
P H Y S I C A L R E V I E W V O L U M E 1 3 5 , N U M B E R 2 A 20 J U L Y i 9 6 4 

Dielectric Losses in Ionic Crystals with Disordered Charge Distributions 
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A theory of the dielectric losses to be expected in nonconducting, ionic crystals containing disordered 
charge distributions is described. In this theory the disorder in the distribution of mass and force constants 
(which accompanies the disordered charge distribution) is disregarded. Detailed results are derived for 
crystals with the inverse spinel structure. In such crystals two- and three-valent ions occupy equivalent sites 
(the "octahedral" sites) in a random fashion. The predicted loss tangent depends strongly on the spatial 
correlation between the charge deviations (the difference between the actual charge and the average charge 
corresponding to a given lattice site). If the charge deviations are substantially uncorrelated, the loss 
tangent is proportional to the frequency and approximately 5X10~4 at X band. However, if the charge de
viations are strongly correlated in such a way that charge neutrality is maintained within each unit cell of 
the crystal, the loss tangent is proportional to the cube of the frequency and approximately 2X10~9 at 
X band. The theory is also applied to a discussion of the additional losses to be expected in polycrystals with 
very small grain size. It is concluded that this contribution to the loss tangent should be insignificant unless 
the grain size is extremely small. 

I. INTRODUCTION 

NONCONDUCTING, ionic crystals should, under 
ideal conditions, exhibit dielectric losses only in 

the vicinity of the limiting lattice frequencies, which are 
usually in the infrared region of the spectrum. If the 
charge distribution in these crystals deviates from per
fect periodicity, however, dielectric losses may also 
occur at lower frequencies. The object of the present 
paper is to derive theoretical estimates of the dielectric 
losses attributable to various kinds of disorder in the 
charge distribution. An example for crystals with an 
inherently disordered charge distribution is provided by 
the inverse spinels. It is generally believed that in such 
crystals two- and three-valent ions are distributed over 
equivalent sites (the "octahedral" sites) in a random 
fashion.1 It is shown below that this random distribution 
leads to dielectric losses even when electronic or ionic 
conduction are completely suppressed. Another type of 
disordered charge distribution occurs in polycrystals. It 
is shown below that the contribution to the dielectric 
losses arising from this disorder is insignificant unless 
the grain size is extremely small. 

Similar problems have previously been discussed by 
Vinogradov.2 His results are based on the assumption 
that no correlation exists between the charge deviations 
at different lattice sites. Here the charge deviation is 
defined as the difference between the actual charge and 
the average charge located at a given lattice site. 
Vinogradov's theory disregards the fact that the charge 
deviations will have a tendency to compensate each 
other. In the present theory the correlation between the 
charge deviations at different lattice sites is taken into 
account. The theory is thus more general than 
Vinogradov's theory, which is contained in it as a 
special case. 

1 See for instance J. Smit and H. P. J. Wijn, Ferrites (John Wiley 
& Sons, Inc., New York, 1959), pp. 140-145. 

2 V. S. Vinogradov, Fiz. Tverd. Tela 2, 2622 (1960) [English 
transl.: Soviet Phys.—Solid State 2, 2338 (1961)]. 

For the sake of simplicity it is assumed in the follow
ing discussion that the purely mechanical properties of 
the crystal are described by a primitive lattice (i.e., a 
lattice with one atom per unit cell). The completely 
ordered ionic crystal then corresponds to the case in 
which adjacent lattice sites carry charges of opposite 
sign. In addition to this completely ordered charge 
distribution, we shall also consider certain types of 
disordered charge distributions. 

II. GENERAL THEORY3 

Let n, n' etc. be vectors with integer components, rn 

the equilibrium site of the nth ion of the lattice, and sn 

the deviation of the position of this ion from its rest 
position. For small deviations from equilibrium the 
potential energy of the lattice is, apart from a constant, 
given by 

* ( • • • ) = * £ (i) 

where sv
n is the v component of sn, and (j>vv>

nn' are the 
force constants. If qn is the charge of the ion n and m 
the mass of each ion, the equations of motion are 

msv
a=-J2 (f>Vv>nn'sy>

n'+qnEv, (2) 

where Ev is the v component of the electric field, which 
we assume to be uniform. 

