractionated state. The result one obtains after using 

20 G. Racah, Phys. Rev. 63, 367 (1943). 
21 G. Racah, Phys. Rev. 76, 1352 (1949). 
22 J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc. Roy. 

Soc. (London) A240, 509 (1957). 

the relation (3.5) is 

(^L^/||i:.[T^KOXSw©][r]ll^^0 

= (~l)L+w+swn(2L+l)(2S+l) 

Xl(2J+l)(2J'+l)(2r+l)J* 

X (s\\SM\\s)X(LLk/SSK/jrr) 

X E (~ 1)L '+S ' I QnLSll»-1(L'S'),lLS) 12 

L'S' 

XW{LLk/llL')W{SSn/ssS'), (3.6) 

where {lnLS{ln~l(L'S')J,LS) is a coefficient of fractional 
parentage,9 and L'S' is a parent state, i.e., when L'S' 
are coupled to /, j one obtains L, S. In applying this 
formula to the exchange Hamiltonian's reduced matrix 
elements (3.4) note that s=% and 5 = total spin of rare-
earth ion, not the spin of the ferric ion. 

Two special cases of the reduced matrix element 
(3.6) must be separately considered. n=l: Eq. (3.6) 
is inapplicable and the proper specialization is Eq. 
(2.21). ^ = 2 : Eq. (3.6) applies if one uses ln~l=l, L' = l9 

S' = s a,nd (l2LS{l(l,s),lLS) = l. 
The coefficients of fractional parentage have been 

evaluated for the 4/w ground states with methods given 
by Racah.21 The v, w, and u numbers for these states 
were taken from Elliott, Runciman, and Judd.22 In 
Table I are the coefficients of fractional parentage for 
the ground multiplets of the rare-earth ions from Pr3+ 

to Gd3+, Le.,n=2 to 7. 
The reduced matrix elements (3.5) from Tb3+ to 

Yb3+, i.e., n=S to 14, may be obtained from those with 
n^ 7 by using the following relation derived by Racah.23 

For k+K7±0 

41+2— n 

(S"L"\\ Z Tm(i)SM(i)\\S'L') 

= (-l)*+"+1(.S'L'||i; Tl*i(»)Sw(»)l|5"i"), (3.7a) 

and for k = K=0 

4Z+2— n 

(SL\\ £ TB»](*0S»"(OI|5£) = »(/||Ti»]||0, (3.7b) 
»=i 

(SL\\Z Tt»i(;)S[0](;)l|SL)= (4H-2-») 
i=l 

X(/||T»»|10. 

These relations are valid for states in the ground and 
excited multiplets. 

In states of maximum spin multiplicity, i.e., ground 
states of ions obeying Hund's Rule, the reduced matrix 
elements are related for configurations in different 
quarters of an electron shell, e.g., 4/1 is related to 4/6, 

23 G. Racah, Phys. Rev. 62, 438 (1942). 
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TABLE I. The coefficients of fractional parentage for the ground 
L, S multiplets of the rare-earth ions in the first half of the 4/ 
shell. 

L,S 

*H 
4/ 

n 

m 

7F 

8S 

L',S' 
2F 
3F 

m 4F 
*G 

n 5F 
6Z) 
5G 
H 
6F 
6P 

m 7F 

(fnLS{fn-KLfSf),fLS) 

1 
- (2/9)i/2 

(7/9)i/2 
-( l /8) i /2 
(21/88)i/2 

(7/ll)i/2 
- (l/10)i/2 
-(2/21)i/2 

-(3X13/2X77)i/2 

(91/5X33)i/2 

(l/3)i/2 
(l/7)i/2 

(11/21)1/2 
1 

4/ 9 to 4/1 2 ; this was pointed out by Van Vleck24 and 
Judd.25 In Appendix A the reduced matrix elements of 
a double tensor are related for configurations in different 
quarters of the electron shell by using unsymmetrized 
products of single-electron wave functions. Eqs. (A7) 
and (A8) relate the (4/+2) reduced matrix elements 
of a double tensor to (Z+l) independent ones; for 
the rare-earth series there are only four independent 
elements and the first one, 4/°, is trivial. 

