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A complete ab initio approximate Hartree-Fock calculation has been carried out on the Mn2 molecule at 
three internuclear distances, i? = 4.5, 5.0, and 5.5 <z0. The theory of the Heisenberg exchange interaction, ap­
plied in an earlier paper to the nitrogen molecule at large R, is used to identify the Hartree-Fock configura­
tion of lowest energy and to evaluate the effective exchange integral / . The Hartree-Fock energy has a mini­
mum value with respect to separated atoms in a 9Xg

+ state. The exchange integral is small but negative, so a 
v2g

+ state of complex structure lies below this. The energy of this l2g
+ state has a minimum value of —0.79 

eV, with respect to separated atoms, at R = 2.SS A, neglecting the part of the net molecular correlation 
energy that is independent of spin. These two states are members of a closely spaced set with total spin 
Sf = 0, 1, 2, 3, 4 coming from the coupling of spins 5 = 2 on each atom. The last occupied a orbital is of molec­
ular form (bonding molecular orbital, doubly occupied) while the last x and 8 orbitals are localized and 
singly occupied. The existence of localized spin-coupled orbitals at equilibrium R is very unusual for diatomic 
molecules, and this is the distinctive property of magnetic materials expected in the present theory. 

I. INTRODUCTION 

IN a recent series of papers,1'2 the theory of exchange 
interactions between atoms or ions has been de­

veloped from first principles by an argument that meets 
a number of serious objections to earlier derivations. 
The resulting theory is applicable to isolated molecules 
or to atoms or ions in a crystal. For insulating crystals, 
the theory leads in special cases to the well-known 
Heisenberg exchange interaction, given by the effective 
Hamiltonian 

— 2abJab$a'Sb, (1) 
where indices a and b denote atoms or ions, not indi­
vidual electrons. In general, the interaction is a more 
complicated function of the ionic spins than is indicated 
by Eq. (1), but the dominant part of the interaction is 
expected to be of the Heisenberg form.2 In the case of 
metals, the theory must be augmented by consideration 
of indirect exchange due to polarization of a conduction 
band by localized moments,3 and of spontaneous polar­
ization of a conduction band in the sense of the older 
band theory of ferromagnetism.4 Both of these effects 
are generally treated by band theoretical methods. 
When localized spins are present in a metal, the appro­
priate method to use is a synthesis of the present 
method with band theory for the conduction band, but 
this has not yet been formulated adequately. 

The present theory is a many-electron theory 
throughout. The matrix of the many-electron Hamil­
tonian is analyzed to pick out the spin dependence of 
individual matrix elements, and then the spin-dependent 
contributions to the second-order perturbation energy 
are evaluated. The perturbation theory is based on an 

iR . K. Nesbet, Ann. Phys. (N. Y.) 4, 87 (1958); Phys. Rev. 
119, 658 (1960). 

2 R. K. Nesbet, Phys. Rev. 122, 1497 (1961). 
3 C . Zener, Phys. Rev. 81, 440 (1951); 83, 299 (1951); T. 

Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956); K. Yosida, 
Phys. Rev. 106, 893 (1957). 

4 Earlier references are reviewed by F. Seitz, Modem Theory of 
Solids (McGraw-Hill Book Company, Inc., New York, 1940), pp. 
426-432; A. H. Wilson, Theory of Metals (Cambridge University 
Press, New York, 1954), 2nd ed., pp. 182-186. 

