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ured €o(H°). A more meaningful comparison, with 
calculations by Dalgarno and Griffing20 was shown in a 
previous publication, but the comparison shown here 
indicates (as did the calculations) that excitation of the 
projectile without changing its charge is not a major 
source of stopping-power losses. 

Detailed calculations such as those of Dalgarno and 
Griffing are not available for helium beams in hydrogen 
gas, and in comparison with our experimental e0(He°) 
and ei(He+) we can only show stopping powers cal­
culated as in Tables VII and VIII, which are not strictly 
comparable to our a values since they neglect excita­
tion of the electronic structure of the projectile. The 
measured ei(He+) lies below the calculated stopping 
power for He+, as was the case for protons (see Fig. 6). 

I. INTRODUCTION 

THE method of Fredholm determinants has been 
applied to low-energy meson-nucleon scattering 

by Baker.1 Because this approach appears to have met 
with some success, it is interesting to ask whether 
Fredholm determinants can contribute anything to the 
theory of low-energy atomic scattering. Several desir­
able properties of this method suggest that they can. 

One such property is the fact that unitarity is satisfied 
in all orders of approximation whereas the various ap­
proximations to the Born series do not satisfy the uni­
tarity condition. Secondly, one obtains expressions for 
the phase shifts which, in the zero-energy region, are 
of the form prescribed by effective range theory. At 
higher energies, presumably the region where the Born 
series becomes valid, we obtain an expression which 
approaches the Born series. 

In this paper we will treat the elastic scattering of 
electrons by atomic hydrogen in the energy region from 
near zero to about eight volts. No effective polarization 
potential will be included in the Hamiltonian, and the 

* This work supported by the Lockheed Missiles and Space 
Company Independent Research Program and by the U. S. Air 
Force Weapons Laboratory, Air Force Systems Command under 
Contract AF 29(601)-6l7l. 

1 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 

The greatest discrepancy is between the measured 
6o(He°) values and the calculated stopping power for a 
He0 projectile. The observed values of eo(He°) are 
about 1.7 times the calculated neutral atom stopping 
power. The most obvious place to look for the source 
of the discrepancy is in collisions which excite the elec­
trons in the He0 structure without ionizing it, but the 
evidence from e0(H°) indicates that not more than 10% 
of the stopping losses arise from such collisions, and the 
high partial atomic stopping power of He0 awaits 
explanation. 
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nucleus will be assumed to be static. The Hamiltonian 
is expressed in terms of the mass of the electrons and 
their charge as follows: 

1 1 e2 e2 e2 

H = Vx2 V2
2 + +EB. (1) 

2m 2m r\ r^ [ ri— r2| 

The constant ER adjusts the energy levels of the system 
so that the eigenvalue of H is zero when the incoming 
particle has zero energy and the atom is in the ground 
state. 

Although spin does not appear in the Hamiltonian, 
we will assume that the wave function for the system 
will include a description of the spin state. Thus, since 
we are dealing with two identical Fermi-Dirac particles, 
we will consider only those wave functions which are 
antisymmetric under simultaneous interchange of both 
the spatial as well as the spin coordinates. 

We will divide the Hamiltonian into an unperturbed 
part, and an interaction term, denoted by H0 and Hh 

respectively: 
1 1 e2 

#o= Vi2 V2
2 +ER, (2) 

2m 2m r2 

e2 e2 
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The eigenfunctions of H0, normalized to a large spheri­
cal box of radius R, are 

| klm; nl'm') = {2/R)^kji (*n) K,-(Mi)*»*'» ' (r2) , (4) 

where ^nz'm'(1*2) are the hydrogenic wave functions, 
ji(kri) the spherical Bessel functions and Fjw(0i,#i), the 
spherical harmonics. By our choice of i70, all the eigen­
values are positive. Due to our choice of box normaliza­
tion they are all discrete and a family of discrete eigen­
values belongs to each state of the hydrogen atom. 

