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The angular correlation function describing the decay products of A and co in the reaction K~-\-p —> A+co 
is analyzed and expressed in terms of production matrix elements. It is shown that, with unpolarized target, 
aside from two phase factors all production matrix elements can be determined from angular correlations. 
With polarized target, the production matrix elements may be completely determined up to an over-all phase 
factor. In addition, with polarized target the K—A relative parity may be directly measured. 

I. INTRODUCTION 

I N V E N T S such as 

K-+p- A +co 
i \ 

-7T +7T° 

are observed copiously in bubble chambers.1 Owing to 
the fact that the co is a 1~ particle and to parity violation 
in A decay, an extensive amount of information is 
available in these pictures. The decays of co and A are 
almost2 perfect analyzers of their respective density 
matrices. Furthermore, the observation of both decays 
allows for determination of spin correlations. Con­
sequently, aside from two phase factors, the matrix 
elements for 

K-+p-+A+u (2) 

for all spin orientations of.p, A, and co may be obtained 
from angular correlation measurements in (1). A 
polarized target is needed to measure one of these 
phase factors. (In addition, with polarized protons the 
K-A parity may be directly measured.3) Information 
concerning the remaining phase factor (over-all phase) 
is obtainable only when interference terms between 
(2) and, e.g., events K~~-{-p—> A+7r++7r~+7r° with the 
pions in states other than 1~ (background events) are 
measured. 

In our analysis,4 we shall assume that these back­
ground events may be neglected. Our results show 
certain consistency requirements which may be violated 

f Work supported in part bv the National Science Foundation. 
1 S. M. Flatte, R. W. Huff, D. O. Huwe, F. T. Solmitz, and 

M. L. Stevenson, Bull. Am. Phys. Soc. 8, 603 (1963). 
2 A complete determination of the spin orientation of A is 

afforded by its decay. All but three parameters of the density 
matrix in spin space describing co can be measured in the angular 
distribution of its decay products, 7r+7r°7r~; the three parameters 
describing the polarization vector of co are not measurable in 
co —> 3ir. The remaining five parameters can be determined from 
the angular distribution of the normal to the plane of decay. 

3 Stephen L. Adler and Alfred S. Goldhaber, Phys. Rev. Letters 
10, 217 (1963); and S. M. Bilenky, Nuovo Cimento 10, 1049 
(1958). These authors report similar effects in other reactions. 

4 Analyses of (1) have also been made by Robert W. Huff, Phvs. 
Rev. 133, B1078 (1964), and R. J. Oakes and S. M. Berman, 
Phys. Rev. (to be published). 

by such background events, and which provide, there­
fore, checks on the correctness of this assumption 
(Tables IV and V). 

In Sec. II , we show that the angular correlations in 
(1) (1) are given by a simple expression involving twelve 

parameters F#, and show that from the values Fi3- one 
may obtain the matrix elements for (2). Section I I I 
indicates the derivation of the results presented in 
Sec. I I and contains further discussion of the matrix 
elements. In Sec. IV, we discuss (1) with polarized 
proton target and show how the phase not measurable 
with unpolarized protons and the KA parity may be 
measured. Our discussions also apply, with minor 
modifications, to other reactions like (2); e.g., 
K~-\-p —* A + <p. This case is discussed in Sec. V. 

For simplicity we use noncovariant language, how­
ever, no nonrelativistic approximations are made in 
this paper. 

II. THE ANGULAR CORRELATION FUNCTION F 

The reaction (1), summed over the Dalitz plot for co 
decay,5 is described by an angular correlation function 
F defined by 

r dQv dQk~ 
da = RARcc(A/K) F — 

. 47T 4 7 r J 
dQ, (3) 

where da is the differential cross section in the c m . 
frame of (2) for the production of A into solid angle dQ 
when the proton from A decay is omitted into solid 
angle dttp in the A rest frame and the normal k to the 
plane of co decay is in the element of solid angle dtik in 
the co rest frame; F is a Lorentz invariant function. 
Our notation is 

k = p + xpo: (\/J.,V) are direction cosines of k, 

p+ = momentum of 7r° in co rest frame, 
p=momentum of decay proton in A rest frame: 

