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from 24.7-675.0 and 5.3-103.0 Torr, respectively, for 
neon-hydrogen and helium-hydrogen mixtures. How
ever, at the higher pressures (>150 Torr for neon-
hydrogen mixtures, > 70 Torr for helium-hydrogen mix
tures) an apparent violation of Paschen's law was ob
served; thus for constant pox values the breakdown 
potential increased significantly over its value at lower 
pressures. 

I. INTRODUCTION 

FINAL-state effects in atomic reactions may exert 
considerable influence on observed spectra. As a 

model we shall consider the effects of the interaction 
between the ejected electron and the residual atom in 
the photodetachment process Y + 0 ~ — * 0 + e ~ . Klein 
and Brueckner1 studied this process using asymptotic 
phase-shifted continuum wave functions. Since their 
work, there has been considerable development in the 
theory of final-state interactions evolving from the early 
work of Watson,2 and exploiting the analytic structure 
of scattering amplitudes and Jost functions. Although 
most of the formalism was developed for high-energy 
physics, it is equally applicable to other domains. Apart 
from the work of Gerjuoy and Krall3 stemming from the 
investigations of Klein and Zemach,4 little use of these 
recent methods has been made in atomic physics. The 
adaptation presented here is designed to provide maxi
mum computational ease for low-energy processes. 

Appendix A contains a brief review of the Jost 
function formalism and its relation to final-state inter
actions. In Sec. II the final-state corrections to the Born 
amplitude are shown to yield soluble integral equations 
of the Omnes type. Section III presents the solutions 
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which are based on plausible assumptions for the 
analytic structure of the amplitude. An alternative 
method facilitates computation in some cases. The 
photodetachment process is formulated in Sec. IV as 
an example. Results of a sample numerical calculation 
are contained in Sec. V together with a comparison of 
the methods with those of Klein and Brueckner. 
Appendix B discusses alternate forms of the Born 
amplitude which may improve the accuracy of the 
formalism. 

II. FINAL-STATE CORRECTIONS TO 
BORN AMPLITUDES 

For processes such as detachment of a bound system, 
the scattering amplitude is given by 

T=[dtyf*(q,,)V(r,k)4>B(r), (1) 

where \pr is the continuum wave function for the de
tached system with momentum q, <j>B the bound state, 
and V the interaction depending parametrically on the 
incident momentum k. Energy conservation relates q, k, 
and the binding energy. Generally, the integral (1) is 
terminated at small r by the spatial extent of <f>B, or of 
the interaction V (as will be the case for large mo
mentum transfers). In this case, the relation (A4) 
permits the substitution 

Mq,r)^ffl(-qH'iw(q,r) (2) 

which gives us the final-state enhancement 

T(q) = frl(-q)TB(q), (3) 
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FIG. 1. Contours for Eq. (11). 

where the Born amplitude is given by 

TB(q)= f<Prfi«»*V<l>B. 
(4) 

As explained in Appendix A, frx{—q) as an enhance
ment is the analog of the wave function of the inter
acting final-state pair normalized to unity for no inter
action. The asymptotic condition (A6) gives the 
expected limit 

T(q)^x-*T*(q) . (5) 

The analytic structure in the energy v(v=q2) for the 
difference T(v) — TB(v) will be as follows: (1) Simple 
poles from the zeros of Di(v) = fi(—q) which correspond 
to bound states of energy vi on the negative real axis 
with residue I\(I\- is related to the binding of the state 
<j>B),b (2) a branch cut on the positive real axis with dis
continuity given by that of Z)-1[cf. (A5)], 

[ZT 1 ]=2ie- i 5 ^ ) sm&(v)D(v) , (6) 

and (3) possible cuts arising from T—TB. We shall 
assume these to be unimportant in the physical region 
(V>0, real). This last assumption may be studied by 
using (A8) in (1); since ct>i(q,r) is an entire function 
of q, it facilitates examination of the difference 
$i(q,r)-ji(kr). 

With this analytic structure, Cauchy's theorem then 
gives the integral equation for T—TB (using the reality 
o fT*) : 

TW = r5W+E-
Ti 1 

+-V—Vi IT 

Jo 

• e~i8^ s i n 5 0 ' ) r 0 ' ) 
dv' . (7) 

-le 

The subscript I denoting the relevant angular mo
mentum is understood for all the functions appearing 
in (7). 