energy expansion, not on an overlap expansion, so the 
quantities required to be small are ratios of energies. 
The theory is formulated in terms of localized trans­
forms (analogous to Wannier functions) of the canonical 
Hartree-Fock orbitals5 for the system under considera­
tion (Bloch waves for a crystal). In this formulation, 
the energy ratios required to be small are the same as 
similar ratios that occur in the theory of isolated atoms 
and molecules. Hence, the growing body of evidence 
supporting the accuracy of the Hartree-Fock approxi­
mation for simple systems is support for the validity of 
the present formalism. The explicit form of Eq. (1) is 
a consequence of the second-order perturbation theory, 
and empirical evidence supporting Eq. (1) is also an 
indication of the validity of this approximation. If 
second-order perturbation theory, referring of course 
to energy ratios in the present context, is found to be 
inadequate in any specific application, one can go 
immediately to the use of higher order theory, for 
example by using the Bethe-Goldstone equations to 
improve the treatment of correlation effects between 
pairs of electrons. If this is necessary, the exchange 
interaction no longer has the simple linear form of 
Eq. (1). Since the present theory is concerned with 
interatomic correlation effects, which are at worst of 
the magnitude of dispersion forces, the second-order 
perturbation theory is used here to treat rather weak 
interactions, and should be expected to give useful 
results. 

In order to compare states of different total spin of 
the system under consideration, advantage is taken of 
the fact that only one- and two-particle excitations 
from an assumed Hartree-Fock configuration occur in 
second-order perturbation theory. Spin-dependent one-
particle excitations occur because exchange terms in 
the Hartree-Fock equations depend on spin.6 Thus, at 
most, two atoms at a time are affected by individual 

5 R. K. Nesbet, Rev. Mod. Phys. 33, 28 (1961). 
6 J. C. Slater, Phys. Rev. 82, 538 (1951); R. K. Nesbet, Proc. 

Roy. Soc. (London) A230, 312 (1955). 
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terms in the perturbed energy, so detailed analysis can 
be restricted to two atoms at a time. By use of pro­
jection operators, the explicit dependence of energy 
matrix elements on the total spin of a pair of atoms is 
given by very simple formulas.7 In the Hartree-Fock 
approximation in its usual (restricted5) form, localized 
orbitals are either doubly occupied or singly occupied 
with all spins parallel, in agreement with Hund's rules 
for the ground state of an atom. The spin S is a good 
quantum number for each atom or ion in this approxi­
mation. The scalar product S0*S& for two such atoms 
is an explicit function of the total spin Sf of the atom 
pair. Since the perturbation energy of each atom pair is 
obtained in the present theory as a function of S', it is 
immediately expressible as a function of Sa'S&. Equa­
tion (1) is clearly a very special case of such a function. 
Thus, when the Heisenberg exchange interaction is 
found to be a consequence of the present theory, this is 
not a trivial result. Some nonlinear terms have been 
found, particularly for interactions attributed to spin-
dependent polarization of closed shells by the un­
balanced spins of coupled open-shell atoms.2 

It should be emphasized that the atomic spin 5 is 
also determined by the present theory and is not as­
sumed a priori. This parameter simply counts the 
number of singly occupied localized orbitals on a given 
atom or ion. This number will change with the strength 
of the interatomic interaction, since localized singly 
occupied orbitals are replaced by doubly occupied 
molecular orbitals as atoms are brought together. These 
structural changes have been examined in detail in 
calculations by the present method on two interacting 
nitrogen atoms at various internuclear distances.2 At 
the observed molecular equilibrium distance there is no 
localized spin and the molecule is characterized as non­
magnetic. However, at large internuclear separation, 
there are two localized orbitals on each nitrogen atom, 
and the interaction is described by an antiferromagnetic 
exchange interaction. At still larger internuclear sepa­
ration there are three localized orbitals on each atom, 
going to the limit of free atoms in their 4S ground states. 
An important aspect of this situation is that the change 
from localized singly occupied orbitals to delocalized 
doubly occupied orbitals occurs at internuclear distances 
that are significantly different for orbitals of different 
symmetry. As a result of this fact, it is not at all un­
likely that at a given internuclear separation the 
valence orbitals which interact most strongly must be 
described as covalently bonded, with no magnetic 
properties, while other valence orbitals that interact 
less strongly are described in terms of localized spins, 
interacting through an exchange interaction. In cubic 
transition metals the de and dt orbitals may thus have 
quite different qualitative properties,8 and an observed 

7 P.-O. Lowdin, Phys. Rev. 97, 1509 (1955); R. K. Nesbet, Ann. 
Phys. (N. Y.) 3, 397 (1958); J. Math. Phys. 2, 701 (1961). 