In the absence of an electric driving field Ev the 
equations of motion have simple solutions of the form 

^ n=a,x k expz(k-rn-cox
k0, (3) 

where (o>\k)2 and av\
k are eigenvalues and eigenvectors, 

3 For a detailed discussion of lattice dynamics the reader is 
referred to M. Born and K. Huang, Dynamical Theory of Crystal 
Lattices (Clarendon Press, Oxford, 1954) or G. Leibfried in 
Encyclopedia of Physics, edited by S. Flugge (Springer Verlag, 
Berlin, 1955), Vol. VII, Part 1, Crystal Physics 1. 
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respectively, of the "frequency tensor" 

1 
t„>k= — E 0 - ' n n ' e x p [ - t k - ( r n - r n ' ) ] . (4) 

m n' 

I t should be noticed that the right-hand side of Eq. (4) 
does not depend on n because the coupling matrix 
0„„'nn' depends on n and n' only through the difference 
n—n'. In Eq. (3) the subscript A labels the various 
solutions of the eigenvalue equation 

( c ^ V ^ E ^ ' V N (5) 
v' 

which defines the eigenfrequencies o)\k and eigenvectors 
av\

k. The eigenvectors can be normalized in such a way 
that they form an orthonormal matrix. 

We now assume periodic boundary conditions and 
introduce the Fourier components qk of the charge dis
tribution qn. 

qn = ]Sf-H2 £ qk e x p(ik- r n ) , 
k 

(6) 
q*=N-1'2'£, q" e x p ( - i k - r n ) . 

n 

Here N is the number of lattice sites in the periodicity 
volume and the summation over k extends over N sites 
of the reciprocal lattice. Similarly we introduce normal 
coordinates a\k by means of the transformation 

sv
n = N~112 E axkavX

k exp(ik-rn) , 
kX 

(7) 
ax

k=7V-1/2 £ ^ n a ,x k exp(—ik« r n ) . 
nv 

The equations of motion (2) expressed in terms of the 
normal coordinates now become 

axk+(o>xk)2axk=m~1qkZ <*vx
kE„. (8) 

V 

Assume now that the driving field E has a periodic 
time dependence 

E=Eexp(iwO (9) 

and that the lattice oscillators a\k are slightly damped. 
This damping may be taken into account by adding to 
the left-hand side of Eq. (8) a damping term yd\k. 
Later on, we shall consider the limit 7 -—»0. 

The solution of the equations of motion (8) is obvi
ously given by 

m~lqklLvOLvx
kEv 

ax
k= : — exp(uat). (10) 

(co\k)2— o)2-\-io)y 

The v component of the polarization is 

Pv= Y~l E sv»q«= F - 1 £ a x W V * , (11) 
n kf 

where we have used Eqs. (6) and (7), V is the periodicity 
volume, and the asterisk denotes the complex conjugate. 

Consider now the susceptibility tensor X„„/(0) denned 
by 

i ,,=Zx^i»)£ l-,(««o1 (12) 

where Eeff is the effective electric field acting on each ion 
of the crystal. The effective field is the sum of the ap
plied electric field and a contribution arising from the 
polarization of the crystal. For this reason X(0) is not the 
actual susceptibility X. The relation between X(0) and X 
is discussed in Sec. V. We find from Eqs. (10), (11), 
and (12) 

1 \qk\2ccv\
kav>\k 

X„>«» = — E . (13) 
Vm kx (co\k)2—co2+fyco 

If the material is macroscopically isotropic, all di
agonal elements of the susceptibility tensor are equal, 
and hence also equal to one-third of the trace of the 
susceptibility tensor. Thus the scalar susceptibility is 
under these conditions 

1 \qk\2 

x 0 = I E ^ ( 0 ) = E . (14) 
v 3Vm kx (wxk)2—u>2+iyo> 

Here we have used the orthonormality of the matrix av\
k. 

Consider now the (negative) imaginary part X0" of 
the susceptibility as a function of frequency. According 
to Eq. (14) it consists of a sum of resonance curves 
corresponding to the various normal modes. The width 
of these individual resonance curves depends on the 
damping constant 7 whereas the total area under each 
curve is substantially independent of 7. Since the 
imaginary part of the susceptibility is a superposition of 
many closely spaced resonance curves, it is primarily 
determined by the area associated with each individual 
curve (rather than the width or the peak height). Thus 
it is permissible for the purpose of evaluating Eq. (14) 
to consider the limit of vanishing damping constant. 
The results obtained in this way are reliable as long as 
the Q of the individual resonances (Q^c»)\k/y) is reason
ably high (Q>5 say). 