(%,y,z) are direction cosines of p, 
5 The differential cross section measured as a function of the 

energies of TT+ and 7r° may also be used to define F. It has the 
product form 

da= (gdE^dE^)RKRa(K/K)[F^ ^f\d% 

where gdE+dEo represents the Dalitz distribution for co decay. 
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K = momentum of K~ in c m . of (2), 
A=momentum of A in c m . of (2), 

RA = branching ratio for A —> rr+p, 
R0i = branching ratio for co —» 7r++7r°+7f~. 

For fixed K and A and unpolarized proton target, F 
depends only on the direction of cosines of k and p. I t 
is a homogeneous quadratic function of the direction 
cosines of k (\,IJL,V). (This follows from the fact that co 
is a 1~ particle and the matrix elements for o -**7r+ 

+7r°+7r- are, aside from a common factor, given by the 
three components of k.) Owing to parity violation in A 
decay, F is linear function of the direction cosines of p 
(%,y,z). Therefore, F has the form6 

F=F0+aA(xFL+yF2+zFz), (4) 

where a A is the A decay asymmetry parameter7; and 
F0, Fi, F2, F 3 are homogeneous quadratic functions of 
X, fi9 v: 

Fi^Fitf+Fi^+Fajfi+Fi&fi+Fi&v+Fiwv. (5) 

Twelve of these twenty-four Fy vanish when the normal 
n to the production plane is a coordinate axis (see 
Table I) if parity is conserved in (2) and the co decay. 
These are represented by zeros in Table I I . To see why 

TABLE I. The direction cosines of p and k denned with respect 
to the triad n, K, and nXK. All vectors are defined in text; n is 
normal to the production plane. The form of the matrices dis­
played in Tables II and IV would be the same with any other choice 
of axes in the production plane. 

K %XK 

the indicated entries vanish consider, for example, F05; 
if 

/

dQp dQjc 
FXv (6) 

4TT 4TT 

from (4) and (5) we have 

(X,)=(l/15)Fo5. (7) 

So F05 is proportional to the average of k*Kk« (K x A ) , 
a pseudoscalar quantity. I t must therefore vanish, 
since parity is violated only in A decay. Similarly, if 

(Xfj. 
X)=I d&p dQk 

-FXJJLX , (8) 
4x 4ir 

one has from (4) and (5) 

{\»x)= ( a A /45)Fu. (9) 
6 The functions Fi, F2, F3 are often denoted by the vector 

/ P A and the expression (4) written as 7+OA/PA'^-
7 James W. Cronin and Oliver E. Overseth, Phys. Rev. 129, 

1795 (1963). 

TABLE II. Vanishing and nonvanishing elements of the matrix 
which yields the angular correlation function F [see Eqs. (4) and 
(5)] for unpolarized target. As explained in the text, the vanishing 
of the entries shown here is due to parity conservation. This table 
applies for both even and odd K-A parity. It also applies when 
contaminations of the type K~-\-p —» A-f-7r++7r-+7r° are included 
in the data; in this case additional terms have to be included in (5). 

Fo 
Ft 
F2 
F3 

X2 

V 
0 
0 
V 

M2 

V 
0 
0 
V 

V* 

V 
0 
0 
V 

X/* 

V 
0 
0 
V 

\v 

0 
V 
V 
0 

ILV 

0 
V 
V 
0 

Only pseudoscalar quantities proportional to a\ can be 
different from zero if parity is conserved in (2) and 00 
decay. Therefore, Fu must vanish. Similarly, one may 
show that all the zeros in Table I I follow from parity 
conservation. The form of the matrix in Table I I (and 
Table IV) is invariant with respect to the choice of 
directions in the production plane. 