8 J. B. Goodenough, Magnetism and the Chemical Bond (Inter-
science Publishers, Inc., New York, 1963). 

localized moment is not necessarily a direct measure of 
the number of occupied d orbitals. 

In the present theory there is a clear distinction be­
tween magnetic and nonmagnetic materials. Noncon­
ducting magnetic materials will have singly occupied 
localized orbitals in the Hartree-Fock approximation at 
the nuclear equilibrium configuration. Nonmagnetic 
materials will have doubly occupied orbitals only. By 
this criterion, the N2 molecule considered previously is 
nonmagnetic. In the present paper, similar analysis 
will be applied to the Mn2 molecule, and it will be 
shown that this is a magnetic material, characterized 
by an antiferromagnetic exchange interaction. In a 
sense this is the first a priori demonstration that the 
transition metals have magnetic properties that dis­
tinguish them from normal nonmagnetic elements. 

The present status of the theory of exchange inter­
actions in nonmetals has been reviewed in considerable 
detail in a recent article by Anderson.9 Unfortunately, 
the present general formalism was not discussed, al­
though the particular application of this formalism to 
the superexchange interaction in the oxides of the 
MnO series1 was criticized by Anderson on the ground 
that unreasonable values of empirical parameters were 
used. It should be pointed out that there is no essential 
difference between the present formalism and that de­
scribed in detail by Anderson, when applied to systems 
with a single localized orbital on each atom or ion. The 
chief formal difference is that the present theory, by 
the use of projection operators, is able to consider the 
explicit dependence of perturbation energies on the spin 
quantum numbers. It is not clear how Anderson's 
formalism would be applied to the example of two 
interacting nitrogen atoms, each with spin f. The rela­
tionship to Hartree-Fock theory and to the problem 
of establishing a criterion to distinguish between mag­
netic and nonmagnetic material is also more explicit 
in the present theory. Actually the present formalism 
is sufficiently closely related to the theory of molecular 
structure, where explicit quantitative calculations are 
possible, that experience gained in molecular theory 
can be helpful in suggesting sound approximations to 
the values of matrix elements that occur as parameters 
in perturbation formulas. Some comments on the choice 
of these parameters for the MnO series and on Ander­
son's criticism9 of the choice made by the present author1 

will be given in a separate paper. 

The relationship between the Heisenberg exchange 
interaction and the Heitler-London method has recently 
been discussed by Herring,10 who shows that despite 
the failure of the usual Heitler-London formalism in the 
extreme limit of widely separated atoms, a theory with 
similar formal structure can be devised that is correct 
in this limit and that leads to the Heisenberg interaction. 

9 P. W. Anderson in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1963), Vol. 14, 
pp. 99-214. 

10 C. Herring, Rev. Mod. Phys. 34, 631 (1962). 
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However, the weakness of the Heitler-London method 
is most serious at the internuclear distances character­
istic of near-neighbor atoms in crystals. A recent calcu­
lation by Freeman and Watson on two interacting 
cobalt atoms11 used the Heitler-London formalism. In 
a later paper, using the present formalism,12 it was 
shown that in the case of the nuclear point charge 
model considered in some of the original calculations11 