C. The Final Hamiltonian that is Hermitian 
and Even Under Time Reversal 

The reduced matrix elements in Sec. B complete the 
determination of the explicit form of the constants in 
the Hamiltonian for rare-earth-iron exchange. I t is now 
possible to see what conditions must be placed on the 
Hamiltonians (3.2) and (3.3) so that they are Hermitian 
and even under time reversal. These requirements, as 
shown in Appendix B, restrict the rank of the irre
ducible tensor operator Tq

[k] to be even and the rank 
of Jm

[r] to be odd. 
Restrictions on the components q (other than 

— k^q^k), can only be made when the Hamiltonian 
is expressed in certain coordinate systems. Furthermore 
the parameters a]cq (2.8) will be real provided they are 
referred to a set of axes for which the potential V is 
even in the variable <f>; 

V(riflirfi) = ]£ eifin)-1, 
n 

and n represents the ions active in the exchange inter
action. The point symmetry of a rare-earth site is D2 

and there are three mutually perpendicular twofold 
axes; therefore when written in these axes, the exchange 
potential for the rare-earth-iron cluster interaction has 
only even components of the tensors Tq

[k\ and the 
exchange potential parameters akq are real and related 

24 J. H. Van Vleck, Phys. Rev. 41, 208 (1932). 
25 B. R. Judd, Phys. Rev. 125, 613 (1962). 

by Eq. (B6), i.e., 
ajc-q^akq. (3.8) 

From the above considerations we may conclude 
that when referred to the proper axes the exchange 
potential for a RE-Fe interaction will contain at most 
ten real parameters. 

IV. THE RELATION BETWEEN THE EXCHANGE 
POTENTIAL PARAMETERS AND THE 

SPLITTINGS OF A KRAMERS' 
DOUBLET 

The Hamiltonian for the rare-earth-iron exchange 
interaction has been derived in the preceding sections 
in terms of the unknown parameters akq. These parame
ters are extremely difficult to calculate for this complex 
interaction; the alternative is to determine them 
empirically. At present, experimental data are available 
only on the exchange splittings for a couple of Kramers' 
doublets. The parameters could be determined (if 
there were enough data) from a comparison of the 
splittings with theoretical expressions for them written 
in terms of the unknowns akq. 

The form of the Hamiltonian (3.3) for the rare-
earth-iron exchange interaction in a pair of Kramers' 
conjugate states is known2 to be 

( X e x ) = H e f r A . J , ( R E ) , (4.1) 

where A tensor is an "exchange tensor." The purpose 
in this section is to relate the exchange potential 
parameters akq to the principal values of the exchange 
tensor, which in turn are related to the experimentally 
determined exchange splittings of a doublet. 

Consider the state of a rare-earth ion represented by 
the wave function | JMj), an eigenfunction of the total 
angular-momentum operators J2 and Jz. The axis of 
quantization to which this wave function is referred 
coincides with the z axis of the crystalline field g tensor. 
I t is a tacit assumption that the exchange potential 
and the crystalline field are referred to the same axes. 
If this were not the case, either the wave function or 
the exchange-potential operator would have to be 
rotated to the axes of the other. The matrix element of 
the Hamiltonian (3.3) in a \JMj) representation 

(JMj\3Cex\JM'j)^E(Mj,M'j; Sm>[l]) (4.2) 

is still an operator with respect to states of the ferric ion. 
The properties of the operator-matrix element (4.2) 

in the states of a Kramers' doublet are derived by 
manipulating the Hamiltonian (3.3), and by using the 
symmetry properties of the V symbols9 and parameters 
akq (see Appendix B). The necessary relations for 
evaluating the exchange Hamiltonian in a Kramers' 
doublet are: 

(1) E(M'jyMj\SmW)=(E{Mj,M'j\SmW)y. (4.3) 

A dagger denotes the Hermitian adjoint of an operator. 

(2) E(-Mj,-M'j;Sm>™) 

= ( - l)M'-M''+1E(M'J,MJ;Sm'™), (4.4) 
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and 

(3) *(JMJ\^\JMfj)*=-{JM,j\^\JMj). (4.5) 

The last relation shows that the exchange Hamiltonian 
changes sign when evaluated in a time-reversed state 
of one system of the composite rare-earth-iron system. 

Written within the subspace spanned by the Kramers' 
conjugate wave functions \// and \p*, the exchange 
Hamiltonian reduces to a 2X2 matrix whose elements 
are operators of the iron sublattice system. As these 
wave functions are linear combinations of states | JMj), 
one finds from Eq. (4.5) that the diagonal matrix 
elements are the negative of one another and from Eq. 
(4.4) that one off-diagonal matrix element is the 
Hermitian adjoint of the other. 