The Fa may all be expressed as averages such as (6) 
and (8). For i = 4 , 5, 6, the formulas are identical to 
(7) and (9). For j= 1, 2, 3, one has formulas of the form 

F o i = ( 3 / 2 ) ( 4 < \ » > - ^ > - < ^ » (10) 

F u = (9 /2«A) (4<\2*>- {v?x)- <ite». (11) 

Note that if the Fy are evaluated directly from data 
containing background events by the use of expressions 
such as (7), the background events K~-\-p~^> A+?r+ 

+7r°+7r~ will not contribute to the zeros in Table I I . 
The contamination due to background may be visible 
in a Dalitz plot of the energies of the pions from co 
decay. It may also violate certain constraints which the 
nonvanishing F# must satisfy owing to the fact that 
they are the bilinear forms displayed in Table IV. 

For fixed energy and angle of production, the twelve 
nonzero entries in Table I I are determined by ten real 
numbers; the magnitudes of, and relative phases within, 
the two sets of amplitudes (a+,b+,c+) and (a_,&_,c_) 
defined in Table I I I . Owing to parity conservation, the 

TABLE III. The six nonvanishing amplitudes for (2) with odd 
K-A parity; e.g., a+ is the amplitude for producing A with spin 
(in its rest frame) "up" and co with spin component zero along n 
(in its rest frame) from a proton with spin "up" in the laboratory. 
The spin quantization axis is normal to the production plane; 
i.e., "up" means parallel to n = K X A . These amplitudes depend 
upon the energy and production angle of (2). If K-A parity is even, 
we define these amplitudes as above with all arrows in the last 
column reversed. 

a+ 
K 
c+ 
a-
b-
c 

A spin 

T 
I 
I 
I 
T 
T 

co spin 

n 
K 

nXK 
n 
K 

nXK 

p spin 

T 
t 
T 
I 
I 
I 
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TABLE IV. The nonzero entries of Table I I evaluated in terms of the amplitudes denned in Table III. Notice that Tables I I I and IV 
are applicable for both signs of K-K parity. [The common factor § arises from definition (3); a factor J comes from averaging 
initial spins, the factor of 3 arises because in describing co decay R^ includes integration over d&k-~] 

X2 yU2 V2 XfJL \v jlV 

~{2/3)F, I M M - I M 2 k + | 2 + k _ | 2 h^JH-1 a- i2 2 Re (b+c+*+b_cJ) 0 0 
(2/3)Fi 0 0 0 0 +2Re(f l+ f t+Ha.*L) + 2 Re(a+c+*+a_*c_) 
(2/3) F2 0 0 0 0 -2Im(M+*+«-*&-) -2Im(a+c+*+aJ*cJ) 
(2/3)F3 - | £ + I 2 + I U 2 -\c+\*+\c-\*. k + | 2 - | a _ | 2 •-2Re(b+c+*-b-jcJ*) 0 0 

remaining six amplitudes vanish.8 The nonzero entries 
of Table I I are evaluated in Table IV. (A discussion of 
the amplitudes and the evaulation is given in Sec. III.) 
Table IV shows the constraints which measured values 
of Fij must satisfy when background contamination is 
negligible. In this case, the magnitudes and relative 
phases of the sets (a+,b+,c+) and (#_,£_,£_) may be 
uniquely determined from the values of the Fa meas­
ured at fixed energy and production angle: the F0j and 
F^j for j= 1, 2, 3 yield the six magnitudes; the F\, and 
F2j for j=S, 6 then give solutions for the relative 
phases. The complex numbers a+b+* and aJ*b- have 
known magnitudes. Their sum is given by Fu and F2$. 
Thus there are two solutions for a+b+* and &_*&_. 
Similarly there are two solutions for a+c+* and #_*c_. 
Only one of these sets of solutions will yield the ob­
served value of FQ±: then the observed value of Fu 
serves as an additional check. 

If there is not enough data for obtaining the F^ by 
the averaging procedure (7), an alternative method is 
to use Table I I (or Table IV) and search for the set of 
F^ (or amplitudes) with maximum likelihood. 

Table I I also applies to data averaged over production 
angle and/or energy. However, the entries in Table IV 
must be correspondingly averaged and consequently 
there are twelve independent quantities obtainable 
from the data.9 The constraints on the F^ go over into 
inequalities in such a process. 