the Heitler-London formalism underestimated the anti-
ferromagnetic exchange integral by a factor of from 
three to ten for the largest exchange integrals. This 
striking discrepancy is due to the fact that a two-electron 
system described by two linearly independent basis 
orbitals has, in general, three independent singlet states 
but only one triplet state. The exchange integral is 
determined by the difference between the energy of this 
unique triplet state and the energy of the lowest 
stationary linear combination of the singlet states. 
Any method such as that of Heitler and London which 
picks out an arbitrary singlet state to compare with 
the triplet is likely to be in error. The error will system­
atically underestimate an antiferromagnetic exchange 
integral or overestimate a ferromagnetic exchange in­
tegral, since the singlet energy is artificially constrained 
while the triplet energy is independent of any arbitrary 
choice of representation. To avoid this difficulty, the 
so-called ionic configurations must be included, as they 
are in the present formalism. In addition to the ad­
vantage of including ionic configurations, the present 
theory also provides an explicit treatment of spin de­
pendence when there are several unpaired spins on each 
atom, without getting into the overlap problem inherent 
in the Heitler-London theory. Again, the example of N2 

at large internuclear separation can be used to compare 
the practicability of the two methods. 

The work by Freeman and Watson11 is probably the 
most ambitious attempt so far to obtain an a priori 
computed value for the Heisenberg exchange integral 
between two directly interacting transition metal atoms. 
Staying within the framework of the Heitler-London 
formalism, characterized by the specific choice of the 
singlet wave function discussed above, they included 
terms in the variational formulas for the singlet-triplet 
energy difference that had been omitted in previous 
work. Their calculations with point charge potentials 
are complete for the assumed model, with fixed orbitals 
taken from atomic calculations. They also report calcu­
lations in which the one-electron potential fields of the 
inner shell Hartree-Fock orbitals replace the crude 
point charge model. Correction terms that are quadratic 
in the overlap integrals between the singly occupied 
d orbitals on one atom and inner shell orbitals on the 
other are included. This is, except for the overlap ap­
proximation, a valid many-particle calculation. Since 
fixed single outer orbitals and closed inner shells are 

11 A. J. Freeman and R. E. Watson, Phys. Rev. 124,1439 (1961). 
12 A. J. Freeman, R. K. Nesbet, and R. E. Watson, Phys. Rev. 

125, 1978 (1962). 

assumed, the energy formulas are the same as those of 
Heitler and London. The calculation is equivalent to a 
Heitler-London calculation with two electrons occupy­
ing fixed d orbitals orthogonalized to the inner shells. 

The work reported here is an extension of this in 
several respects. The formalism includes the ionic con­
figurations that are omitted in the Heitler-London 
theory. The outer orbitals are not assumed to be known 
from the beginning, but are determined by a variational 
calculation for the full 50-electron Mn2 molecule. The 
resulting orbitals are orthonormal, so there is no over­
lap approximation. All inner shell orbitals have been 
included explicitly. The very large number of two-
electron integrals are evaluated with the same computer 
programs used for the N2 calculations2 and other details 
are identical with that work. Similar accuracy is ex­
pected, but there is no comparable work for comparison, 
and the quantitative accuracy of the effective exchange 
integral reported here is difficult to estimate. However, 
the main purpose of this work is essentially qualitative, 
to illustrate the application of the present theory to a 
specific case of interacting transition element atoms. 

II. DESCRIPTION OF CALCULATIONS 

The localized spin is determined in the present 
method by consideration of the structure of the Slater 
determinant of lowest energy at any given internuclear 
distance. Since this is not known in advance, an ap­
proximate Hartree-Fock calculation is carried out for a 
particular configuration, and the energies of others are 
computed with respect to it by well-known formulas.13 

In work of higher quantitative accuracy than the 
present, the Hartree-Fock calculation should be re­
peated for the particular configuration found to have 
lowest energy. This was not done in the present case, 
which follows the earlier work on N22 by computing all 
molecular orbitals by a matrix Hartree-Fock calcula­
tion14 on the lowest closed-shell configuration, a pure 
1XQ

+ state for the molecule. This configuration for Mn2 is 

W - • -7(7,2 W - • -6au
2 W - • .37T,4 ITT/ 2TT,4 I V . (2) 

TABLE I. Basis orbitals for production runs. 

