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The hard core may be replaced with any other 
short-range force as long as the features (i)~(v) are 
maintained. It would also be interesting to find a 
short-range interaction for which (v) does not hold, 
because that would lead to a more complicated phase 
diagram, which could be treated by the same method. 

APPENDIX II 

First lemma. Let A be a real symmetrical matrix of 
the form 

A. ij = CliOij 0 ij , 0 ij — uji^V • 

This matrix is positive definite if 

0*>Z) hi for all i. (37) 

INTRODUCTION 

A NUMBER of authors have discussed the problem 
of the mixing of two electromagnetic waves in a 

plasma. Ginzburg1 has considered two different mecha­
nisms for the generation of combination frequencies in a 
uniform plasma. In one case, a strong wave at frequency 
coi traverses a homogeneous, isotropic plasma and pro­
duces a variable component of the electron-neutral 
particle collision frequency at frequency 2coi, due to the 
effect of the strong wave on the electron temperature, 
i.e., v oc cos2co .̂ A second and weaker wave of frequency 
co2 traversing the plasma results in waves of frequencies 
co2=h2coi. In the second case, in the presence of a dc 

* This research was supported in part by the U. S. Air Force 
Rome Air Development Center. 

f Portions of this work were performed while the authors were 
members of the former Palo Alto Laboratories, General Telephone 
and Electronics Laboratories. 

1 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 35, 1573 (1958) 
[English transl.: Soviet Phys.—JETP 35 (8), 1100 (1959)]. 

Proof. Let A be an eigenvalue and {%i} the corre­
sponding eigenvector, 

AXj,z=: / . Jx ijXj '==: d%X{ / . ^ijOOj. 
; J 

Let xi be the component of {#*•} with the largest 
absolute value and let the arbitrary phase factor in 
{x^ be chosen such that #i>0. Then, if (37) holds, 

(ai—X)ffi=Z) hjXj^XiY, hj<xiai. 
i i 

Hence, each eigenvalue X is positive. 
Second lemmd. A is not positive definite if 0»^]Cy bij 

for all i. 
Proof. It is easily seen that for the vector {y4} 

= {1,1,1,- • •} one has ^uyiAuyj^O. 

magnetic field, the stronger wave at frequency a>i pro­
duces additional ionization, i.e., n cc coscoi/. The simul­
taneous incidence of a weaker wave at frequency w2 re­
sults in waves of frequency a)2=hcoi. Vilenskii2 discusses 
the case of an inhomogeneous plasma, in the absence of 
an external magnetic field, in which the applied electro­
magnetic field interacts with the electron density gradi­
ent to produce a first-order component of the electron 
density at frequency coi. This then interacts with a 
second, weaker wave at frequency co2 to produce waves 
at frequencies co2±coi. The case of an inhomogeneous 
plasma has been discussed in greater detail by Wetzel.3*4 

Taylor5 has calculated the effect of the polarizing field 
in an inhomogeneous plasma upon the mixing of two 
waves, when the stronger wave is of much lower fre-

2 1 . M. Vilenskii, Zh. Eksperim. i Teor. Fiz. 22, 544 (1952); 26, 
42 (1954). 

3 L. Wetzel, J. Appl. Phys. 32, 327 (1961). 
4 L. Wetzel, Phys. Rev. 123, 722 (1961). 
5 L. S. Taylor, J. Appl. Phys. 33, 2913 (1962). 
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The Boltzmann transport equation coupled with Maxwell's equations has been solved under a small signal, 
plane-wave assumption for a uniform, weakly ionized plasma layer with a constant collision frequency in the 
presence of a static magnetic field. The effects of the nonlinear terms in the equations are included. The 
amplitudes of the sum and difference frequency waves produced within the plasma layer by two incident 
waves of different frequencies, which propagate in the extraordinary mode within the plasma, are derived as 
functions of the plasma and incident wave parameters. Resonances in the amplitudes of these waves occur for 
values of the static magnetic field in the neighborhood of plasma resonance for the waves at the fundamental 
and combination frequencies. The magnetic-field strength for which a given resonance occurs is a sensitive 
function of the electron density. This provides a mechanism through which the electron density in a plasma 
layer can be determined by a measurement of magnetic-field strength. 
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quency than that of the weaker wave. His results indi­
cate that one can obtain combination frequencies 
o>2=twcoi, where m is an integer. 