Some information regarding the dependence of the 
F^ on energy and production angle can be deduced 
from general considerations. For example, for 6= 0 or T; 

all 2 ^ = 0 except F01, ^02 = ^03, F2h=-Fu. (12) 

These relations follow from the axial symmetry of the 
events which requires 

a+= — #_, b+=b-., c+=—c-, a-~ic+. (13) 

Equations (13) also follow from (25) below which 
show how the amplitudes behave as 6 —> 0 and ir, and 
also near threshold. 

8 Aage Bohr, Nucl. Phys. 10, 486 (1959); A. A. Cheshkov and 
Yu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 42, 144 (1962) 
[English transl.: Soviet Phys.—JETP 15, 103 (1962)]. 

9 After such averaging, the density matrix describing the A-w 
system has eighteen independent parameters. Experiments such 
as the one described here can measure only twelve of them. 

III. DERIVATION OF F AND DISCUSSION 
OF AMPLITUDES 

The amplitudes denned in Table I I I are convenient 
for describing reactions such as (2) with unpolarized 
target. They correspond to ^-matrix elements for which 
the spin quantization axis (z axis) is normal to the 
production plane. These vS-matrix elements have been 
discussed by Bohr8 and, for the relativistic case, by 
Cheshkov and Shirokov.8 Let T^m-a be the amplitude 
for producing A and a> with z component of spins b and 
m, respectively, from protons with z component of spin 
a. Then for each value of K and A, owing to parity 
conservation, one has 

Tbm]a=Vg(-l)
b+^Tbm;a, (14) 

where 

Vo= (rjAV./vPVK)(~ l)^Sa~SP-sKf ( 1 5 ) 

The r] are the parity factors10 giving the intrinsic parities 
of the particles and the s are their spins. If the K-K 
parity is odd the six nonvanishing amplitudes satisfying 
(14) are linear combinations of the amplitudes defined 
in Table I I I ; for example, 

r n t = - ( 6 + + t c + ) / v 2 . 

If the K-K parity is even, the amplitudes in Table I I I 
are redefined by reversing the proton spin in every case 
in accordance with (14) so that the nonvanishing 
amplitudes are Tioi = a+J Tm= — {b+-\-ic+)/**J2, etc. 

To evaluate (4) in terms of the amplitudes in Table 
III , let PA be the density matrix in spin space for A. 
For convenience, we take Trace p\= (2/3)FQ (see caption 
to Table IV). Then 

P A = ( 1 / 3 ) ( F 0 + € T . F ) , (17) 

where a are Pauli spin matrices. The Lorentz-invariant 
matrix element for co —> 7r++7r°+7r~ is proportional to 
k«n if, in its rest frame, the o> spin component along n 
is zero (here n is any arbitrary direction). Consequently, 
the amplitude corresponding to a+ for K~+p—>A 

10 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
The Tbm; a are linearly related to the helicity amplitudes of Jacob 
and Wick (see, e.g., Cheshkov and Shirokov, Ref. 8); (14) follows 
from Eq. (44) of Jacob and Wick.' 
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TABLE V. The terms in F which arise when target is polarized with polarization P normal to incident beam direction. (See Sec. V for 
definition of <f>.) F°ij are Fa values for unpolarized target; they are given in Table IV. These terms must be added to those in Table IV 
if the K-A parity is odd and subtracted if the K-A. parity is even. 

Po 

Pi 

p2 

Fz 

A2 

+P°3iP sin* 

3 Imb+bJ* 
X P cos0 

- 3 ReM_* 
X P cos0 

P°oiPsin</> 

M2 

+P°32P sin<£ 

3 Imc+c_* 
X P coscf> 

—3 Rec+c_* 
X P cos</> 

P°02P sin<£ 

^ 
-P° 3 3 P sin<£ 

3 Ima+a_* 
X P cos</> 

3 Rea+#_* 
X P cos0 

-P° 0 3 P sin0 

X/x 

+P0
3 4P sin</> 

3 I m ( M - * + M - * ) 
X P cos<f> 

-3Re(l» fc_*+M-*) 
X P cos<£ 

P°04P sin0 

\v 

3Im(a+iL*+M-*) 
X P cos^ 

- 3 Re (M+*-<*-&-*) 
X P sin0 

- 3 I m ( M + * - ^ - ^ * ) 
X P sin</> 

3 Im (a+i>_*—b+aJ*) 
X P cos<£ 

M*' 