Ho is not symmetric under interchange of coordinates 
of the two electrons so we will not be able to antisym-
metrize the eigenfunctions of H0. We will, however, 
require that the eigenfunctions of the total Hamiltonian 
be antisymmetric. This will be accomplished formally 
by the antisymmetrization operator A which, when 
operating on a two-particle wave function, will result 
in a wave function which is antisymmetric. A is a pro­
jection operator and therefore has the property 

A2=A. (5) 

We may decompose A into one factor which operates on 
the configuration-space coordinates and another which 
operates on the spin coordinates. In the subspace of 
antisymmetric states the following relation holds: 

ACSS+SCAS=1, (6) 

where the subscripts c and s refer to configuration and 
spin space, respectively, and the operators S(C,S) and 
A(c,8) are the symmetrization and antisymmetrization 
operators for the corresponding coordinates. 

I t is clear from Eq. (6) that we require both those 
eigenfunctions of the total Hamiltonian which are sym­
metric and antisymmetric under the interchange of ri 
and r2. The symmetries of the wave function outlined 
above will be used to investigate the properties of the 
Fredholm determinant. The decomposition of the deter­
minant into subdeterminants allows us to derive the 
scattering data of the system by use of the relation 

AE7k=-(l/7r)6yk(E)dE, (7) 

which occurs in various places in the literature.1,2 

57,.&(E) is the phase shift of the state specified by the 
eigenvalues y and k, AEyk is the energy shift between 
the perturbed and the corresponding unperturbed 
energy levels, and dE is the separation of unperturbed 
levels. The magnitude of the momentum of the in­
coming particle is taken to be k, and y is the remainder 
of a complete set of commuting observables describing 
the state of the incoming electron and of the hydrogen 
atom. Equation (7) does not hold, of course, for bound 
states. 

II. DECOMPOSITION OF THE FREDHOLM 
DETERMINANT 

We will outline the analysis of the Fredholm deter­
minant, extracting from it whatever is necessary for 

2 B , S. DeWitt, Phys. Rev, 103, 1565 (1956), 

the description of the scattering process. In order to 
keep to the point of this paper, which is scattering, our 
outline will be brief. More detail can be found in Ref. 1. 

The Fredholm determinant D(E) is defined by 

/E-H\ 
D(E) = det[ ) = d e t ( l - G 0 ( £ ) H i ) , (8) 

\E~HJ 
where 

Go(E)=(E-H0)"
1. (9) 

D(E) may also be written in the form 

D(E)=UJl{ ) , (10) 

where E0yk and Eyk are the eigenvalues of H0 and H, 
respectively. 

I t is clear from Eq. (10) and the Hermiticity of H 
and Ho that D{E) has an infinite set of zeros and poles 
along the positive real axis. 

We may use the energy shifts of Eq. (7), defined by 

AEyk^Eyk—Eoyk, (11) 

to express D(E) as follows: 

/ AEyk \ 

D ( £ ) = n n ( i - = — ) , (12) 
y k \ E—EoykJ 

and thereby show the connection between the Fredholm 
determinant and the phase shifts. 

Equation (10) indicates that D(E) may be decom­
posed into subdeterminants, each referring to a par­
ticular value of each of the eigenvalues represented by y. 

D{E)=JlDy{E). (13) 
7 

Let Py be the projection operator that projects an arbi­
trary state into the state whose eigenvalues are given 
by y. We can represent this state by the ket|&y). Py 

commutes with Ho and Hi and obeys the relations 

£ P 7 = 1 , PyPy.=6yy.Py. (14) 
T 

Thus, 

D(E) = det(l-,EPrGo(E)H1) 

= detmV-PyGo(E)H1)l (15) 
7 

=11 det(l-PTGo(£)Hi)=II Dy(E), 
7 7 

and 
Dy(E) = det(l-PyGo(E)H1). (16) 

In connection with Eq. (15) it is wise to notice that 
the unit operator occurring in the second equality is 
not identical to that in the first. I t is more accurate to 
denote the second unit operator by the notation 1T, 
where 17 is the unit operator in the subspace projected 
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by Py. The first unit operator is the infinite outer 
product of the l7 's. This inaccuracy in notation seems 
to be customary in the literature on Fredholm deter­
minants and will not affect our results. 