In the above investigations, it was assumed that one 
of the two incident waves is much more intense than the 
other and that the stronger wave modified the existing 
plasma. The interaction of the second, weaker wave with 
the modified ionized gas was then examined. The present 
work discusses frequency mixing in magnetoplasmas 
when the incident waves are assumed to be of low in­
tensity and of comparable amplitude. The electron-
neutral particle collision frequency remains constant, 
and the electron density remains constant to first order. 
The nonlinear equations describing the plasma are 
solved, yielding the amplitudes of the combination 
waves as functions of the plasma and incident wave 
parameters. A detailed comparison of these results with 
experiment is presented in the following paper.6 

MIXING 

In parts I and II7 '8 (hereafter referred to as I and II , 
respectively) the theory of harmonic generation by an 
electromagnetic wave propagating through a uniform, 
weakly ionized layer in the presence of a static magnetic 
field was derived. In the present work these calculations 
are extended to include the case of mixing of two elec­
tromagnetic waves in a plasma. The theoretical model 
to be discussed is as follows. Two linearly polarized 
plane waves at frequencies o?i and co2 are incident nor­
mally on a plasma layer. The plasma layer is assumed 
to be of thickness d in the direction of propagation of the 
incident signals and infinite in all other directions. A uni­
form dc magnetic field is impressed upon the plasma 
layer in a direction normal to the direction of propaga­
tion. The electric field of each incident wave is perpen­
dicular to the direction of the dc magnetic field. The 
plasma is assumed to be electrically neutral and of uni­
form electron density in the absence of the electro­
magnetic forces. The motion of the ions, as well as any 
thermal effects is neglected. Plane-wave solutions for 
the fields are examined under the assumption of a con­
stant electron-neutral particle collision frequency. Due 
to the nonlinear nature of the Boltzmann transport 
equation, waves at the harmonic frequencies and at the 
sum and difference frequencies of the fundamental 
waves are assumed to exist within the plasma layer. 

The equations to be solved are Maxwell's equations, 
coupled with the first two velocity moments of the 
Boltzmann equation. A detailed discussion of the 
assumptions and of the method for solving the nonlinear 
equations is presented in I. I t is assumed that each of 
the variables can be expanded in a Fourier series of the 

6 S. J. Tetenbaum, R. F. Whitmer, and E. B. Barrett, following 
paper, Phys. Rev. 135, A374 (1964). 

7 R. F. Whitmer and E. B. Barrett, Phys. Rev. 121, 661 (1961). 
8 R. F. Whitmer and E. B. Barrett, Phys. Rev. 125, 1478 (1962). 

form 
+00 

/0M)= E /^W^(mwl+nw2)S (l) 
m = — oo 
n = — oo 

where /0o is a constant and fmn decreases in magnitude 
as |w | + [w| increases. With this assumption, the re­
sulting equation to be solved is given by 

[y—i{mu\-\-nu>i) — o>c X ] 

X [ V x V x Emn-[(niui+nai2)/cJEmn~] 

— i{mo)i+no)2) (o)p/c) 2Emn~Gmn, (2) 

where Emn is the electric-field intensity at frequency 
mcci+no)2'y v is the electron-neutral particle collision 
frequency; c is the velocity of light in free space; and 

o)c= — (e/me)B0o, cop
2 = nooe2/meeo, (3) 

where eo is the dielectric constant of free space; e is the 
charge of an electron and is negative; me is the mass of 
an electron; B0o is the dc magnetic induction; and n00 

is the steady-state electron density. Mks units are used 
throughout this discussion. Hereafter, B0o and n0o will 
be represented by B0 and no, respectively. Gmn is given 
by 