In the limit of zero damping X0" approaches a sum of 
delta functions, because for co>0 

lim I m [ ( w x
k ) 2 - c o 2 + ^ ] ~ 1 = - i™ _ 1S(cox k-a)) . (15) 

Thus 
X0

/ /=(7r/6Fwco)Ekk |25(cox
k-co). (16) 

kX 

For further progress it is obviously necessary to know 
[<7k|2, i.e., the "spectrum" of the charge distribution qn. 
If the statistical laws that govern the distribution of 
charge over the lattice sites are known, the spectrum can 
be calculated from the correlation function 

0m = ^ - l ^ » + » ^ > . (17) 
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Here the angular brackets denote an ensemble average. 
After introduction of the Fourier transform of qa the 
correlation function becomes according to Eq. (6) 

b=l-8 

Hence 

0 « = iV- l j :< | f f k |S ) . e X p( fk . r m) > 

k 

(kkl2) = E0mexp(-A-rm). 

(18) 

(19) 

If the correlation function is known, we may thus calcu
late the ensemble average of the susceptibility according 
to Eqs. (16) and (19). 

III. APPLICATION TO SINGLE CRYSTALS WITH 
INTERNAL DISORDER 

I t is convenient to express the charge distribution qn 

as 
qn=qon+qin, (20) 

where qo11 is the average charge and qf the deviation 
from the average charge. Thus 

<3 l"}=0. (21) 

The correlation function is similarly expressed as 

<^-0om+<£im , (22) 

where 

0om=i\r-1Egon+m5on, 

(23) 

Similarly, 

n 

< k k l 2 > = l 9 k ! o 2 + < k k | i 2 > , 

I qk\ o 2 = £ <2>om e x p [ - i k - r m ] , 
m 

<k k | i 2 ) = E t f i m e x p [ - t ' k T m ] . 

(24) 

| q0
k\2 is nonzero only for the limiting lattice frequencies 

and is of no further interest for the present problem. 
If the charge deviations are uncorrelated, it follows 

that 

<l>i<»= (qi2) for m = 0 , 

= 0 for m ^ O . 

This implies that the spectrum is "white" (i.e., inde
pendent of k) 

(l9k |1
2)=<?i2)- (26) 

The susceptibility is according to Eqs. (16) and (26) 
in this case 

X 0 " = ( ( ? I > / 1 2 T W ) E 1 A X 3 , (27) 

a 

1 

Total charge 

-1 

a=l+8 

-8< 

^^ U 
* "+8 

Charge deviation 

FIG. 1. Disordered charge distribution in an Na-Cl lattice, "a" 
and "b" ions are randomly distributed over the black sites, with 
two "a" and two "b" ions falling into each cell. 

the spectrum and it has been assumed that the phonon 
frequencies a>xk are proportional to the wave number 
k= |k | in the frequency region of interest. 

o>xk=cxk. (28) 

This approximation is valid as long as the measuring 
frequency is small compared to the limiting lattice fre
quencies. The summation over k in Eq. (16) has been 
replaced by an integration according to the rule 

V 

k (2x) 3 
/ * • 

(29) 

In order to arrive at an estimate of the absorption to 
be expected in inverse spinels, we note that the unit 
cell contains 14 sites, on four of which there is a charge 
deviation of d= J electron charge. Thus 

<gi2>= (l/14)e2~1.8X10-2 0 erg cm. 

Inserting for m the average mass of the ions ( w ~ 4 6 
X10~24 g), and replacing J^\c\~z by 2cf3, where 
c j~4X10 5 cm sec--1 is the velocity of transverse sound, 
one obtains for OJ/27T= 1010 sec -1 

X 0 "~2X10- 5 . (30) 

where c\ is the sound velocity for the three branches of 

Consider now a case of strong correlation between the 
charge deviations. As an example, we shall discuss 
crystals with an NaCl-lattice structure assuming that 
charge neutrality is maintained within each cubic unit 
cell, which contains 4 positive and 4 negative ions. 
Figure 1 shows the lattice structure and the distribution 
of positive and negative ions over the available sites. 
The negative ions are assumed to have equal charge, but 
the positive ions are of two kinds with unequal charge. 
Charge neutrality requires that each of the lattice cells 
contains 2 each of the two kinds of positive ions. I t is 
shown in Appendix 1 that the correlation function for 
this case is given by 

tf>im=<?i2> m = 0 , 

= -&(qi2) m = [110], [ 1 - 1 0 ] , (31) 