Orbital 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Type 

lsa 
2sa-
3S(T 
4s<r 
2pa 
3pa 
±p<r 
3d<r 
2pTV 
3p7T 
3dTT 
3dd 

Exponent 

24.4097 
8.8730 
4.3464 
1.505 

10.5386 
4.0435 
1.505 
3.544 

10.5386 
4.0435 

3.544 
3.544 

13 See Ref. 6. 
14 R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963). 
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TABLE II. Molecular valence orbitals. Coefficients Xia of even and odd molecular symmetry orbitals 
constructed from atomic basis orbitals listed in Table I. 

*•• 
6a g 
1ag 

Sag 

6au 

7au 

Sau 

<f>i 

3TTU 

3lTg 

<t>i 

6ag 

lag 

Sag 

6au 

lau 

oau 

4>i 

3l\u 

3lTg 

4>i 

6ag 

lag 

Sag 

6au 

l<Tu 
Sau 

4>i 

3tru 

3-TTg 

Xil 

-0.03073 
0.00665 
0.00007 

-0.02464 
0.00138 

-0.00569 

%i9 

0.00542 
0.00205 

Xn 

-0.02816 
0.00862 

-0.00156 
-0.02588 
-0.00234 
-0.01056 

Xi9 

0.00460 
0.00218 

xn 

-0.02640 
0.00898 

-0.00184 
-0.02652 
-0.00549 
-0.01067 

Xi9 

0.00203 
0.00013 

Xil 

0.10658 
-0.03029 

0.00216 
0.09717 
0.01705 
0.04798 

fftlO 

-0.01713 
-0.00657 

Xi2 

0.09961 
-0.03560 

0.00718 
0.09944 
0.02056 
0.05226 

Xno 

-0.01465 
-0.00708 

Xil 

0.09498 
-0.03585 

0.00727 
0.10042 
0.02714 
0.04576 

#tlO 

-0.00638 
-0.00041 

XiZ 

-0.30725 
0.04040 
0.01074 

-0.20373 
0.09449 
0.04849 

Xin 

0.99910 
1.00007 

Xi3 

-0.27405 
0.06591 

-0.00835 
-0.22387 

0.02159 
-0.04782 

Xin 

0.99972 
1.00023 

xa 
-0.25187 

0.07325 
-0.01339 
-0.23547 
-0.02697 
-0.07395 

xm 

0.99991 
1.00005 

(a) -R = 4.5a0 

xu 

0.72381 
-0.53453 

0.06783 
1.20902 
1.08678 
1.53642 

(b) R = S.0a0 

Xa 

0.74911 
-0.52390 

0.07427 
1.14544 
0.76077 
1.05499 

(c) R = 5.5a0 

xa 

0.79603 
-0.48141 

0.04470 
1.10158 
0.61872 
0.71143 

xib 

0.05043 
0.08548 

-0.02562 
-0.02914 

0.05943 
0.06173 

4n 

Ug 
Uu 

xib 

0.04257 
0.07842 

-0.02716 
-0.02403 

0.06979 
0.06122 

<t>i 

lOg 

ttu 

Xih 

0.03410 
0.08158 

-0.00491 
-0.02462 

0.06774 
0.06784 

<fc 

Ug 

ttu 

XiQ 

-0.17262 
-0.28898 

0.08642 
0.10185 

-0.17766 
-0.18409 

XH2 

0.99994 
1.00008 

XiQ 

-0.14545 
-0.26539 

0.08781 
0.08364 

-0.21956 
-0.19641 

%H2 

0.99999 
1.00002 

XiQ 

-0.11545 
-0.27379 

0.01856 
0.08369 

-0.22141 
-0.22011 

Xil2 

1.00000 
1.00000 

xn 

0.29244 
0.83501 

-0.27380 
-0.16118 

1.46976 
1.65413 

X%7 

0.28517 
0.82469 

-0.24935 
-0.17432 

1.28922 
1.29911 

Xii 

0.25225 
0.85334 

-0.14826 
-0.19593 

1.19320 
1.02587 

Xi& 

0.08516 
0.25323 
0.96134 

-0.13231 