GmH = [i (mui+ nui)wp
i (1 — 8mn)/2c2~] 2 {vm_s, n-r * B8, r 

s,r 

— {me/e)(ym-s,n-r-V)vs,r 

+ (me/eno)£v—i(mo)i+no)2) — (>>c^l 

} , (4) 

where 
1 ^ |w—.y| ^ \m\ — 1, 

1^ \n—r\ ^ \n\ — 1 , 

\mn is the average electron velocity, nmn is the average 
electron density, and Bmn is the magnetic induction 
vector, at frequency mooi+no)2, and 

f = 0 , for w a n d n^O, 
8mn\ (5) 

1 = 1, f o r w o r ^ = 0 . 

The effects of the higher order terms in Eq. (4) have been 
neglected (see I) . 

Equation (2) subject to the appropriate boundary 
conditions at the surfaces of the layer is now to be solved 
for the waves at frequencies wco+#co2. The procedure 
for solving Eq. (2) is that presented in I, and only the 
unique features of this particular problem will be out­
lined here. The propagation constants km0 and kon, of 
the plane-wave solutions, are easily determined be­
cause the right-hand side of Eq. (2) is zero and the 
propagation characteristics are identical to those found 
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in the linear case. Using these quantities, the first-order 
approximation to the quantity Gmn is calculated di­
rectly. The resulting equation is of the form 

4 

Gmn=Jl imnU) exp[=bi(w£io+^&oi)x] 
3 = 1 

Xexp[—i(fnai+nGo2)f], (6) 

where m = ± l and w = ± l . In Eq. (6) a particular m 
and n are first chosen, and j indicates a particular com­
bination of the ± signs in the exponent. The sum is 
then taken over all combinations of the =b signs. 
gmn is proportional to Em0

±E0n±, where the =b signs indi­
cate the direction of propagation of the waves. Equa­
tion (6) indicates several differences between the prop­
erties of the second harmonic waves of I and the prop­
erties of the waves at the sum and difference fre­
quencies. First, the forward and backward waves are 
coupled, whereas these terms canceled to first order in 
the calculation of the wave at the second harmonic 
frequency. Second, the power at the sum and difference 
frequencies is proportional to the product of the input 
powers of the incident waves. Finally, for v approach­
ing zero, resonances in the combination waves should 
occur near the plasma resonances given by 

and (7) 

0)c=(0322 — C O p
2 ) 1 / 2 , 

since &io and £0i have resonances near these values of coc. 
Having determined Gmn, a particular solution to Eq. 

(2) is then calculated by the method presented in I. 
The amplitude of the complementary solution is then 
determined from the boundary conditions. The com­
plete solution to Eq. (2) is now known. Since the 
propagation constants of the complementary solutions 
are resonant near the plasma resonances 

ccc= [(mcoi+wa)2)2—a?/]172, (8) 

FIG. 1. Transmitted and reflected Ps versus coc/W 
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FIG. 2. Transmitted Ps versus o>c/coi for wp/«i^0.1. 

the combination waves should also have resonances in 
these regions. 

The amplitudes of the transmitted and reflected 
combination waves can be written as algebraic func­
tions of the plasma parameters cop/o>i, coc/coi, *>/a>i, 
coid/c, and the input wave parameters OJ2, COI, £10, and 
£01. Since the final solution is extremely complex, it 
will not be presented here. However, the results of com­
puter calculations of the solution will be summarized. 

Following I and I I the power density in the waves at 
the combination frequencies, PWl+W2, and P^-^i re­
spectively, can be written as 

Pcoldhc2= (2Mo^2/me
2c)(P1P2/co1

2) 

XQ±(o)P/(ai,<*)c/o>i,v/a)i,a)id/c,a)2/a)i), (9) 

where Pi and P 2 are the incident power densities at 
frequencies coi and co2, respectively, /z0 is the permeability 
of free space and <2± is a dimensionless function. Equa­
tion (9) indicates that the power in the combination 
waves is proportional to the product of the powers of 
the incident waves and inversely proportional to the 
square of one of the frequencies. Only the quantity coi2 

appears in the denominator of Eq. (10) rather than the 
quantity (wi±co2)

2, because the dimensionless factor 
l±(co2/o>i)2 was incorporated into the quantity Q±. 
The following discussion will be limited to a study of 
the quantities 

Pa(D) = 101og10e±, (10) 

where the subscript S, representing the sum frequency, 
corresponds to the plus sign, and the subscript D, rep­
resenting the difference frequency, corresponds to the 
minus sign in Eq. (9). 

