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The probability of finding the ortho, L— 1, {pup) system in an s = £ state at the time of /*~ capture, was 
calculated using the techniques developed by Weinberg. A wave function correct to first order in the muon-
to-proton mass ratio was used in the calculation, giving a probability lying between 0.99933 and 0.99952. 
This result was due to the fact that the contact term in the spin-orbit Hamiltonian masked the effects of 
the other terms. The errors due to the use of the approximate wave function in this calculation were analyzed 
qualitatively and found to be small. 

WE have studied the relative probability for JJT 
capture by a proton in an s=§ state in the bound 

state (pfj,p)+ system (ortho, L=l). Weinberg1 has 
shown that the probability of the (pvp)+ being in a 
spin \ state at the time of capture is 
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where 
£ n = K ^ » U = 2 , Jn)\\ 

£ I ̂ n ) = actual wave function of (pfJLp)+ with J n\ |s = i , 
/ n ) = spin \ eigenstate of (pjJLp)+ when spin interactions 
are neglected], and %n are given in terms of the following 
expectation values taken over the internal coordinates: 
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where ^ p = 2.79, r = interproton distance, and riM, r2^ are 
the distances from the JJT to protons 1 and 2, 
respectively. 

The actual capture rate in (ptip)+, then 
given by 

Up M p=&o( i )+( l -* )«( t ) i 

where co(§) and co(f) are the capture rates in an s = % 
and an j = f state, respectively. 

To get a numerical value for £ the i£w expectation 
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values must be obtained. The L—\ bound state wave 
function of the (pfip)+ can be written, to first order, in 
the form X0(r)\//0(r}r 1^2^)^ where \pQ is the normalized 
JJT mesic wave function for the adiabatic case, i.e., a JJT 
moving in the field of two infinitely heavy protons a 
distance r apart. X0(r) is the proton wave function for 
protons moving in the "potential well" set up by the JJT 
meson. The ^0 used here is the exact ground state 
"lsag" mesic solution evaluated by Bates, Ledsham, 
and Stewart.2 X0(r) including the self-energy correction 
term has been evaluated by both Gershtein and 
Zerdovich,3 and by Cohen, Judd, and Riddell.4 The 
XQ(T) used here is one evaluated by the author, based 
essentially on the Morse function method of Gershtein 
and Zerdovich. The CJR wave function, done numeri­
cally, is no doubt more accurate but does not seem to be 
available presently. The present calculation could easily 
be adapted to the CJR wave function if required. 

There are essentially four expectation values to be 
evaluated, two of which can be performed directly: 
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The other two expectation values are 
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The prime on this last one indicates that the limiting 
process to be used is that of excluding a sphere about the 
rip origin, and letting it shrink to zero (see, e.g., Bethe 
and Salpeter5). 

These last two expectation values are evaluated in 
2 D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. 
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and Two Electron Atoms (Academic Press Inc., New York, 1957), 
pp. 108, 180, etc. 
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spheroidal mesonic coordinates, the natural coordinates 
for the problem, and the ones in which xpo is found. F can 
be broken up into three parts. One is an integral from 
a sphere of radius "a" about proton 1 out to a small "e" 
shell determined by the natural spheroidal coordinates, 
(a<^Ce). After integrating, we let a—>0 and then let 
e —-> 0. The second part of F can be done by partial 
integration in spheroidal coordinates. The last part 
of F, which is the nonsingular contribution, was 
calculated numerically on the IBM 7090 computer 
at Columbia. The G integral was done the same way as 
the last part of the F integral. In all cases the results 
were obtained in such a way that the final integration 
over "r" remained to be done by hand. Thus, any 
"nuclear" wave function X0 can be readily adapted to 
the calculation. The numerical integrals are correct to 
within better than 1% of the exact integrals. 

The results are tabulated below. 
Letting En' — (mv/e

2)a^En, where aM=/z mesic Bohr 
radius in terms of w / , the reduced mesic mass relative 
to two protons, and everything is measured in units of 
mlt=h = c=l, we have 

£ / = - 0 . 0 1 5 ± 1 5 % 

£ 2
, = + 0 . 0 9 5 5 ± 2 % 

£3'=+3.76d=2% 

£ 4
/ = - 0 . 1 0 2 ± 6 % 

£ 5 ' = + 0 . 0 2 5 ± 1 0 % . 

^ i = i - ? 2 = i { i + C i + 2 ^ 2 ] - 1 / 2 } ; 

Now1 

where 

A=-

B = -

- 4 E 1 + 4 £ 2 - 5 E 4 + 1 0 £ 5 
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(In Weinberg's paper the coefficient of E 5 in the 
denominator of A is 13.) We have 

Since A and B are both < 1/25, we have 

^ - l - ^ 2 / 2 ; £ 3 - l - 5 £ 2 / 4 , 
and 

f—1—^4 2/3 — Si5V3, 

to 1 part in 105. Neglecting correlations in the errors 
in numerator and denominator we get an upper and 
lower limit for £: 

£max=0.99952; £m i n -0 .99933. 

The errors shown in E2 and E% are due only to 
numerical integration. The larger error in E{ is due to 
subtraction of nearly equal integrals. The errors in E\ 
and E$ take account of the fact that f(X2/r)dr 
diverges in the Morse function approximation, and 
therefore some adjustment was made near the origin. 
This error could be eliminated with the CJR wave 
function. 

An entirely different set of errors, not considered in 
the calculation, arise due to the limitations of the adia-
batic approximation itself. The exact wave function 
for the (piJtp)+ can be written in the form4 

0 

where X% are functions of r only and ^ are the complete 
set of adiabatic mesic orbitals of even symmetry. I t 
can be further shown that only ua" and "j" orbitals can 
contribute to the L = 1 (p}JLp)+ state. X 0 differs from 
the X0 used above, by order e2 (where e= 2m J m^). The 
other X / s are down from X0 by at least order e. For the 
case of the r//iff, the effect on the Ei expectation values 
is essentially the same as for \p$. Thus the "relative" 
changes in the i£/s will be very small, in addition to the 
absolute changes being small. For the case of ^ T we 
have considerably different effects. Since \[/T states 
vanish along the interproton axis, they do not affect £3 , 
the contact term; however, they might give rise to small 
new cr—7r mixing terms from the Hamiltonian, as well 
as small relative shifts in E2 and EA. By noting the size 
of the contribution of E% to the denominators of A 
and B relative to the other terms, one notes that very 
large "relative" changes in the E/s must occur if £ is to 
be made to go below 0.9985, for example. Thus the 
values of £ given above may be shifted due to the effects 
of higher orbitals, but this shift will be of the order of 
the width between the £max and £min already shown. 
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