-0.66720 

0.74772 

XiS 

0.06326 
0.24379 
0.96746 

-0.14235 
-0.65514 

0.74833 

XiS 

0.02207 
0.14366 
0.98846 

-0.09948 
-0.61916 

0.78003 

The atomic basis orbitals are normalized functions in 
the form of products of exponentials, powers of r, and 
spherical harmonics. Parameters defining these orbtials 
are listed in Table I. The symbols (<r,w,8) in common 
molecular notation denote values (0,1,2) of the axial 
angular momentum quantum number m. Coordinates 
for each atom are chosen so that the Z axes point 
toward each other. 

The orbital exponents, except for the valence orbitals, 
are those obtained by Clementi and Raimondi15 by a 
variational calculation of the 6S ground state of Mn. 
Improved values of the 4? and 3d exponents, appropriate 
to the Mn2 molecule, were obtained by a preliminary 
series of molecular calculations. I t was found that 4:pa 
basis orbitals had a significant effect on the structure 
of the molecular states, so these orbitals were included 
with exponents determined by molecular calculations. 
The energy of the separated atoms, which establishes 
the zero of energy in Table I I I , below, was corrected for 

the admixture of basis 4:p<r orbitals with the 2p and 3p 
inner shells. 

Since Mn2 has a center of inversion symmetry, the 
normalized atomic basis orbitals are combined to give 
unnormalized even (g) and odd (u) molecular basis 
orbitals, as indicated by 

<Tg,u=(a±a')/2^, 

Tu,g=(7T±T')/2W, 

8g,u=(8±8')/2V\ 

(3) 

18 E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 
(1963). 

Here the unprimed symbol refers to one atom, the 
primed symbol to the other. The matrix Hartree-Fock 
calculation obtains occupied and unoccupied molecular 
orbitals for the configuration of Eq. (2) as linear com­
binations of the unnormalized symmetry orbitals of 
Eq. (3). Coefficients computed for the molecular orbitals 
of interest here are listed in Table II(a) , (b), (c). 

I t is well known that a Slater determinant is invariant 
(except possibly for multiplication by a complex phase 
factor) under unitary transformation of its occupied 
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TABLE III . Energy of configurations obtained by replacing 
occupied bonding molecular orbitals in the standard closed-shell 
configuration <£<> by unoccupied antibonding orbitals of opposite 
spin. Energies are relative to separated atoms. 

Configuration 

% + (0 ) 
*2u+(7<Tu/7<Tg) 
^+(3^/3^) 

%+(isttyiV) 
92g

+(37rg
2 15J/3TTJ IV) 

nSw+(7(rtt37rff
2 ttuyicrg3iru* 15,2) 