THE SUM FREQUENCY 

A typical curve of Ps versus a?c/coi is shown in Fig. 1. 
A number of resonances occur near values of «c/wi cor­
responding to plasma resonance for the waves at fre­
quencies coi, co2, and cox+co2 as given by Eqs. (7) and 
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FIG. 3. Transmitted Ps versus coc/wi for cop/o>i = 0.35. 

(8). Near the first two plasma resonances, the ab­
sorption of the incident waves is a maximum. The 
major resonances which appear in the curve of trans­
mitted Ps are designated 1, R2, 2, 4, Rl, 5, 6, and 7. 
Rl and R2 occur at the plasma resonances for the waves 
at frequencies «i and co2, respectively. No peak occurs 
in the transmitted Ps at the plasma resonance point for 
the wave at frequency a>i+co2. The resonances which 
occur on either side of the plasma resonance points are 
geometrical in nature since they occur for values of 
o)c/o)i for which the electrical length of the plasma layer 
is approximately an integral number of quarter wave­
lengths thick for either of the incident waves. Such 
geometrical or boundary resonances have been discussed 
in relation to the second harmonic in I, Eqs. (40)-(43). 
The plasma resonances are more easily distinguished in 
the curve for the reflected Ps since the effective di­
electric constant of the plasma near resonance deviates 
greatly from its free-space value, causing a large re­
flection at the first interface. The reflected Ps exhibits 
a plasma resonance corresponding to the frequency 
wi+w2 [Eq. (8)], which is labeled RS. The amplitude 
of Ps in the region of peaks 6 and 7 is lower than in the 
other resonance regions because the interaction of the 
incident waves with the plasma at this value of mag­
netic field is much weaker than when the magnetic field 
is close to plasma resonance for the incident signals. The 
remainder of this discussion will be devoted to describ­
ing the changes in structure, amplitude, and location of 
the resonance peaks in the curves of Ps versus wc/coi 
as the parameters Wp/coi, v/cch w2/a>i, and wid/c assume 
different values. 

The effect of the electron density on Ps is shown in 
Figs. 2 and 3. As oop/coi increases, the outer geometrical 
resonances, peaks 1 and 2, and 4 and 5, move apart 
since the plasma becomes electrically thicker. Peaks 
R2 and Rl shift according to Eq. (7). The geometrical 
resonances become progressively broader as the electron 

density is increased. For values of cop/wi in the neighbor­
hood of 0.2, peaks 2 and 4 merge to form a single reso­
nance as indicated by a comparison of Figures 2 and 3. 
Peaks 5 and 6 broaden and merge as cop/(x>i increases and 
they are no longer identifiable as resonance peaks when 
cop/coi exceeds approximately 0.4. As the density is in­
creased further, the plasma becomes opaque to the lower 
frequency wave and only the resonances corresponding 
to the higher-frequency incident wave are present. The 
value of the magnetic field at which a particular reso­
nance occurs, is a sensitive function of the electron den­
sity. This fact provides a technique for measuring the 
electron density. The amplitudes of the plasma reso­
nance peaks increase, then level off, and eventually de­
crease as o)p/ooi increases. In general, the amplitudes of 
all peaks decrease at sufficiently high values of cô /coi. 
The behavior of the plasma resonance peaks is similar 
to that shown for the peak amplitudes of the second, 
third, and fourth harmonic waves in I, Fig. 6, and II, 
Figs. 4 and 5. 