Although the symmetrization and antisymmetriza-
tion operators do not commute with H0 and Hi sepa­
rately, we can show that D(E) may be decomposed 
further into subdeterminants which refer to the spa­
tially symmetric and antisymmetric state. Using Eq. 
(6), we have 

Z)7(£) = de t [ l - (AcSs+ScAs)PyGo(E)H1]. (17) 

Now, P7 commutes with the symmetrization and anti-
symmetrization operators and 

det(l - A cSsPyGo (E)H±) det(1 - SCA sPyG0 (E)Hi) 
= de t [ l - (ACSS+SCAs)PyG,(E)E1 

+AcSsPyGo(E)H1ScAsPyGo(E)H1]. 

Ss and A s commute with GQ(E) and Hi since these 
operators do not contain spin variables, and SsAs = 0 
so that 

D(E) = TL detail-PTGO(E)H!) deU(l-P7G0(£)flri) 

=TlDys(E)DyA(E). (18) 
7 

The subscripts S and A indicate that the determinant 
is to be evaluated using spatially symmetric or anti­
symmetric states. 

In Eq. (18) we have split D(E) up into factors each 
of which have simple poles; y and S, A represent a 
complete set of eigenvalues for our system, excluding 
the energy, so that those energy levels of H0 which are 
degenerate, each belong to a different y. Thus, we may 
express these determinants as 

D,(E) = 1+Z 
ry(k) 

Eoyk E—Eoyk 
(19) 

where ry(k) are the residues of the simple poles of Dy(E). 
We have suppressed the A or S subscripts of the Dy(E) 
in Eq. (19) but it must be kept in mind that the spatial 
symmetry of our system is one of the constants of the 
motion. The range of the sum in Eq. (19) is essentially 
determined by 7. For example, if 7 specifies the hydro­
gen atom to be in its ground state, then E^ ranges 

from zero to infinity. On the other hand, if 7 specifies 
the hydrogen atom to be initially in a 2s state, then 
Eoyk ranges from f Ry to infinity. Thus, we see that 
we have yet another degeneracy in Dy(E), related to 
the state of excitation of the atom. 

If we have a state with energy less than that required 
for excitation of the atom from the Is to, say, the 2s 
level we will have zero probability of asymptotically 
finding the atom in the 2s state in the wave function 
for the system. If we exceed the excitation energy, the 
asymptotic wave function will contain a linear com­
bination of Is and »=2, states and, as the energy is 
increased beyond higher excitation thresholds, the 
asymptotic wave function of the system will contain 
amplitudes for the atom in still higher states. We see, 
then, that specifying the state of the atom in terms of 
the principal quantum number n of a hydrogen atom 
does not remove the degeneracy of the eigenstates of #0 
which appears for energies of the system which are 
greater than the energy of the n=2 level. 

Nevertheless, we may speak of states for which the 
atom is predominantly in some level n. For example, if 
there are several orthogonal states containing ampli­
tudes for the atom in a Is state, only one of this number 
will continuously approach the atomic Is state as the 
energy is lowered toward threshold. We will speak of 
the atom being in a level specified by the quantum 
number n but keeping in mind that as the energy of the 
system is increased beyond an excitation threshold, the 
resulting degeneracies appearing in the eigenstates of 
Ho will have to be removed. 

The problem of degeneracy does not appear for en­
ergies below the first excitation threshold. In this case 
we will be dealing with elastic scattering in the strictest 
sense with a hydrogen atom in its ground state and a 
free electron in both the incoming and the exit channels. 
The system will then be described by a set of eigen­
values which we will call 71 to indicate that the hydrogen 
atom is in the Is state. According to Eq. (19) we may 
write 

ryi(k) 
«7i(£) = l + E • (20) 

k E—Eoyik 
Those states which have the same quantum numbers 

as the set 71, except that the atom is in a different 
energy level, say the nth, we will denote by the set of 
eigenvalues yn. Dy(E) may be decomposed as follows: 

also 

Dy(E) = Dyi(E)UDyn(E) 
n=2 

Dy(E) = det(l -Go(E)HiPy) 

= det(l-G^l(E)H1Py--:—::—\kyi)(ky 

(21) 

E—Eoyik 
HiP,) 

(22) 

/ I ky1)(ky1\HJ'y(l-Go^KE)BiPyr
i\ 

•• det(l - GV^i (EJHrPy) detf 1 ) , 
O71A: 
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where 

and 
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Go*HE)=l/(E-Bo)(l~ |*Ti><*Yi|), 

By use of the Fredholm expansion it is easy to prove that1 

I *YI><*7 11 # i i \ 0 - G^mHiP-tY1 (hi I HJ>y(l - Gfn{E) tf l i^)"1 I k7l) 
detl-

£ - £ , Oyik 

so that 

where 

Dy(E) = Dy^(E)[l- (ky1\H1Py(l~Go 
L E—E0yik 

E—Eo71k 

Df*(E) = det(l-G<fn(E)Hify). 