[ - 1 1 0 ] , . . . , [ 0 1 - 1 ] , 

= 0 otherwise. 
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I t should be noticed that 

(32) 

as required by charge neutrality. 
The spectrum of the charge distribution is in this case 

(\qk\i2)=Uqi%6-™<kx+ky)d-cos(kx-ky)d 

— cos(ky+kz)d—cos(ky—kz)d 

— cos(kx+kz)d—cos(kx—kz)d~], (33) 

where d is the lattice constant. In the microwave and 
millimeter wave region |k|d<$Cl, so that to a good 
approximation 

<k k l i 2>=K«i 8>-^(** 2+*y 2+W). 

Thus according to Eq. (16) for this case 

-v // 
An —" 

(qi2)d*o> 

36irm x c\b 

(34) 

(35) 

Comparison of Eqs. (27) and (35) shows that the impo
sition of charge neutrality within each lattice cell re
duces the absorption coefficient by a factor of approxi
mately (l/3)(do)/ct)2' At X-band this factor is typically 
of the order of 3 X10-6 . 

The two preceding examples (zero correlation and 
strong correlation) should be considered as limiting 
cases. The actual physical reality may be expected to 
fall between these two extremes. Charge neutrality is 
certainly realized on a macroscopic level, so that the 
assumption of uncorrelated charge deviations is highly 
suspect. On the other hand, charge neutrality may not 
necessarily be maintained within each lattice cell, but 
only over a larger volume. The correlation function for 
such a case will have finite values at larger distances 
than the correlation function corresponding to charge 
neutrality within each lattice cell [Eq. (31)J. I t appears 
reasonable to assume that the correlation function <j>im 

(36) 

decreases exponentially with distance. Thus 

<£im=(gi2> m = 0 , 

= ~c(g 1
2 )exp( - - | r m | / / ) m ^ O , 

where the "correlation distance" / characterizes the 
strength of the correlation and c is a normalization con
stant defined by 

cZ e x p ( - | r » | / 0 = l . (37) 

The spectrum of the charge distribution can be calcu
lated easily if the correlation distance / is large compared 
with the lattice constant. Under these conditions the 
summation over m may be replaced by an integration, 
and one finds 

where 
k k | i 2 = < < 7 i W ) , 

g(x)=\-(l+x>)-\ 

(38) 

(39) 

Inserting Eq. (39) into Eq. (16) and neglecting the 
contribution from the longitudinal branch of the spec
trum (which is approximately correct since crz<Kcrz) 
one obtains 

Xo"= ((qi2)o>/fa?nct*)g(a>/a>o), (40) 
where 

uo=ct/l. (41) 

For co^coo the result for intermediate correlation (40) 
approaches the previously derived result for zero corre
lation [Eq. (27)]. For co<Ko>o, on the other hand, X0" is 
according to Eq. (40) proportional to a>3 as was previ
ously shown for the case of strong correlation [Eq. 
(35)]. For this case the correlation length is of the order 
of the lattice constant. Quantitative numerical agree
ment between the two results cannot be expected 
because of the approximations involved in the deriva
tion of Eq. (40). 

In Fig. 2 the dielectric loss tangent to be expected in 
inverse spinels is plotted versus frequency for different 
values of the correlation frequency coo. The loss tangent 
is proportional to X0"; the constant of proportionality is 
derived in Sec. V [Eq. (53)]. 

The assumption of an exponentially decreasing corre
lation function is somewhat arbitrary. I t can be shown, 
however, that the end result is not sensitively dependent 
upon the finer details of the correlation function. The 
frequency dependence of the loss tangent has also been 
calculated for the case in which the correlation function 
is constant within a sphere of radius I (excepting the 
origin) and zero outside of this sphere. The results ob
tained in this way are qualitatively very similar to those 
summarized in Fig. 2. 