5 M. Goldberger and K.-M. Watson, Collision Theory (J. Wiley 
& Sons, Inc., New York, 1964), Chap. IX. 

III. SOLUTIONS TO THE EQUATION 

Integral equations similar to (7) occur frequently in 
final state theory; their solution, studied by Omnes6 

and Muskhelishvili7 is of the form 

TKv) = TB{v)+Y.-

where 

I \ pu(v) 

pu(v)—u(vi)_ 

x / ; : W 
' o V —V — l€ 

D{v) = e~u^\ 

and from (A5) 

u{v) — -
1 ^ h{y') P 

7TJ 0 V — V — 1 € IT 

f 
JO 

adO 
+ « W = P W + « W . (9) 

In (9), P denotes the principal part integration and 5 
is the scattering phase shift for the final-state particles 
in a state of definite angular momentum. The same 
solution is immediately obtained from the Chew-
Mandelstam technique,8 where T is assumed to be of 
the form N/D, with N and D real on the right and left 
real axes, respectively. 

I t may happen that TB has especially simple branch 
cuts (or poles) which in general are in unphysical 
regions (in the v plane) and do not overlap the right-
hand cut of D. A dispersion relation for D(v)TB{v) 
would give (discontinuities are denoted by [ ]) 

1 r r r V ) [ Z ) ( / ) ] 
TB(p)D(v) =—\ / dv' r ^ 

J Cz 

[TB(v')lD{v')\ 
(10) 

where C\ and C2 surround the cuts (or poles) of D and 
TB, respectively, as shown in Fig. 1. The first integrand 
is just the negative of that in (8), so an equivalent solu
tion is, apart from the pole terms, 

PUM r £TB(vf)']e-uiv,) 

rw=-2iri 
( ID 

c2 v —v—te 

The form (11) has the advantage of involving u(v') in 
unphysical regions, where from (9) it is seen to involve 
no principal part singularity, and is, in general, more 
rapidly convergent. When C2 lies on the negative real 
axis, u is of the form 

1 p 5 ( / ) 
u(v) = - dv'. (12) 

irJ 0 vfJrv 
6 R. Omnes, Nuovo Cimento 8, 316 (1958). 
7 N. I. Muskhelishvili, Singular Integral Equations (E. P. 

Noordhoff, Gronigen, Holland, 1953). 
8 G. Chew, S-Matrix Theory of Strong Interactions (W. A, 

Benjamin, Inc., New York, 1961). 
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In the next section some further computational ad
vantages of (11) are discussed with examples. 

IV. CALCULATIONAL APPROXIMATIONS 
AND EXAMPLES 

For reference, we consider two examples. First, a 
process the photodisintegration of a deuteron would 
have a Born amplitude of the form5 

TB~ / r2dr-
sinqr sinkr e a 

qr kr r 
(13) 

with cuts in q2 running from ±(iadzk) to db(i<»±£), 
which become more unphysical as the spatial extent of 
the bound state decreases. In this example, the cut 
structure is not especially simple and the forms (8) or 
(11) are of comparable difficulty for a computer 
calculation. 

The second example is the s-wave amplitude for the 
photodetachment of 0~ in the dipole approximation to 
be discussed in detail in Sec. V. The Born term is of the 
form 

r*~(3\+\-M/(H-x2)2. (W) 
Here, the only singularity is a double pole at v= — X2 on 
the negative real axis. Thus, the solution (11) is 
trivially evaluated and is obviously preferable to the 
form (8). 

Because high-energy phase shifts are seldom known 
accurately, and because inelastic processes set in at 
relatively low energies for atomic scattering, it is im
portant to carefully examine the integrals occurring in 
(8) and (9). As can be seen from (8), the solution is 
unaffected by subtractions in u of the form 

U(V) = U(VQ) + 
v—vo W) 

(v—vo){.v'—v—ie) 
•, (15) 

which de-emphasize high-energy behavior at the price 
of increased dependence on the accuracy of the phase 
shifts at the subtraction point(s). Again, the form (11) 
leaves (13) without singularities in the physical region. 

For many low-energy atomic scattering processes, an 
effective range and scattering length approximation for 
the phase shift 

kcot8=(l/a)+±r0k
2 (16) 

may be used which gives a closed form9 for the integral 
u in (9). 