(23) 

(24) 

(25) 

(26) 

(27) 

For energies below the lowest excitation threshold we may combine Eqs. (20) and (21) and compare with Eq. 
(26) near the simple pole at E=Eoyik. 

( i + E — — ) n ^ 
\ *' E—EQJI1C>/ n=2 

m 
E->Eo7lk 

--Dy^(E0yik)\l-
(kyi [ HtPyil-G^iEindHvPyy-11 k7l) 

E-E, Oyik 

(ky^HtPyil-Go^iEoy^H^yy^ky^+OiE-Eoy^)], (28) 
dE 

which we can use to solve for ryi(k). 

rn(k) = -ZDyi^(E0yik)(kyi | H1P7il-G0"HEoylil)H1Pyy-1\kYi>, 
where 

Z^ = [ 1 - (d/dE){kyi | HiP^l-Go^HEJHiPy)-11 Ayi>]^jr.T1* 

Dy^(E0yik) 

(29) 

ZV'CEow*) I I Dyn(E0yik) 

and 

Z J M ^ ( £ ) = I + P I : -
' • » ( * ' ) 

ft' E—Eo7lk' 

(30) 

(3D 

P indicates that the principal value is taken in the sum in Eq. (31). Equations (29)-(31) give us a method of de­
veloping r7l(k) to arbitrary order in Hh and thereby allowing us to calculate Dyv These results are valid even 
above the threshold for excitation. This can be seen by noticing that, for each of the set of levels degenerate with 
E0yik, we can extract a factor of Dy(E) as we did in Eq. (26). If we denote the set of degenerate levels with a 
prime, we can define a new determinant with a simple pole at E=Eoyik as follows: 

Dy'(E) = Dy(E) 
' 7 ^ 7 l L 

(ky> | HyP.il-G^' (EiHJ'Jr11 ky'Y 

E—Eoy'k 

and 
Dy'(E) = ZV^i (£ ) [ l ~ (l/(£-£o7i*))<*7i I # i i \ ( l ~ G^(E)B1P7)'

11 fryi>] • 

Modifying Eq. (21) in a similar way, 

D/(JE) = Z ? 7 1 ( £ ) ( n ^ » ( £ ) / n |"l {ky'\H1Py{l-Gr'''{E)H1Py)^\W)\ 
lw=2 / 7'^7iL £ — Eoy'k J 

(32) 

(33) 

n=2 
(34) 
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We may now proceed to the result of Eq. (29) by using 
the appropriate primed quantities in Eq. (28) where 
again we have a simple pole at E=E0yik> 

III. SCATTERING FORMALISM 

In this section we will derive the relationship between 
the S matrix for scattering of electrons by atomic 
hydrogen in the Is state and the sub determinant 
Dyi(E). We will not go deeply into the better known 
properties of S other than to say that it represents a 
unitary transformation from those states with asymp­
totically outgoing waves and those with asymptotically 
incoming waves. S is related to the T matrix in the 
following way: 

S=l-2<jrid(E-H0)T, (35) 

where T is given by the formal solution to the Lippmann-
Schwinger relation,3 

T=H1(l-Go(E+ie)H1)~K (36) 

Go(E) is defined by 

GQ(E+ie)= (E-Ho+ie)-1. (37) 

Our decomposition of D(E) into subdeterminants 
containing poles of first order requires the use of 
eigenfunctions of H0 in the yn representation. This 
representation is obtained from the set of degenerate 
eigenfunctions of Ho by a diagonalization of the operator 
HI(\ — GQ(E)HI)~1, Clearly then, according to Eqs. 
(35) and (36), T and S are also diagonal in this 
representation. 