IV. APPLICATION TO POLYCRYSTALS 

A rigorous theory of the electrical properties of 
polycrystalline materials is obviously an extremely diffi
cult task. The discussion presented in this section is, 
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therefore, based on a simple theoretical model of 
polycrystalline materials. This model, though not rigor
ously correct, is believed to reflect fairly well those 
properties of polycrystals which lead to dielectric loss at 
frequencies between 1010 and 1012 sec""1. 

Consider first a one-dimensional analogy. A single 
crystal corresponds to a long chain of ions with alter
nating charges. (For the sake of simplicity we assume 
that the masses are equal.) The model of a polycrystal 
on which the subsequent discussion is based consists of a 
similar chain of ions except that the proper charge 
sequence is not always rigorously maintained. We shall 
assume, in fact, that at the edges of smaller sections of 
the chain (which correspond to the grains in a three-
dimensional crystal) the proper charge sequence is 
interrupted with a probability of one-half. Figure 3 
demonstrates this theoretical model. The discontinuity 
of the charge distribution to be expected at the grain 
boundaries is reasonably well taken into account in this 
theoretical model. On the other hand, the discontinuity 
of the mechanical properties of the crystal (such as 
mass, force constants, and equilibrium position of the 
ions) is not taken into account at all. 

For the sake of simplicity we assume that all grains 
are equally large, containing (in the one-dimensional 
case) L ions. It should be noticed that charge neutrality 
is maintained within each grain if L is even, whereas it 
is not if L is odd. It may therefore be anticipated that 
the dielectric losses as calculated on the basis of this 
model will be considerably larger if L is odd. We shall 
return to this question later. 

The charge correlation function </>m is calculated in 
Appendix 2, where it is shown that for the one-dimen
sional case, 

Grain boundaries^ 

* ' 
=o 

•l)m(l-\m\/L) for 
for 

\m 
\m 

<L, 
>L, 

(42) 

where e is the charge of each ion. The spectrum of the 
charge distribution is calculated in Appendix 3, with the 
result 

^rsin( |L^)-i2 

LL cos(^kd) J 

e2rcos(iLkd)-l2 

LL cos^kd) J 

L=even, 

(43) 

odd. 

So far we have assumed that all grains have equal 
size. This is certainly unrealistic. In an actual poly
crystal the grain sizes will be distributed over a finite 
range. We may take this into account by taking an aver
age of the spectrum (43) with respect to the grain size. 
We assume for simplicity that the distribution of grain 
sizes has a relatively sharp peak at the average grain 
size Lo. 

Under these conditions the average spectrum is ob
tained from (43) by replacing the sin2 and cos2 factors in 

FIG. 3. Theoretical 
model of polycrys
tals. One-dimension
al case: L — 6. 

Caintained 

erruptet 

the numerator^by \ and L by L0. Thus 

<I?*IV= 
2L0 cos2(§M) 

(44) 

The results obtained for the one-dimensional case can 
easily be generalized to three dimensions. In our theo
retical model of a polycrystal the grains now consist of 
cubic blocks, containing L ions along each side. If the 
charge sequence is rigorously maintained within each 
grain, but interrupted or maintained with equal proba
bility at the grain boundary, the three-dimensional 
correlation function is (apart from constant factors) the 
product of three one-dimensional correlation functions 

\m*\\ 

L J 

K'-VX1-—)•(45) 

Similarly the three-dimensional spectrum is a product of 
three one-dimensional spectra 

(kk|2)av=e2/ 
(2Z0)

3 cos2(JM) cos2(§M) cos 2 (JM. (46) 

If the frequency is much less than the limiting lattice 
frequency, the cosine factors in Eq. (46) are approxi
mately unity. Under these conditions the contribution 
of polycrystallinity to the dielectric loss is given by Eq. 
(27) with <gi2) replaced by e2/(2L0)

3. 

V. DIELECTRIC LOSS TANGENT 

For cubic materials the effective field Een is related to 
the applied field E and the polarization P by 

Eeff-E+(47r/3)P. (47) 

Thus the true susceptibility X is related to X0 by 

X = Xo/(l-|7rXo). (48) 

If the imaginary part X0" of X0 is small compared to the 
real part X0' and compared to 1 — ^TXQ it follows that 

X,c-Xo7(l-f7TX00, 

X"-Xo7(l-f7rX0 ')2. 