3 Im(fl+c_*+c+a_*) 
X P cos0 

—3 Re(c+a+*—a_c_*) 
X P sin<£ 

—3 Im(c+a+*-a_c_*) 
X P sin<£ 

3 Im(a+c_*—c+a_*) 
X P cos0 

+o> —» A+7r++7r""+7T0 is «+= a+v, and 

(18) 
where 

S = Sodd = ( 

'A- 04-

if K-A parity is odd (19) 

) • if K-A parity is even (20) 

a-=a-v, /3+= b+\+c+(jL, /3_=6~_\+£~M (21) 

and p i = l + o " ' P , where P is the target polarization 
referred to the axes of Table I (P3 = P-^ , P i = P - i t , 
etc.); (17) and (18) give for unpolarized target 

P 0 = (3/2) Trace §t§, p 1 = (3/2) Trace <7iSt§, etc. (22) 

Note that 
Seven — Sodd^l — Sodd** * K • (23) 

Consequently, (19) and (20) yield identical results for 
unpolarized target. 

Expectations regarding the angular dependence and 
magnitudes near threshold of the amplitudes in Table 
I I I may be obtained by considering the form of the 
S matrix in spin space of (2). Evaluating Dirac spinors 
for A and p in the c m . of (2), one may express the most 
general result consistent with odd K-A parity and the 
assignment 1" for co as an axial vector whose com­
ponents are 2X2 matrices. The matrix elements are 
simply related to the amplitudes of Table I I I . The 
matrix must have the form 

ao-+/3n+K(7<F-K+€0-y)+y(por-K+ra-y), (24) 

where a are Pauli spin matrices, y = n x K , and a, 0, 7, 
etc. are functions of energy and production angle. 
Setting |n |=Ai£s in0 , and evaluating the amplitudes 
of Table I I I from (24), one finds 

a+=a-\-(3KA sin0, 

a- = — a+/3KA sin0, 

b+ = a+yK2+ieK*A sinS, 

b-=a+yK2- ieK3A sintf, 

c+=ia+PK*A smd+irKAA2 sin20, 

C-= -ia+PK*A smd-irK*A2 sin20. 

(25) 

Equations (25) display the behavior of these amplitudes 
near threshold (A = 0) and near 6= 0 or IT. The functions 
a, /3, 7, etc., may be expected to have a regular behavior 
in these regions. 

IV. POLARIZED TARGET 

If the proton target is polarized normal to the in­
cident beam direction, (3) still applies provided one 
understands that in this case F depends also on the 
azimuthal angle of A. Let <f> be the azimuthal angle of 
A measured in the c m . of (2) from P with polar axis 
chosen to be the incident beam direction and P the 
target polarization. Then F may be calculated from 
(17)-(21) with P expressed in the coordinate frame of 
Table I ; i.e., P i = 0 , P 2 = Pcos</>, P 3=-Psin</>. The 
^-independent terms are displayed in Table V. From 
(23) one sees that, except for over-all sign, identical 
results are obtained for these terms with (19) and with 
(20). The terms in Table V must be added to those in 
Table IV if the K-A parity is odd and subtracted if the 
K-A parity is even. 