Consider the expression 

(Dyi(E~ie)/Dyi(E+ie)) 

= det{£l-Go(E-ie)HlPyl[l-G0(E+ie)H1Py2-1} 
= detyi{l+[Go(E+ie)-Go(E-ie)~] 

X t f i C l - G o C E + ^ t f i ] - 1 } (3S) 
= det7l{ 1 -2* id (E-Ho)H£l -G*(E+U)H{y*} , 

where det7l indicates that the determinant is restricted 
to a set of states defined by 71. Now S, in the diagonal 
representation, is given by 

Syn=-exp(2i87n), (39) 

where 57n is the phase shift. Thus 

(Dyi (E - ie)/Dyi (E+ie)) = S7l = exp (2i8yi). (40) 

Using Eqs. (20) and (40) it is easy to show that 

irryi(k) 
tan371(£) = 

l+PZrnWXE-Ew)-
(41) 

Equations (29) and (41) give us a prescription for 
calculating the phase shift to arbitrary order in Hi. 

In the case of potential scattering it is clear that 
Dyi(E) = Dy(E) and according to Eq. (30) Z = l . Com­
bining Eqs. (29), (31), and (41) we get the result 

tanS7(£) = -T(ky \ H^^l-G^iE^H.P,)^ \ ky), 
(42) 

which agrees with well-known formulas for potential 
scattering.1-3 This result suggests that the state vector 

I *7lfc> = Py(l - Go^ (£7lfc)ff 1P7) I *7i> (43) 

is an eigenfunction of the total Hamiltonian. This is 
easily verified: 

p71 £ 7 i H P 7 ( i - G o ^ £ ) # i i \ ) 

Xil-Go^HtyHiP^lkyJ 

1 
= Pi i1-^)^ 

+ £—£07!* 
kyi)(kyi\Hi\fyik) 

or 

= Py(E-H*)-^E-H)\+yik). (44) 

Recalling that Dy(E) vanishes if E is equal to an eigen­
value of H and since Dy^

l(Eyk) is not identically zero, 
Eq. (26) implies 

Eyik—E0yik— (kyi\H1\\ffyilB) = 0, 

which by Eq. (44) yields 

(Eyik-B)\fyik) = 0, 
and 

A£TlJfe=<ft71|jSri|^7l*>. 

(45) 

(46) 

(47) 

Now, clearly \\pyih) is not normalized and, in fact, 

- 1 - (d/dE){kyiI HJ>7(1 -G 0 *»(£ 7 l *) f f 1P7)-11 *7i>• (48) 

The last two equalities may be verified to any order by dE, and therefore AEyik, vanishes as Fr1. Exceptions 
simply expanding. occur in the case of bound states. Thus, as Br1 is made 

In the limit, as the quantization volume increases, to vanish and Eyik —> Eoyiic, 
3 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). fyyik\ipyik)->Z (49) 
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We see that Z plays the same role as the state vector 
renormalization constant of field theory and it repre­
sents the probability of finding the unperturbed state 
|&Yi) in the fully interacting state vector \ipyik). 

There remains the problem of actually obtaining the 
unperturbed state |&yi) when a degeneracy exists. As 
we have mentioned, this involves a diagonalization of T. 
There are well-known methods for doing this to a given 
order in the perturbation. 

As an example, we will consider the case of a twofold 
degeneracy, such as would occur in the case of an elec­

tron, with angular momentum zero, incident on an atom 
in the Is state with sufficient energy to excite the 2s 
level.4 Let us denote the unperturbed state with the 
atom in the ground state by 11) and let 12) represent 
the state with the atom in the n—2 level. To the zero-
order approximation, then, the correct normalized wave 
functions are 11)', given by 

|1)' = CU |1>+C21 |2), 

|2>' = C12|2)+C22|2>, 
(50) 

with 

Cu= 

G 

• <llg. |2) 

•2|<l|ffi|2)[ 

• <l|Hi|2) 

.2\(l\Hi\2}\\ /J. 