4.5ao 

54.088 eV 
56.539 
32.899 
32.671 
6.692 
7.646 

R 

5.0#o 

49.851 eV 
53.243 
27.663 
27.836 
0.864 
2.832 

5.5#o 

49.307 eV 
52.337 
26.506 
26.821 

-0.758 
1.050 

orbitals. If a bonding molecular orbital, such as ag, 
and the corresponding antibonding orbital cru are both 
occupied with the same spin, they can be transformed 
by the inverse of Eq. (3) to localized orthonormal 
orbitals associated with the individual atoms. This does 
not change a Slater determinant in which both orbitals 
are occupied. Such transformations can obviously be 
carried out for the doubly occupied inner shell orbitals, 
which can thus be associated with the atoms. But this 
is not possible for the doubly occupied bonding molec­
ular orbitals 7<rg, 3wu, and ldg in the Slater deter­
minant $o described by Eq. (2). These orbitals are 
characteristic of covalent bonding. When a molecule 
dissociates these orbitals must be replaced by orbitals 
that describe the separated atoms. This can be ex­
amined, while retaining the molecular orbital frame­
work, by considering configurations in which occupied 
bonding molecular orbitals are replaced by the corre­
sponding antibonding orbitals with opposite spin, as in 
(<rua/<Tg0). This gives configurations in which bonding 
and antibonding orbitals are singly occupied, all with 
the same spin, equivalent by the argument given above 
to singly occupied atomic orbitals coupled to the maxi­
mum total spin on each atom. Since interatomic inter­
actions are very much smaller than intra-atomic interac­
tions, a state of this kind, with a number of singly 
occupied atomic orbitals of parallel spin, must be a 
member of a group of states which maintain these 
atomic spin quantum numbers, but which couple the 
atomic spins to all possible values of total spin S' for 
the atom pair. The explicit dependence on 5 ' of the 
total energy is obtained to the second order of perturba­
tion theory by using projection operator techniques to 

evaluate spin-dependent matrix elements of the many-
electron Hamiltonian.7 

Energies of various states obtained from <£0 by re­
placing occupied bonding orbitals by unoccupied anti-
bonding orbitals are listed in Table I I I . Throughout 
the range of internuclear distances R considered here 
the lowest state is 92g

+, for which all the bonding T 
and 8 molecular valence orbitals are replaced by singly 
occupied atomic orbitals. From the general argument 
given above, this state is associated with a group of 
states characterized by atomic spins 5 = 2 coupled to 
total spin 0 < 5 ' < 4 . The a valence orbitals in this range 
of R are of molecular form. Since the separated atoms 
have spin 5 = f , there will be some larger value of R 
where n S w

+ crosses below 92ff
+, giving an outer region 

characterized by atomic spins 5 = f coupled to 0 < 5 ' < 5. 
The splitting between the group of states with 

0 < 5 ' < 4 in the region of R under consideration is given 
by an effective Heisenberg exchange integral / , treating 
Eq. (1) as an effective Hamiltonian. In the present 
theory this takes the form 

4S2J=C-D-E-F-G, (4) 

where the terms on the right-hand side have been 
analyzed in detail elsewhere.1,2 In the present calcula­
tions the terms C, E, and G are found to be most im­
portant. Computed values, together with 45 2 / , are 
listed in Table IV. In general the spread of energy 
between the highest and lowest state of a group de­
scribed by Eq. (1) is - 2 5 ( 2 5 + 1 ) 7 . This quantity 
must be of the same magnitude as the thermal transi­
tion energy kT^, and in fact it has been shown that 
kTN/AS2J is close to unity in antiferromagnetic crys­
tals.16 Thus, 1452/1 gives a qualitative estimate of the 
Neel temperature in a nonmetallic lattice of directly 
interacting Mn atoms. In comparing J with previous 
calculations it must be remembered that 452 is 16 here. 

Without repeating details given previously,1-2 the 
parameters C, E, and G can be attributed to specific 
kinds of interaction. The term C is the ordinary direct 
exchange between orthogonal orbitals, a sum of 
Coulomb self-energies of charge densities described by 
products of orthonormal orbitals from the two different 
atoms. The term E is the derealization effect originally 
discussed by Anderson.17 This term describes the spin-
dependent partial derealization of an occupied atomic 

TABLE IV. Contributions to the effective exchange integral. 

