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The direction of magnetization of fine single-domain particles is known to fluctuate because of thermal 
agitation. The relaxation time for these fluctuations is calculated here for the case of uniaxial anisotropy and 
zero magnetic field. It is found that the commonly used approximation for high-energy barrier is still a good 
approximation when the barrier is of the order of kT. For lower barriers, the eigenvalue is expressed as a 
power series in the energy barrier in terms of kT. 

1. INTRODUCTION 

EXTREMELY fine particles of ferromagnetic ma
terials have no hysteresis, and generally behave as 

if each particle was a paramagnetic atom.1 It is be
lieved that this phenomenon, which is known as "super-
paramagnetism," is due to thermal agitation which 
causes continual changes in the orientation of the mag
netic moment of each particle, yielding a statistical 
distribution of orientations. For larger particles, the 
relaxation time associated with these fluctuations be
comes so large that the moments are stable within the 
measurement time and the thermal agitation can usually 
be ignored, except when the system approaches a state 
of collapse (like a domain nucleation), in which case 
the thermal agitation might help to overcome the energy 
barrier and cause nucleation2 slightly below the field 
which would have made it possible from static equili
brium considerations. In the intermediate size range, 
between superparamagnetism and stable ferromagnet-
ism, a "magnetic viscosity" is observed, namely the 
magnetization changes lag behind field changes.3 This 
intermediate size range is rather narrow, and for a fixed 
time of measurement there is a rather sharp change of 
magnetic properties when the particle size is changed.4 

In the theoretical study of the relaxation time associ
ated with the thermal fluctuations, it has usually been 
assumed1'3,5 that the energy barrier between stable 
states is so large, compared with kT, that the direc
tions of magnetic moments of the particles are con
centrated at the energy minima. One obtains then that 
the relaxation time is essentially proportional to 
exp(EB/kT), where EB is the barrier energy, and T is 
the temperature. This approach is certainly valid only 
for high-energy barriers, but no quantitative estimation 
has ever been made for the range of its validity. Stacey6 

has obtained a similar expression using noise theory, 

1 C. P. Bean and J. D. Livingston, J. Appl. Phys. Suppl. 30, 
120S (1959). 

2 A. Aharoni, J. Appl. Phys. 33, 1324 (1962). See also A. Aharoni 
and E. Neeman Phys. Letters 6, 241 (1963); A. Aharoni, Rev. 
Mod. Phys. 34, 227 (1962). 

3 L. Neel, Ann. Geophys. 5, 99 (1949). 
4 E . F. Kneller and F. E. Luborsky, J. Appl. Phys. 34, 656 

(1963). 
6 W. F. Brown, Jr., J. Appl. Phys. Suppl. 30, 130S (1959). 
6 F . D. Stacey, Proc. Phys. Soc. (London) 73, 136 (1959). 

only he ignored the possible time lag between applica
tion of random forces and the response to them by the 
system under study. More recently, Brown7 treated the 
problem using the theory of Brownian motion. He ob
tained the relaxation time as eigenvalue of a certain 
differential equation, which should hold true for high-
as well as for low-energy barriers. Unfortunately, how
ever, Brown did not calculate the actual eigenvalues of 
his equation. He obtained a formula similar to the one 
which is usually used, as a limiting value for high-
energy barriers, and calculated up to a second order in 
the energy, the values for low-energy barriers. There
fore, he could not give any reliable estimation for the 
range of validity of the commonly used high-energy-
barrier approximation. 

It is the purpose of the present paper to calculate the 
actual eigenvalue of Brown's equation as a function of 
the energy barrier. It will be shown that the high-
energy-barrier approximation can be safely used down 
to barriers of the order of kT, and power-series expansion 
will be given for lower barriers. We shall be specifically 
interested in the physically most interesting case of a 
uniaxial anisotropy energy (which can be either shape 
or magnetocrystalline anisotropy), namely, when the 
energy density of each particle is 

F = K sin20. (1) 

Here K is the anisotropy constant, and 6 is the angle 
between the magnetization direction and the particle's 
easy axis. It is further assumed that there is no external 
field. Introducing the notations 

x= cos0, a=KV/kT, (2) 

where V is the volume of the particle, Brown's eigen
value equation7 for this particular case becomes 

dr d$~\ d$ 
( l - s 2 ) — \+2ax(l-x2)—+A$ = 0. (3) 