C2I — 

C2 

r <2|g1|l) / a\^ 

r (2|gi | i) ( u
a \ T 

L2|<l|ffi|2) \ 0/J ' 

(51) 

where 

«= ( l | F 1 | l } - (2 |F 1 | 2 ) , / 5 = (a2+4Kl|5r
1 |2)|2)1/2. (52) 

As the energy of the incoming electron is reduced 
below threshold the degeneracy of states no longer 
occurs. This obviates the necessity of diagonalizing H\ 
and |1>'=|1>, and |2>'=|2>. 

The matrix C= [C%[\ gives us a transformation which 
diagonalizes T in first order. The procedure we propose 
for calculating the transition amplitude T2i is to calcu­
late the T matrix in diagonal form, which we will denote 
by T', and then use the inverse transformation to get 
the off-diagonal elements. V can be calculated by using 

Eqs. (35), (40), and (41): 

T/(E)--
n(k) 

l+Zn&'XE-Ev+ie)-1 (53) 

and Tn(E) is given to lowest order by 

Ti2(E)= (CT&)n=CnCn*Tx
f(E) 

+C22C12*7Y(£). (54) 
From Eqs. (51) we see that 

C21Cu*= -C22Ci2*= <21ffi| l>/0, (55) 
and 
ri(*) = J(<l|ffi|l>+<2|ffi|2>+/3) = /<l|£r1|l>', 
r2(ft) = J(<l|ffi|l>+<2|flri|2>-/3) = /<2|JI1|2>/, 

which, when combined with Eqs. (53) and (54), yields 
the following amplitude for excitation: 

(56) 

<2|J5Ti|l> 

20 

<l|£r,|l>+<2|fli|2>+/5 

l+5Z[ ( l | g i | l )+ (2 |g 1 | 2 )+ f l (£ - iV+ie ) -

<l|ff1|l>+<2|Hi!2>-/9 

1+* E C(l I Bx 11>+<21 Hi 12)-fl}{E-Ek.+U)-1 
(53a) 

IV. CALCULATION OF ELASTIC S-
P-WAVE SCATTERING 

AND 

The theory of scattering, as presented in the previous 
section, will now be applied to the scattering of elec­
trons by atomic hydrogen. We present only the lowest 
order approximation for 5- and P-wave scattering using 
the interaction term of Eq. (3) and the wave functions 
of Eq. (4). Our basic approximation consists of using 

the lowest order term of Eq. (29) for the residues: 

ry1(k)=-(y1\H1Py\y1). (29a) 

4 In fact there is a fivefold degeneracy in the scattering states 
but we have used a quadratic secular equation because it is easier 
to handle and serves the purpose of illustration. This assumption 
is in the spirit of the so-called strong-coupling approximation 
which assumes that the ls—lsf Is—2s, and 2s—2.? transition 
amplitudes are coupled together. 
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FIG. 1. Singlet S 
phase shifts as a func­
tion of k2. F. D. refers 
to the Fredholm 
determinant calcula­
tion. Various other 
calculations are in­
cluded for compari­
son. The three 
bracketed points are 
the results of Temkin 
(Ref. 7). 
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All the results are obtained in closed form and involve 
no machine calculations. For 5-wave scattering the 
results are 

1 (k(U~2k2+k*) 1 
fo.(*) = — +- ln ( l+£ 2 ) 

4TTI (1+&2)3 k 

1 (k(-ll+6k2+¥) 1 
rot(k) =—\- +_in(i+&2) 

4TTI (1+&2)3 k 

(57) 

Jo 

f 
Jo 

'r0s(k')dE' 

E-E' 

' rot(k')dEf 

E-E' 

•—{ —tai r fk-
2{ k 

— tan.-1*— 

5-10&2+£4 

2(1+F)3 

-3+14**+ 

2(l+£2)3 

(58) 

The subscript 0 refers to the orbital angular momentum 
of the scattered electron and s and t refer to the singlet 
and triplet scattering states, respectively; k is the mo­
mentum of the scattered particle in units of me2 so 
that k—1 corresponds to an energy of 1 Ry for the 
incoming particle. 

FIG. 2. Triplet S phase 
shifts as a function of 

0.2 0.4 0.6 0.8 

k 2 ( o u ) 
1.0 

FIG. 3. Singlet P phase shifts as a function of k2. 