R 

4.5a0 

5.0 
5.5 

C 

0.0000502 au 
0.0000268 
0.0000170 

E 

0.0001131 au 
0.0000114 
0.0000012 

G 

0.0021939 au 
0.0012968 
0.0001912 

(au) 

-0.0022568 
-0.0012814 
-0.0001754 
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(eV) 

-0.06141 
-0.03487 
-0.00477 

(°K) 

712.6 
404.6 

55.4 

18 P. W. Kasteleijn and J. Van Kranendonk, Physica 22, 367 (1956). 
17 P. W. Anderson, Phys. Rev. 115, 2 (1959). 
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orbital a on one atom due to the tendency of an electron 
to drift into a similar unoccupied orbital a' on the other 
atom. Physically, this term represents incipient covalent 
bonding, since a complete transfer between a and a' 
corresponds to a doubly occupied bond orbital. The 
term G arises from the spin-dependent polarization of a 
doubly occupied orbital. This is a small effect for inner 
shell orbitals, but in the present case there is a doubly 
occupied molecular valence orbital which interacts 
rather strongly with the localized atomic valence 
orbitals. The polarization considered here is a partial 
mixing of the antibonding valence orbital 7a u with the 
doubly occupied bonding orbital 7<rg. Physically, this 
term represents just the converse effect to that of term 
E, since a complete transfer between 7au and 7au corre­
sponds to a change of configuration to one with localized 
atomic orbitals 7a, 7<jf. In general, it should be expected 
that both E and G will be important whenever, as in the 
present case, some valence orbitals are localized while 
others are not. Detailed analysis of this effect shows 
that the dependence on Sa'S& is more complicated than 
the usual linear Heisenberg formula, Eq. (I).2 As in the 
earlier paper, this total spin dependence is simplified 
here by fitting the linear formula to the two extreme 
values 5 '=0, 4, to define the approximate parameter G 
for use in the Heisenberg formula. 

Since / is negative, the lowest state of the group con­
sidered here has S'=0 and is a l1,g+ state. The whole 
group of states are displaced downward equally by 
configuration interaction effects, not considered here, 
that do not depend on S'. Including only that part of 
this additional correlation energy associated with term 
G2, the ground state is found by quadratic interpolation 
to have a minimum energy of —0.79 eV at 

Re= 5.44ao= 2.88 A. 

The value of 452 / computed by interpolating to the 
computed Re is -0.0082 eV, equivalent to 95.2°K. 

III. RESULTS AND DISCUSSION 

The principal result of the present work is to demon­
strate that the diatomic Mn molecule can be character­
ized as a magnetic material in the sense of the present 
theory. This means that at the equilibrium internuclear 
distance in this molecule the electronic wave function 
must be described in terms of localized, singly occupied 
atomic valence orbitals, coupled by a spin-dependent 
exchange interaction to give a closely spaced group of 
molecular states of different total spin. A nonmagnetic 
material would be described in terms of doubly occupied 
bonding molecular orbitals at nuclear equilibrium. 

The computed equilibrium internuclear distance is 
found to be 2.88 A, which is in qualitative agree­
ment with an empirical estimate of 2.658 A made by 
Clementi.18 The Mn2 molecule has not been observed 
directly, so no experimental data are available for com­
parison. The dissociation energy computed in the 
present work is 0.79 eV. This will be increased by a 
correction for the net correlation energy contribution 
to binding energy,19 and will probably increase, judging 
from experience with smaller molecules,20 when the 
calculations are improved by including more basis 
orbitals. Thus, the present results imply that Mn2 is 
bound with respect to dissociation into ground-state 
atoms. 

One particular result of the present calculations must 
be modified when comparison is made between the Mn2 

molecule and two Mn atoms interacting in a crystal. 
In a cubic crystalline environment, 4s and 4^ orbitals 
are of different symmetry from the 3d orbitals, and 
mixing of the kind found in the present work cannot 
occur on a single atom. Nevertheless, 3d orbitals on one 
atom can combine with appropriate combinations of 4s 
or Ap orbitals on neighboring atoms, and the admixture 
of orbitals of this kind might be significant. 

18 E. Clementi, Ann. Chim. 50, 548 (1960). 
19 E. Clementi, J. Chem. Phys. 38, 2780 (1963). 
20 R. K. Nesbet, J. Chem. Phys. 36, 1518 (1962). 