L dx\ dxJ dx 

Here $ is proportional to the probability density dis
tribution function, and the eigenvalue X is related to the 
relaxation time r of the system into stable equilibrium 

* W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963); See also W. F. 
Brown, Jr., J. Appl. Phys. 34, 1319 (1963). 
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by: 

\=(V/kTTV)(yo~2+v2Ms*), (4) 

where Ms is the saturation magnetization, 70 is the 
gyromagnetic ratio, and 7] is a dissipation constant. The 
latter can be found from experimental linewidths and 
can be usually taken5 as 

ipeyo-W.- 1 , (5) 

which is the value of rj that minimizes X, according 
to (4). 

Equation (3) has to be solved with the boundary condi
tion that <£ is regular at x= ± 1. This should lead to dis
crete eigenvalues, \n. The lowest of these is X = 0, associ
ated with the eigenfunction $ = const, which describes 
a steady state. The method to be described in the follow
ing section can be used to calculate any of the other 
eigenvalues Xw, as functions of the reduced energy 
barrier, a. However, it will be specifically applied to the 
smallest positive eigenvalue Xi which is of most physical 
interest. 

2. THE EIGENVALUE ^ 

When a vanishes, Eq. (3) reduces to the differential 
equation of Legendre polynomials. Therefore, 

X*(0) = » ( » + 1 ) , 

and in particular 

Xi(0) = 2. 

This suggests expanding $ in a series of form 

00 

$ = L fl/mW, (6) 
m=0 

where Pm are the Legendre polynomials. Substitution of 
(6) in (3), with the subsequent use of the Legendre 
differential equation, differentiation and recurrence 
formulas,8 yield the following 3-term recursion formula 

One can in principle start with any m, and obtain the 
left-hand side of (12) by working the recurrence rela
tion (10) upwards, to one of the values given by (11). 

8 E. Jahnke and F. Emde, Tables of Functions With Formulas 
and Curves (Dover Publication, New York, 1945), 4th ed., pp. 
114, 115. 

for the coefficients am: 

(m+l)(m+2)(m+3) 
&mA-2 

(2m+3)(2m+5) 
/\—m(m-\-l) m{m-\-V) \ 

_[_/ 1 \am 

\ 2a ( 2 w - l ) ( 2 w + 3 ) / 
m(m—l)(m—2) 

-am-2 = 0, (m^O). (7) 
(2m~\){2m-3) 

I t is seen that as m>—>coy either am/am-2~2m/a or 
am/am-2—~ot/2ni. Of these two solutions for the second-
order difference equation (7), the former obviously 
represents a diverging series when substituted in (6). 
The latter represents a series that converges like 
exp(—|a) uniformly in x, and is thus the solution that 
fulfills the boundary conditions. I t is also readily seen 
from (7) that there is no interaction between terms with 
odd values of m, and those with even values. The odd 
and even functions <J> can thus be treated separately. 
The eigenvalue of most interest Xi belongs to the odd-
functions set. 

Let the following notations be introduced for brevity: 

2am (m+1) am 
Nm^ , (w£2) (8) 

(2m—l)(2m+l) am-2 

4a2m2(m—l)(m—2) 
0m= , 

(2m-3)(2m-iy(2m+l) 

7m=fJl " h (^°) ' W 
L (2m-l)(2m+3)J 

Substituting these relations in (7) and rearranging, one 
obtains 

Nm=(5m{l\/(fn+m--ym+Nm+2}-\ (m>2) (10) 

and 
#2=-X, Nz=l-m-(ia). (11) 

As was mentioned before, am/am-2 tends to zero as 
—a/2m when m—>oo and therefore Nm—> 0 as a2/4cm. 
This ensures convergence of the infinite continued 
fraction obtained by iterating Eq. (10): 

Using (9), Eq. (12) is then a transcendental equation, 
which can be solved9 for X as a function of a, and one 

9 Details are essentially as in the calculation of the eigenvalues 
of spheroidal wave functions. See Carson Flammer, Spheroidal 
Wave Functions (Stanford University Press, Stanford, California, 
1957), Chap. 3. 