Taking the limit of Eqs. (57) and (58), as k ap­
proaches zero, and using the result in Eq. (41), we get 
the following zero-energy forms for the phase shifts: 

£cotS0s=: - (3/14)+!(73/21)&2, 

&cotS0*=-i+H67/15)&2. 
(59) 

The form of Eqs. (59) agrees with effective range 
theory and they have reasonable values for the effective 
ranges and scattering lengths. The present calculation 
is compared with other recent calculations in Table I. 

TABLE I. Zero-energy scattering data. 

Other Present 
calculations calculation 

Singlet effective range 
scattering length 

Triplet effective range 
scattering length 

3.20a 

6.2b 

4.4-4.8a 

1.98a 

3.48 
4.66 
4.46 
2.00 

a Close-coupling calculation by Burke and Schey (Ref. 5). 
b Upper limit calculated by variational method [L. Rosenberg, L. 

Spruch, and T. F. O'Malley, Phys. Rev. 119, 164 (I960)]. 

The scattering data we use for comparison are selected 
from the review article by Burke and Smith.5 The 
triplet scattering length used as a comparison is more 
to be considered as an upper limit. 

The singlet and triplet phase shifts are displayed in 
Figs. 1 and 2, and the results are compared with the 
calculations of Burke and Schey,6 Temkin,7 and 
Schwartz.8 In Fig. 2, only the close-coupling calcula-
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FIG. 4. Triplet P phase shifts as a function of k2. 

5 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962). 
6 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 
7 A. Temkin, Phys. Rev. 126, 130 (1962). 
8 C. Schwartz, Phys. Rev. 124, 1468 (1961). 
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tion6 is used as a comparison because the results of the 
other authors lie very close to it. As the energy in­
creases, the agreement gets progressively worse for the 

Although these expressions are a bit unwieldly, they 
demonstrate that the method presented in this paper 
can be used to get results for low-energy electron-
hydrogen atom scattering data in closed form. 

The P-wave results are displayed in Figs. 3 and 4. 
The agreement for singlet scattering again is good. As 
was the case for S waves, the triplet results are some­
what at variance with the other calculations. The 
present calculation is compared with the Is and 
ls—2s—2p close-coupling calculation6 as well as the 
polarized orbital calculation of Temkin and Lamkin.9 

The comparison suggests that the more the effect of 
polarization is included in the calculation the higher it 
raises the phase-shift curves. In the Fredholm deter­
minant calculation, polarization effects will show up in 
higher order approximations by including an atomic p 
state as an intermediate state. On this basis it is not 
unreasonable to expect that by making higher approxi­
mations to the residues we will obtain better agreement 
for the triplet P-wave phase shifts. 

V. CONCLUSION 

Briefly outlined, the prescription for calculating the 
scattering given in this paper requires a set of eigen-
functions of the unperturbed Hamiltonian which allows 
a decomposition of the Fredholm determinant into 
products of subdeterminants having simple poles in the 
complex energy plane. This set of eigenfunctions is also 
the set which diagonalizes the S matrix. We use these 
eigenfunctions to calculate the residues of the Fred-

9 A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961). 

triplet-state scattering until at &2 = 0.6 (E«8V) the 
discrepancy in the phase shifts is about 50%. 

The P-wave results are 

holm subdeterminants. The residues are related in a 
: simple way to the phase shifts. 

The lack of accurate low-energy experimental data 
for electron-hydrogen atom scattering requires one to 
hedge any conclusions regarding the accuracy of a 

3 particular calculation. Nevertheless, it does seem clear, 
when comparing our results with other calculations, 

i that the method of Fredholm determinants offers a 
1 useful method of obtaining low-energy data for atomic 
i scattering problems. This seems to be particularly 
9 emphasized by the fact that the results of the present 
f calculation were obtained by an approximation simple 
I enough to allow us to do our calculation in closed form. 

In spite of the simplicity of our calculation the results 
l compare favorably with calculations using rather com-
b plicated solutions to the Schrodinger equation which 
t can only be solved by machine computation. Further 

work is under way for the electron-hydrogen system 
t which will include an attempt to carry the S- and P-

wave calculations to higher order and to determine the 
Is—2s inelastic scattering amplitude as outlined in Sec. 
III. We expect to carry out these computations using a 
machine program rather than rinding the matrix ele­
ments analytically as we did in this paper. 
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