In the iron garnets, the crystalline and exchange 
potential have rhombic symmetry with respect to the 
g-tensor axes. Therefore, (1) the doublet wave functions 
contain only those states \JMj) which have their 
spatial quantum numbers Mj differing by an even 
number, and (2) only even components (q) of the ex
change potential are present. From these facts one 
deduces that the diagonal matrix elements contain only 
the z component of the iron sublattice spin, and the 
off-diagonal elements contain only the x and y com
ponents, i.e., the exchange tensor is in principal form. 
By using the procedure outlined by Griffith26 and the 
molecular-field approximation, we find that 

2[Af (r)/Jlf ( 0 ) ] T I G M - A - J ' ( R E ) . (4.6) 

In this formula / ' ( R E ) is the fictitious angular mo
mentum of the doublet, M is a unit vector pointing in 
the direction of the magnetization of the iron sub-
lattice, and [ i f (r)/ikf(0)]yiG represents the ratio of 
the spin of the iron sublattice at a temperature T to 
that at absolute zero. The principal values of the 
exchange tensor A are 

^ = ( l / v 2 ) [ h ( l ) | - U ( - l ) | ] , 

O y y = ( l / V 2 ) C h ( l ) + h ( - l ) | ] , (4.7) 

a « = - h ( 0 ) | , 
where 

y(™') = YL ykq(m
f)akq (4.8a) 

kg 

and 

YJb«("0 = 2 Z (-)J+MJ+1C(MJM'J) 
MJM'J 

X E (2r+\yiW{JJr) -MjM'jm) 
r = \k-l\ 

(r odd) 

XV(rlk; m, m', —q) 

X ( / | | £ [ T W ( i ) X S W ( 0 ] [ r l l | J ) . (4.8b) 

26 J. S. Griffith The Theory of Transition-Metal Ions (Cambridge 
University Press, London, 1961); note that the matrix elements 

Here the exchange parameters include the average 
value of the spin of the iron sublattice at absolute zero. 
C(MJM'J) is a product of the coefficients of the states 
| JMj) that enter the Kramers' conjugate states \p and 
^*. 

When the iron magnetization is parallel to one of the 
A-tensor principal axes, say q, the value of / / ( R E ) is 
± J . With the Hamiltonian (4.6) we find 

(AEeJq= 2[M(T)/M(0)loqq, (4.9) 

which is the exchange splitting of the doublet along the 
qth principal axis related to the principal value of the 
exchange tensor. 

V. CONCLUSIONS AND DISCUSSIONS OF RESULTS 

The main objective in part I has been achieved; the 
Hamiltonian (3.2 or 3.3) has been derived that describes 
the anisotropic exchange interaction between the 
electrons of one or a cluster of S-state ions and those of 
an ion whose orbital and spin angular momenta are 
strongly coupled to form a resultant J. The dependence 
of this interaction on the orbital state of the ion with 
the total angular momentum J is accounted for by a 
generalized exchange potential (2.5); this potential is 
applicable to superexchange as well as direct-exchange 
interactions. 

For the Yb3+ ion in YbIG the spin-orbit coupling 
splits the lowest term of the 4/13 configuration (2F) into 
two / states, which are removed from one another by 
10 000 cm -1. The crystalline field splittings of these 
states are about 500 cm - 1 and the exchange splittings 
of the lowest doublets are about 25 cm"-1. From this we 
conclude the / is a good quantum number for Yb3+ in 
YbIG. In the case of rare-earth ions for which / is not 
a good quantum number, as for example, when the 
crystalline field splittings is of the same order of magni
tude as the spin-orbit splitting, the alternate form of 
the operator J[r] (RE) can be used, i.e., 5 [ r l (RE). 

The second major objective in this investigation is 
the empirical determination of the exchange potential 
parameters of the RE-Fe exchange interaction from the 
available experimental data on the exchange splittings 
of Kramers' doublets. The exchange potential parame
ters may be determined empirically from data on one 
/ state, on different / states within & L, S multiplet, 
or even from data on states in the ground multiplets 
of ions with different numbers of equivalent electrons. 
These three methods may not give a unique set of 
parameters, i.e., if the parameters have been deter
mined from data on one / state they may not accurately 
represent the exchange potential for other states either 
of the same ion or for ions with different numbers of 
equivalent electrons. As no additional assumptions were 
made in deriving the exchange Hamiltonian for different 
/ states in a L, S multiplet of an ion, it seems reasonable 
to use the exchange potential parameters determined 

(4.2) are operators in a space other than that spanned by the 
wave functions ^ and ^*. 
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for one / state for others within the same multiplet. 
On the other hand, in the derivation of the exchange 
Hamiltonian for states in the ground multiplets of ions 
with different numbers of equivalent electrons, the 
assumption was made that each electron sees the same 
exchange potential. This "one-electron" approximation 
is more appropriate for the angular than the radial part 
of a wave function, and therefore it is reasonable to 
extrapolate only the ratios of the exchange potential 
parameters from one ion to another and not their 
magnitude, i.e., the isotropic component a0o. 