(49) 

(50) 

Since x! can be measured directly, it is convenient to 
express X" in terms of X0" and X' rather than in terms of 
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Xo" and X0'. From Eqs. (49) and (50) 

X"~X0"(l+t7rX')2. (51) 

The dielectric loss tangent as expressed in terms of Xo'' 
and the real part of the dielectric constant 

is 

tan5=-

6 ' = 1 + 4 T T X ' 

4TTX" (e '+2)2 

9e' 
-4xX0". 

(52) 

(53) 

For magnetic spinels the dielectric constant is of the 
order of 15. The curves shown in Fig. 2 have been 
calculated using this numerical value. 

VI. DISCUSSION 

The previous calculation has shown that the contribu
tions to the loss tangent arising from internal disorder 
in single crystals (such as occurs in inverse spinels) may 
be expected to be significant at high microwave fre
quencies provided that the charge deviations are not 
strongly correlated. This contribution will be sharply 
reduced if the charge distribution is subject to correla
tions such as imposed by the tendency for charge 
neutrality. 

The distribution of the ions over the available sites 
depends on the preparation of the crystal. The corre
lated distribution discussed in Sec. I l l [Eq. (35)J, in 
which charge neutrality is maintained within each 
lattice cell, is very likely energetically favored over the 
uncorrelated distribution £Eq. (27)]. One may thus 
expect a tendency towards a strongly correlated dis
tribution at low temperatures provided that the 
equilibrium distribution corresponding to a given 
temperature has been established. On the other hand, a 
high-temperature distribution can probably be "frozen 
in" by rapid cooling. 

The contribution to the loss tangent arising from 
polycrystallinity assuming an average grain size of 10~6 

cm is of the order of 10~8 at X band. Thus this contribu
tion is probably insignificant, at this frequency, even for 
materials with very fine grains. 

ACKNOWLEDGMENTS 

I am greatly indebted to Dr. B. D. Silverman and 
Dr. R. I. Joseph for many stimulating discussions on the 
subject of this paper and for a careful review of the 
manuscript. 

APPENDIX 1. CHARGE CORRELATION FUNCTION 
IN SINGLE CRYSTALS WITH 

INTERNAL DISORDER 

We assume that the charge distribution in different 
cells (such as shown in Fig. 1) are statistically inde
pendent. Since all cells are equivalent the correlation 

function may be expressed as 

0 i m = i E < 2 i n + m 2 i n > , (Al) 

where the summation over n extends only over the 8 
sites of the fundamental cell. By reference to Fig. 1, it 
is easily seen that <£i100, 0i010, etc., and <£im, 0 f m , etc., 
vanish because they are proportional to the ensemble 
average of the charge deviation. On the other hand, 
0i000 and 0in o , 0i1-10, etc., are nonzero and given by 

</>i000 = | e 2 < 5 2 , 

1 (2 4\ 1 1 
^ 1 H 0 = - 6 2 [ W ^ e 2 5 2 = 01OOO# 

8 \ 6 6 / 24 12 

(A2) 

Here we have used the fact that only one term in the 
summation of Eq. (Al) contributes to 0i110. This term 
arises from an aa or a bb pair with a probability of 2/6 
and from an ab pair with a probability of 4/6. 

The correlation function vanishes for larger distances 
because of the assumed statistical independence of the 
charge distributions in different cells. 

APPENDIX 2. CHARGE CORRELATION 
FUNCTION IN POLYCRYSTALS 

One-dimensional case: Because all grains are equiva
lent the correlation function can be written as 

4>m=(l/L)Y,(qn+mq»). (A3) 

In this sum only those terms are nonzero for which 
n-\~m and n lie within the same grain. Thus 

4P=(*/L)L, 

*="=-(«*/£) ( Z - l ) , 

^={eVL){L-2), 
(A4) 

which is equivalent to Eq. (42). 
Two-dimensional case: By the same arguments as 

above, one finds 

<j>m={eyD)LL, 

4P=-(?/L*)(L-l)L, 

<t>i0=(e>/D)(L-2)L, 

4P=-(*/L*)(L-2)(L-l). 