To measure the K-A parity, one need only measure, 
e.g., the right-left asymmetry of (2). Defining NR to 
be the number of A's produced to the right when looking 
along the beam with P up, and NL those produced to 
the left; from Table V, one has 

(NR-NL)/(NR+NL)=-VP(2/7T) 

X(P33°- "/?82°)/(F080+/?01°+F020), (26) 

where rj= + l if K-A parity is odd, and rj= — l if K-A 
parity is even. The P°# are values measured with un­
polarized target. A similar expression can be derived 
for the right-left asymmetry of the A polarization 
normal to the production plane PV 

Terms proportional to cos</> appear in Table V in 
places corresponding to the zeros of Table I I . This is 
because P cos<£=P-[A—i£(it-A)]/sin0 is a pseudo-
scalar quantity. These terms may be used to determine, 
for example, the relative phase of a+ and a_. 
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V. K-+p->A+<p 

The process 

K-+p-> A +<p 
i \ . _ (27) 

7T-+p K+K 
is also described by an angular correlation function F 
denned as in (3). In this case, k is the momentum of 
K in the <p rest frame. Because <p is a 1~ particle, the 
matrix element for <p —* K-\-K is also proportional to 
k"fi when the cp spin component along it is zero. There-

INTRODUCTION 

THIS note merely serves as an appendix to a recent 
paper by S. Weinberg on multiparticle scattering 

problems.1 In the framework of nonrelativistic quantum 
mechanics, Weinberg has developed an integral equation 
for the full Green's function of a system of N pairwise-
interacting particles which is free of the inadequacies of 
Lippman-Schwinger type equations. This equation is of 
the form 

G(W) = D(W)+I(W)G(W), (1) 

where W is the complex energy parameter, D(W) the 
disconnected part of the Green's function G(W), and 
I(W) an integral operator whose kernel is called the 
irreducible iV-particle kernel. Both D(W) and I(W) are 
known explicitly in terms of the Green's functions of all 
subsystems with a smaller number of particles. Wein­
berg has conjectured that I(W) is of Hilbert-Schmidt 
type (HS type), if all the pair interactions are described 
by square-integrable potentials, and he has given a proof 
for the cases N—2, 3. Since his conclusions are based 
essentially on this conjecture, a proof for arbitrary N is 
certainly desirable. To furnish such a proof is the only 
objective of this note. 

A NEW REPRESENTATION OF I(W) 

If not defined otherwise, our terminology is that of 
Weinberg. We consider an arbitrary decomposition D 

* Supported in part by the U. S. Air Force through the Air Force 
Office of Scientific Research. 

1 S. Weinberg, Phys. Rev. 133, B232 (1964). 

fore, reinterpreting k accordingly, one may apply all 
the discussions and results concerning F of the previous 
sections to (27). 
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of the system of particles (1- • -N) into clusters. The 
Hamiltonian HD of this decomposed system is then the 
full Hamiltonian minus all interactions between differ­
ent clusters. Weinberg has given an explicit expres­
sion for I(W) in terms of all Green's functions 
GD= (W—HD)~1> However, in this form I{W) appears 
as a sum of operators which are not even completely 
continuous, and the connectedness is not evident. In 
order to prove that I(W) is of HS type, we have to put 
it in a different form. 

We consider all possible sequences S= (Di,D2, • • • ,DN) 
of cluster decompositions with the following properties: 
Di is the trivial decomposition into one cluster (1 • • -N), 
and Dk is obtained from J9&-1 by splitting one of the 
clusters of Dk-i into two parts. Therefore, each sequence 
S has N terms and ends with the finest possible de­
composition DN= (1)(2)- • • (N). By aid of these se­
quences we can write the connected part C(W) of G(W) 
in the form 

C(W)= J2 GDNVDNDN-\GDN-\' ' 'GD2VD2DIGDI 
al l S 

=I(W)G(W), (2) 

where VDkDk-i i s the sum of all interactions which are 
dropped in the transition from H-Dh_x to Hnk: VDkDk_x 

= HDk_1—Hi>k. Obviously GD^G, so that one gets 
from (2) an expression for I(W) simply by omitting the 
last factors GDX in the sum. In this form the connected­
ness of C(W) and I{W) is evident. We do not want to 
prove here the equivalence of (2) with Weinberg's ex­
pression—the reader may easily check it for N = 2, 3, 4. 
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Proof of a Conjecture of S. Weinberg* 
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A proof is given of Weinberg's conjecture1 that the irreducible iV-particle kernel is of Hilbert-Schmidt type 
if the potentials, which describe the pair interactions, are square integrable. 