The principal effect of increasing v/u\ is to increase 
the line width and decrease the amplitude of all reso­
nance peaks in both the transmitted and reflected Ps 
curves. Figure 4 shows this effect for the transmitted 
Ps curve in the main resonance region. The effect on 
peaks 6, RS, and 7, is similar. Fine structure is elimi­
nated as the subsidiary peaks are damped out by the 
increasing v/ooi. Increasing v/coi has a more pronounced 
effect on the plasma resonance peaks than on the 
geometrical resonances, causing the former to decrease 
in amplitude more rapidly than the latter. This damp­
ing effect of v/o)\ on resonances of Ps is due to the de­
crease in the absorption of the incident waves at plasma 
resonance as the collisions are increased. 

The structure of the Ps versus coc/coi curves is a sensi­
tive function of the incident frequency ratio w2/a>i, 
since many of the resonances overlap as co2/coi ap­
proaches 1.0. The curves for Ps transform continuously 
into the curves for the second harmonic as co2/o>i 
approaches unity. From Fig. 5, it can be seen that the 
change in the position of all the peaks is essentially a 
linear function of a>2/a>i for 0.3 ^ w2/coi^ 0.95. For values 
of o>2A>i^0.95, the plasma resonance peaks R2 and Rl 

+ 30 
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FIG. 4. Transmitted Ps versus wc/coi for various values of v/W 
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and the geometrical resonances between R2 and Rl 
(2 and 4) merge into a common peak located close to 
the plasma resonance point for the second harmonic. 
However, the outer geometrical resonances, peaks 1 
and 5, retain their identity even in the limit of the 
second harmonic. 

The effect of varying aiid/c on the amplitudes and 
positions of the geometrical peaks is similar to the 
changes produced in these peaks by varying cop/coi. 
This similarity is understandable in terms of the geo­
metrical nature of these peaks, since changes in the 
physical thickness of the layer are equivalent to changes 
in the electrical thickness of the layer. 

THE DIFFERENCE FREQUENCY 

Figure 6 shows a typical curve of PD versus coc/coi for 
representative values of the plasma parameters and 
incident frequency ratio. The frequency ratio co2/wi 
= 2.16 was chosen in order to separate the resonance 
regions, which for low-electron densities occur near 
wc/coi= 1.0 and o>c/(co2—coi) = 1.0. As with the Ps curves, 
there are three principal resonance regions. These occur 
in the neighborhood of the plasma resonance points for 
the waves of frequency coi, co2, and the combination 
frequency GJ2—coi. The resonance peaks of the trans­
mitted PD are affected by changes in cop/o>i and v/u>\ in 
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FIG. 5. Values of «c/wi at resonance peaks of Ps versus 6)2/0)1. 
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FIG. 6. Transmitted and reflected PD versus o)c/o)i. 

an analogous fashion to those of P#. For similar condi­
tions of electron density, collision frequency, and slab 
thickness, the maximum amplitude of PD is approxi­
mately 10 to 15 dB less than that of Ps- This is due to 
the wide spacing between the incident frequencies, 
which allows only one of the waves to be close to plasma 
resonance for any given set of values of the plasma 
parameters. 

The resonance peaks of the reflected PD in Fig. 6 are 
designated Rl, RD, and R2. Peaks Rl and R2 are plasma 
resonance peaks occurring exactly at the plasma reso­
nance points for the waves of frequency a>i and w2, 
respectively, and correspond to similar plasma reso­
nance peaks on the reflected Ps curves. I t can be seen 
that the Rl amplitude of the reflected PD actually ex­
ceeds the Rl amplitude of the transmitted PD. The RD 
peak occurs close to, but not exactly at, the plasma 
resonance point for a wave of frequency co2—coi, and it 
tends to broaden with increasing o>p/coi. As was the 
case with the reflected Ps curve, the subsidiary geo­
metrical resonance peaks in the reflected PD curve in­
crease in number as co /̂coi increases, and tend to spread 
away from the resonance peaks Rl, RD, and R2. 
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