(A5) 

Thus, in general, 

(/>nxny==(e2/D)(~l)nx
+ny(l~\nx\/L)(l-\ny\/L); 

\nx\ and \ny\<L, (A6) 

= 0; \nx\ or \ny\>L. 
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APPENDIX 3. SPECTRUM OF THE CHARGE 
DISTRIBUTION IN POLYCRYSTALS 

From Eqs. (19) and (42) for the one-dimensional case 

|g*|VcB=l+E(l-w/L){exp[i(ic-ir)f»]+c.c.}, (A7) 

where K=kd. Using the relations 

X) exp(imx) 

X) m exp(iwx) 
ra=l 

exp[ i^ (L+l ) ] 
= {(L+l) sin(J^L) sin(^) 

2 sin2(§#) 
— i[L cos(JxZ) sinGb) —sin(^Z) cos(Jx)]} , (A9) 

one finds after trivial calculations 

| qk12/e2= sin2JZ,(K-7r)/Z, cos2i/c, (A10) 

= e x p [ ^ ( L + l ) ] sin(i#L)/sin(§#), (A8) which is equivalent to Eq. (43). 
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Energy Levels of Polarons in a Magnetic Field 
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A variational method closely related to the intermediate coupling method of Lee, Low, and Pines is used 
to calculate the ground-state energy and low-lying excited states of the Frohlich Hamiltonian with a uni
form time-independent magnetic field. The energy is calculated in a power series in coc/co to order (coc/co)2, 
where co c is the cyclotron resonance frequency of the electron in the absence of electron-phonon interaction 
and co is the frequency of the longitudinal optical phonons. It is shown that in the presence of electron-
phonon interaction the energy of the nth. magnetic level is no longer proportional to n and that the effective 
mass for motion along the direction of the magnetic field is a function of n. The calculated variational en
ergies approach the weak field result expected from the calculation of Lee, Low, and Pines (LLP) when 
coc/co —> 0, and in the weak coupling limit the ground-state energy becomes exact to order (coc/co)2. 

INTRODUCTION 

IT is well known that if one wishes to compute the 
energy spectrum of a spinless electron of mass m in 

a magnetic field, H, with associated vector potential A, 
one replaces the energy operator p2/2m for the free 
electron by (p—eA/c)2/2m and solves the resulting 
Schrodinger equation. The energy spectrum so obtained 
can be written 

(#,V2w)+(»+i)«Wo, (1) 
where COQ=eH/mc, pz is the component of electron 
momentum along H, e is the magnitude of the electron 
charge, and n takes on values (0,1,2,- • •). 

In this paper we shall discuss what happens to the 
energy of an electron (more precisely, a polaron) in a 
polarizable but magnetically inert crystal when a rela
tively weak magnetic field is turned on. Polaron 
theory1-3 predicts that in the absence of external fields 

* Address after August 15, 1964: M. I. T. Lincoln Laboratory, 
Lexington, Massachusetts. 

1 H. Frohlich, Advances in Physics (Taylor & Francis, Ltd., 
London, 1954), Vol. 3, p. 325. We use the notation of Frohlich 
unless otherwise specified. 

2 T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953). 
This paper will henceforth be referred to as LLP. 

3 Particularly useful as a survey of the entire subject of polarons 
is the book Polarons and Excitons, edited by C. G. Kuper and G. D. 
Whitfield (Oliver & Boyd, Ltd., Edinburgh, 1963). 

the polaron energy spectrum has the form 

p2/2in*+ (Kp*/4m2ho})+0(p«/Mz(ha>)2), (2) 

if (p2/2m)<<Cfto), where co is the frequency of the longi
tudinal optical phonons and m is now and henceforth the 
band mass of the electron. In (2) m* is the "effective 
mass" of the polaron and K is a dimensionless constant. 

If we could proceed in analogy to the free electron we 
would regard (2) as the energy operator for the polaron, 
replace p2/2m in (2) by (p—eA/c)2/2m and solve the 
resulting Schrodinger equation. The energy levels of the 
polaron in the magnetic field would then take the form 

/*[(w+£)feoc+#*2] 
+ (X/fo)[(»+J)fo>c+ (p2/2m)J 

+Ol((n+i)ft^c+p2/2my/(^y2, (3) 
where 

fjL=tn/m>* (4) 

and 
o)c=eH/mc. 

At this point (3) is only suggestive; it motivates the 
more careful study of low-lying polaron energy levels to 
be undertaken in the present paper. We shall show, to 
the accuracy of our calculation, that in fact (3) becomes 