/ i ( - f t ) = Z>iW= ( * + # + • ) / ( * + # - ) , (17a) 

/3±= ( l / f o ) [ ± l + ( 1 + (2r0/a))1/2] . (17b) 

[This can determine more simply by constructing the 
S matrix from (16) and using (A7) and (A8).] 

For the solution (11) which involves unphysical 
values of v, u{v') may be slowly varying about by some 

• R. Jost and W. Kohn, Phys. Rev. 87, 988 (1952). 
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FIG. 2. Oxygen photodetachment cross sections. 

average value u(vo)y and the integral calculated in the 
form 

L—±^. (18) 
/ • v —v—te 

I t should be noted that the initial approximation (2) 
in Sec. I I depends on a small r termination of the inte
gral. Various forms for dipole matrix elements (length, 
velocity, acceleration), shown in Appendix B, give 
successively greater dependence on values of r near the 
origin. 

V. PHOTODETACHMENT CALCULATION 

The foregoing formalism is next applied to the photo
detachment of negative oxygen ions. From Bates and 
Massey10 the dipole matrix elements give 

ST mke2o) 
a== (M*+2M/), 

3 h2c 

M 
J o 

Ua(r)thp[r)f*dr, (19) 

J o 
Afd= / ud{r)u2V{r)rzdr, 

where u2p is the bound-state wave function; us and ud 

are the 7 = 0 and 1=2 continuum functions. Since the 
dipole-matrix element emphasizes large r values, Klein 
and Brueckner1 used the asymptotic form valid outside 
the force range, 

m(r) = (1/kr) sin(Ar+ai-fcr/2) (20) 
10 D. R. Bates and H. S. W. Massey, Trans. Roy. Soc. (London) 

A239, 269 (1943). 
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FIG. 3. Enhancement factors T/T» of Eq. (22) 
versus photon energy. 

together with the bound state 

u2p(r) = N(e-^/r)ll+(l/\r)l. (21) 

Since their work, the experimental situation has 
changed somewhat, the recent experiment photo-
detachment, given by Smith11 is shown in Fig. 2, 
together with the Born approximation. The results of a 
sample calculation using Eq. (8) employing an effective 
range phase-shift parameterization is seen to correct the 
Born result towards the experimental curve. The 
effective range r 0=2.7 and scattering length a= — 0.4 
(atomic units) used are in accord with the estimates of 
electron-oxygen scattering reported from experiment11 

and theory.12 

The results are qualitatively similar to those of Klein 
and Brueckner: The final-state corrections modify the 
Born approximation toward the experimental data, 
but do not account for all the difference. As would be 
expected from a repulsive final-state phase shift,5 the 
amplitude is decreased from its value with no 
interaction. 

For this example it is interesting to explicitly exhibit 
the correction to the Born amplitude for the present 
formalism and that of Klein and Brueckner for the 

11 S. J. Smith, in Proceedings of the Fourth International Con
ference on Ionization Phenomena in Gas, Uppsala, 1959, edited by 
by N. R. Nilsson (North-Holland Publishing Company, Amster
dam, 1960), p. 219. 

» p , G, Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 

s-wave term (which dominates the calculation). From 
(19)-(21), with and without phase shift, and from 
evaluation of the residue of the double pole in (11) with 
the effective range term (16), we have 

(a) Born approximation 

TB(p) = N(v+\2y2(3\+}r1v) , (22a) 

(b) Klein-Brueckner 

2X2 sin<5s"l 
TK(v) = TB(v)\ cos5, ")[c 

3X+X- k J 

(c) dispersion relation 

r(»o=2*«-
P ( - X 2 ) 2A20+A2) £>'(-X2)" 

D(v) L 3\2+v £>(-A2). 

(22b) 

(22c) 

From (22c) and (9) it is seen that the amplitude 
bears the phase of the final-state interaction. This is an 
example of Watson's theorem13,14 for final-state reaction 
processes. As a sample calculation of the results (22), 
we show in Fig. 3 the results for a reaction with typical 
parameters a =1.6, r=0.86. An attractive interaction 
was used for this illustration because it is known that 
attractive final-state interactions have much greater 
sensitivity to energy than do repulsive interactions.5,14 

The binding 1.45 eV gives a value of X(X2 = 2mEB/h2) of 
0.0537 (atomic units). The results are as expected for 
an attractive interaction: The enhancement is greater 
for low energies.2,5 The asymptotic limit (A6) shows 
that in (22c), the final-state effects affect the spectrum 
less at high energies. 