[ X / ( m + l ) ] + 7 ™ + — 
Pw+4 

[ X / ( « + 3 ) ] + 7 ^ i + 

[ X / ( w + 5 ) ] + 7 m + 2 + - - - . (12) 
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with: 

can obtain all the eigenvalues by starting with differ
ent values of m in (12). In particular, it is readily seen 
that the first nonzero eigenvalue Xi is obtained for 
m~3. For this case one obtains from (12) 

l - ( | X ) - ( f a ) = 0(« 2 ) , 
or 

Xi=2- ( fc*)+0(a*) . 

Substituting in (12), and going one term further: 

X 2a 48a2 

2 5 ~ 8 7 5 [ l + ( 2 a / 7 5 ) + 0 ( a 2 ) ] ' 

and by using the binomial theorem one can obtain from 
this relation the terms a2 and az in Xi, etc. Using this 
procedure,9 one obtains 

X i = 2 | ) c n ( f a ) n , (13) 
n=0 

c0= + l c4= -0.01030480 

cx=-l cb= +0.00081434 

c2=+0.34285714 c6= +0.00022854 

cz= -0.02285714 c 7~5X10~ 5 . 

The terms C\ and c2 were calculated by Brown7 using 
second-order perturbation theory. The terms added 
here are sufficient to compute Xi with an accuracy of 
better than 1% for moderate values of a, up to about 4. 
For larger values of a, the eigenvalue Xi was computed 
directly9 from the transcendental equation (12). The 
results are plotted in Fig. 1, curve (a). 

For large values of a, Brown7 gave the asympototic 
formula 

Xi = 47r-1'fc8/V-". (14) 

This function is plotted in Fig. 1, curve (b). I t is seen 
that already in the region shown, this approximation is 
good enough, so that there is no point in continuing 
the exact computations any further. 

3. DISCUSSION 

The high-energy-barrier approximation, Eq. (14), 
which was derived by Brown7 using the assumption 
aO>>l, turns out to be a good approximation even 
when a almost equals 1, i.e., when the energy barrier 
is about kT. Especially if one is interested just in the 
order of magnitude of X, as is often the case, one can 
actually use this approximation for all practical cases 
studied so far. For standard experimental techniques 
involving measurements of magnetic properties, the 
time of measurement can be taken1 as 102 sec, in which 
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FIG. 1. The first positive eigenvalue X of Brown's equation (3), 
which is inversely proportional to the product of the absolute 
temperature and the relaxation time r according to (4), plotted 
as a function of the reduced energy barrier a—KV/kT. Curve (a): 
The actual eigenvalue. Curve (b): Brown's approximation for 
« » 1 , Eq. (14). 

case one can study with reasonable accuracy only pro
perties of particles for which a is not much smaller 
than the "critical" value1,4 of about 25. Although ex
perimental points are given by Kneller and Luborsky,4 

for example, for D/Dp = 0A, which corresponds to 
a =1.6, what one actually measures for such values of 
a is evidently the size distribution of particles. Even 
with Mossbauer effect, in which the "time of measure
ment" can be taken as 10~8 sec, one can hardly approach 
the region of a where there is any appreciable difference 
between the two curves in Fig. 1, unless something is 
done about the size distribution of the particles. I t is 
probably only with detailed experiments of the type 
mentioned by Roth,10 namely, studying magnetic scat
tering of neutrons for which the passage time through 
the particle is of the order of 10~"13 sec, that one might 
be able to distinguish experimentally between the two 
curves of Fig. 1. 

For a less than about 1.5 the high-energy-barrier 
approximation starts a rather fast decrease, while the 
correct eigenvalue continues to increase slowly. In 
this region, the correct eigenvalue can be computed to a 
very high accuracy from the series (13). 

I t should be finally noted that the transcendental 
equation (12) yields the higher eigenvalues Xw, besides 
the first one Xi discussed here. If they are of any interest, 
these eigenvalues can be computed directly from (12), 
or by constructing a series similar to (13). 

10 W, L. Roth, Acta Cryst. 13, 140 (1960). 