At the present time it is not possible to determine 
the parameters auq nor the extent of their validity. 
Three reasons can be cited: 

(1) The experimental data on Yb3 + are insufficient 
to determine uniquely the parameters without resorting 
to specific models of the RE-Fe3+ exchange interaction. 

(2) No direct experimental data, as exchange split
tings, exists for the anisotropy of the RE-Fe exchange 
interaction in ions other than Yb3+. 

(3) The wave functions for the Yb3 + ion in the 
crystalline field of YbIG are not accurately known. 

The wave functions for Yb3 + in the crystal field (ex
cluding exchange field) are not known. Wickersheim3,5 

has concluded, from the effect of a large magnetic field 
on the 2F5/2 and 2F7/2 lowest doublet levels, that it is a 
"safe procedure" to use the wave functions for the 
doublets of Yb3+ in YGaG to represent those in YbIG.27 

These wave functions have just been determined by 
Hutchings and Wolf,28 and one could determine the 
exchange potential parameters with the available data 
provided one uses a specific model of the RE-Fe3+ ex
change interaction (if more experimental data on the 
Yb-Fe exchange interaction were available, it would be 
possible to determine the parameters independent of 
any model). 

A mention should be made about the relative signs 
of the g values for the Zeeman effect and the exchange 
splittings. The effect of a large magnetic field on the 
exchange splittings of the 2F&/2 and 2F7/2 doublets has 
been measured by Wickersheim.3'5 He concluded that 
the g values for the two states have opposite signs. No 
further experimental information has been obtained on 
the relative signs, and therefore all g values and splittings 
for each doublet have been given the same sign. This 
assignment implies the least amount of anisotropy in 
the exchange splittings. Whereas it is not possible to 
assign each g value or splitting a definite sign it has 
been noted by O'Brien29 and Pryce30 that the product 

27 Perhaps there is a slight difference in the wave functions; 
and it is possible that the RE-Fe exchange interaction is sensitive 
to this difference, in which case the g values of the lowest doublets 
of the 2F5/2 and 2F7/2 states of Yb3+ in YbIG must be re-evaluated 
with a better accuracy than has been obtained in past experiments. 

28 M. T. Hutchings and W. P. Wolf, J. Appl. Phys. 35, 1060 
(1964). 

29 M. C. M. O'Brien, Doctoral thesis, University of Oxford, 
1955 (unpublished). 

30 M. H. L. Pryce, Phys. Rev. Letters 3, 375 (1959). 
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of the principal values of the g tensor or exchange 
tensor, i.e., detg#, has a definite sign that can be 
experimentally determined by using circularly polarized 
radiation. This information would be very useful in 
helping one to determine the signs of the g values and 
exchange splittings; these relative signs affect the 
values of the empirically determined exchange-potential 
parameters. 

In conclusion, the exchange potential parameters 
have not been determined, nor has the concept of a 
unique exchange potential for the RE-Fe interaction 
been validated. These topics and models of the RE-Fe3 + 

interaction will be discussed in a subsequent paper 
(part II) . 
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APPENDIX A: EVALUATION OF REDUCED MATRIX 
ELEMENTS FOR STATES OF MAXIMUM MULTI
PLICITY USING UNSYMMETRIZED PRODUCTS 

OF SINGLE-ELECTRON WAVE FUNCTIONS 

In evaluating the reduced matrix element (3.5) for 
a configuration of equivalent electrons it is irrelevant 
whether an antisymmetrized wave function or a set of 
products of single-electron wave functions is used, 
because the operators Tq

[k](i) and Sq>
[K](i) yield the 

same result. For a state of maximum multiplicity the 
set of product wave functions reduces to one, that one 
for which 

and (Al) 

4 Z + 2 £ » > 2 7 + l ; \S,MS=S) 

2Z+1 n 

— 1 1 1 1 | '2>2/r| '2) 2/r'• 
r==l r'=2H-2 

For this state it is particularly simple to evaluate the 
reduced matrix elements with the product type wave 
function. 