A similar calculation for the photodetachment of H~, 
a process of astrophysical interest, was inconclusive 
due to the extremely small relevant phase shifts and 
their present uncertain accuracy.12 

CONCLUSIONS 

The methods proposed for accommodating final-state 
interactions in atomic scattering and detachment 
processes derived from analytic properties of the rele
vant amplitudes, have been shown to yield integral 
equations which correct Born estimates when the final-
state scattering phase shift is known. A sample calcu
lation improves the agreement of the Born approxima
tion with experiment. 
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APPENDIX A: JOST FUNCTIONS AND 
ENHANCEMENT FACTORS 

Aspects of Jost functions relevant to final-state 
theory are briefly reviewed here. For a complete de
velopment the reader is referred to the review article 
of Newton15 whose notation we follow. The Jost func
tion9 ,16'14 is defined as the limit 

/*(*) = Km-
(kr)1 

~fi(k,r) 
^ (2/-1)!! ' 

of the solution to the radial Schrodinger equation 

(Al) 

r J2 1(1+1) -l 
+V(r)+ *» \h(k,r) = 0, (A2) 

L dr2 r2 J 

with boundary condition 

limeikrfi(k,r)-- (A3) 

The property of these functions most useful for final-
states theory is expressed by the limit of the "physical" 
solutions 

\h(k,r)\ 1 

\hw)(k,r)\ \M-k)\ 
(A4) 

which relates the relative probability of a particle pair 
being at small separation with and without interaction; 
^z(0) is the solution to (A2) with V(r) = 0. This is just 
the wave function enhancement of Watson.2 The func
tion fi(—k) is the Fredholm16 determinant, or equiva-
lently, the D function of N/D techniques.8 Thus, it 
provides a natural bridge between potential theory and 
dispersion relation methods. 

The function / may be determined from the po
tential 9-15 or from the phase shift through the integral 
representation 

r l r BiW) -i 
fl(-k)^Dl(p) = exp\— / (A5) 

L TTJ o v — v—ieJ 

for v = k2. The asymptotic limit 

l i m / i ( * ) - » l (A6) 

shows, as would be expected, that final-state effects 
vanish at high energies. 

The phase of fi(k) is seen to be that of the S matrix 
15 R. Newton, J. Math. Phys. 1, 319 (1960). 
16 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 

from the relations 

5,(*) = exp[2«i(*)] = / i ( * ) / / « ( - * ) (A7) 

and the analytic continuation 

/ . * ( - * * ) = / i ( * ) . (A8) 

Finally, the Jost function relates the "physical" 
solution (incoming plane waves and outgoing spherical 
waves) and the solution regular at the origin 

through15 

kl+1 

lim <j>i{k,r) = 
^ ° (2/+1)!! 

^ + (* , r ) = [ * w / / i ( - * ) ] « « ( * / ) • 

(A9) 

(A10) 

The function </>, as defined by (A9) is an entire function 
of ku and thus especially useful for studying analytic 
properties. 

APPENDIX B: DIPOLE MATRIX ELEMENTS 

For dipole matrix elements, several forms equivalent 
for exact wave functions give emphasis on different 
regions of the amplitude integrations. The article of 
Geltman17 contains a more complete discussion and 
further references. 

Three forms, length, velocity, and acceleration give 
successively increased emphasis on small values of r in 
the wave functions as seen from the typical absorption 
coefficients. 

aL=CLk(k2+2I) 

o-v = Cvk(k9'+2iy 

aA = CAk(k*+2iy 

/ 
rpF*zcl)Bdzr 

/ * - * 
(d/dz)4>B(Pr 

ypF*{z/rz)<t>Bdh 

(Bl) 

(B2) 

(B3) 

where / is the ionization energy, \pF the free final state 
of momentum k, and \pB the bound state. 

Generally, the length form (Bl) enhances the 
validity of asymptotic approximations such as (26) of 
Klein and Brueckner, while velocity and acceleration 
forms enhance small r approximations such as (2). In 
our example of Sec. V, it was seen that for the parame
ters used the two approximations gave roughly equiva
lent results. 

17 S. Geltman, Astrophys. J. 136, 935 (1962). 
18 H. Poincare, Acta Math. 4, 215 (1884). 