For states of maximum multiplicity not only are the 
reduced matrix elements for the second half of the 4 / 
shell related to those of the first half [see Eqs. (3.7)], 
but also within each half-shell the reduced matrix 
elements of a double tensor are related. These relations 
were given by Van Vleck24 and Judd25 for the special 
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case of tensorial operators acting only on the orbital The sum in Eq. (A5) can be rewritten as 
variables, and will be generalized to include the reduced 

7 o 21+1 n 27-4-1 274-1 

matrix element relations for double tensors, Y — Y — Y 

The first sum on the right-hand side is zero as the 
Before proceeding with the derivation of the relations Q r b i t a l a n g u l a r m o m e n t u m i s z e r o f o r a s t a t e 0f maxi-

it will be necessary to derive a simple formula for the m u m s p i n m u l t i p l i c i t y if t h e s h e l l i s half-filled, i.e., 
reduced matrix element of a double tensor. Let us i ( , ( 2 w)) = 0 . With the substitution i=2l+2-j, one 
consider the matrix element finds 

n 21+1 

T.(L,ML=L\T^(i)\L,ML=L) £ (-l)«7(/tt;-(/+l-»)(/+l-i)0) 
i==l i=2l+2— n 

X(S,Ms = S\S0W(i)\S,Ms = S). (A2) 

For w^2/+.l, the product wave functions are i-1 

X(H- l - j )O) . (A6) 

|L,Jlfz,=L)=n U, ( '+ l -0>r , (A3) Placing the result (A6) in Eq. (A5) and comparing 
r=i with Eq. (A4) gives one the result for 21+ l^n^l 

and \S,Ms=S) is given above The matrix element f / ( 2 m _ n ) _ / ( ^ " " x w ^ s w m i l / ^ H - i - ^ r s ') 
may be evaluated by using the Wigner-Eckart theorem17 ^ ^ w H ̂  l W 5 WH' ^ w ' 
or the product wave functions. Upon comparing the 
results obtained by these two methods, one finds that V(SmSmK] —SmSmO) 

(l»LS\\£, 1^mM(i)\\lnLS) X(l"LSm\\i. TW(0SW(0ll^iS«), (A7) 

(i\\^[K]U)V(ih',-H0) where Sm=in and Sm' = 4(2H-l-w), 0 ^ ^ 2 J , and 

V(LLk;-LLO)V(SSK;-SSO) K==^°VJ'r , , , - . , , r 
(2) To find the relation between the configurations 

Z(2Z+1~n) and ln for 4 /+2^ ^ > 2/+1, we use the relation 
X E {-\y~lVQlk) -(l+l-i)(I+l-i)0). (A4) (A.7). In place of n, we substitute the new variable p 

1=1 which is defined as follows: ^=4/+2—n and p^2l+\. 
xiir̂ i .i • x i MI i • .1 i • i Using Eq. (3.7a) to relate the configurations l^l+2~n^ 
With this formula we will now derive the desired , ?„ . ;, , . •, , ,. , ,. and ln, gives us the desired relation relations. ' & 

(1) Relation between the configurations Z(2N_1_n) and nnT o nv Tm^QM/vMI/nr <? ^ 
*• for the first half of a shell, i.e., 21+1} n>l. For ( ' ^ " " f c W Wl1* " ^ 
states of maximum spin multiplicity the orbital angular 
momentum for the configurations /(2*+i-») and ln are _ , ^v^mo m fc ;~o m o m u; 
related as follows: ~~ ̂  ' i/fc c , . - ? en^ 

xa [- s m ) 1 l5«'| | E Tw(*)Sw0OII^(2m)1-W„/), 
Evaluating Eq. (A4) for the configuration ^2i+i-")) one «=i 
finds (A8) 

21+1-n where 
(/om-.)^,, '!! • £ T^KOS^K*)!!/0""1-^^-') S„=i (4H-2-n) 

»=i and 
(*l|Sw||i)T(H«;-H0) K 2 / + l ) - 5 m = i [ » - ( 2 / + l ) ] . 

With the relations (A7) and (A8), the reduced 
V(LLk; ~LL0)V(SjSm

fK; -SJSJO) m a t r i x e l e m e n t s of t h e d o u b l e t e n s o r T[*](;)SM(i) of 

2Z+1_n only l+\ configurations are needed to fully determine 
X Z) (—ly-WQlk; — Q+l — i)(l+l—i)0). (A5) the remaining 31+1 provided the state considered is of 

it=sl maximum multiplicity. As an example, consider the 
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rare-earth (4/w) series; the reduced matrix elements for 
the configurations /°, f1 and p, / 3 suffice to determine 
the remaining ones. As the configuration f° is trivial, 
three reduced matrix elements define the remaining ten. 

APPENDIX B: THE RESTRICTIONS OF THE 
HAMILTONIAN FOR AN EXCHANGE 

INTERACTION 

A Hamiltonian that describes an exchange interaction 
is Hermitian, and even under time reversal provided 
the states of the system have the same parity. The first 
is a requirement for an operator to represent a physical 
observable; the second is required when one realizes 
that reversing the time does not affect the exchange 
interaction in any discernable way; it only reverses the 
rotation of both electrons. 

As the direct product (2.4) of two operators that 
commute with each other will be Hermitian, and even 
under time reversal if both operators have these 
properties, the exchange potential operator (2.5) must 
have the same properties as the Hamiltonian (2.4). 
The restrictions on the terms that enter the Hamil-
tonians (3.2) and (3.3) and exchange potential (2.5) 
so that they are Hermitian, and even under time 
reversal will now be derived. 

From the definition of irreducible tensors as given 
by Fano and Racah9 the Hermitian adjoint of a "self-
adjoint" irreducible tensor operator is given as 

(rf lt«)t=(-l)M-«r_f l[*]. (Bl) 

The reduced matrix elements of a self-adjoint operator 
are related by31 

((ill(TW)t||i'))*= ( - l )« ' -*( i ' l |TW| | i ) . (B2) 

From this relation it may be seen that the diagonal 
elements of the reduced matrix of a self-adjoint operator 
are real if the rank k is even, and imaginary if k is odd. 

The time reverse of an irreducible tensor operator is 
found by taking the time reverse of the "physical" 
operators comprising it. For irreducible tensor operators 
referring to angular momentum, one has 

(TqW)T=(-l)«T-qw. (B3) 

Finally, let us note that the irreducible tensors defined 
by Fano and Racah9 have the property: The irreducible 
product of two commuting self-adjoint tensors will be 
self-adjoint.32 

Taking the Hermitian adjoint and time reverse of 
the exchange potential operator (2.5), one finds 

^ o P
+ = E E (-i)«*«^ f l*zy*J (B4) 

k=0 q=>—k 

31 See Ref. 9, p. 80. 
32 A. R. Edmonds Angular Momentum in Quantum Mechanics 

(Princeton University Press, Princeton, 1957), see p. 78. 

and 
21 k 

A0/=i: E (-l)<ta*._fl*2y*'. (BS) 
k=0 q=-k 

As the exchange potential operator should be self-
adjoint one has 

^ ^ = ( - 1 ) * + ^ ^ * . (B6) 

Using this relation in Eq. (B.5) and equating the time-
reversed exchange potential to itself, one finds that 

k = even integer. 

As k is restricted by time-reversal symmetry to be even 
the diagonal elements of the reduced matrix (B2) of 
the operators Tq

[k] must be real, and one is justified in 
defining the reduced matrix element (2.7) real. 

The exchange potential now fulfills the necessary 
conditions on it and it remains to see what further 
restrictions must be placed on the Hamiltonian (3.3) 
to make it Hermitian and even under time reversal. 
Taking the Hermitian adjoint of the Hamiltonian (3.3), 
and using the relation (B3), one finds 

2Z+1 

r=0 mm' 

XJm^(i)Sm,^(J)- (B7) 

From the definition (3.3) of the coefficient fir(m,mr), 
and some manipulations of the terms, one finds 

($r(-m-m'))*= ( - l ) ^ f ( W ) . (B8) 

Combining Eqs. (B7) and (B8) and equating the 
Hermitian adjoint of the Hamiltonian (3.3) to itself, 
one finds that only odd ranks of the irreducible tensor 
operator Jm

{r](i) are allowable, i.e., 

r=odd integer. 

Upon taking the time reverse of the Hamiltonian 
(3.3) and using the conditions that k is even and r is 
odd, one finds that the Hamiltonian is equal to itself; 
therefore no further restrictions are needed to make the 
Hamiltonian (3.3) even under time reversal. 

There is one more requirement that an exchange 
Hamiltonian must satisfy; it must be invariant under 
spatial rotations. This condition requires the exchange 
potential parameters auq to transform contragrediently 
to the irreducible tensorial operators 2V*1. That is, if 

2Vfc] = £^V*]?V*]', (B9) 

then 

a' 

where £)q>q
[k] is a matrix element of the rotation 

operator that takes the unprimed coordinates into the 
primed coordinates. 


