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V. K-+p->A+<p 

The process 

K-+p-> A +<p 
i \ . _ (27) 

7T-+p K+K 
is also described by an angular correlation function F 
denned as in (3). In this case, k is the momentum of 
K in the <p rest frame. Because <p is a 1~ particle, the 
matrix element for <p —* K-\-K is also proportional to 
k"fi when the cp spin component along it is zero. There-

INTRODUCTION 

THIS note merely serves as an appendix to a recent 
paper by S. Weinberg on multiparticle scattering 

problems.1 In the framework of nonrelativistic quantum 
mechanics, Weinberg has developed an integral equation 
for the full Green's function of a system of N pairwise-
interacting particles which is free of the inadequacies of 
Lippman-Schwinger type equations. This equation is of 
the form 

G(W) = D(W)+I(W)G(W), (1) 

where W is the complex energy parameter, D(W) the 
disconnected part of the Green's function G(W), and 
I(W) an integral operator whose kernel is called the 
irreducible iV-particle kernel. Both D(W) and I(W) are 
known explicitly in terms of the Green's functions of all 
subsystems with a smaller number of particles. Wein
berg has conjectured that I(W) is of Hilbert-Schmidt 
type (HS type), if all the pair interactions are described 
by square-integrable potentials, and he has given a proof 
for the cases N—2, 3. Since his conclusions are based 
essentially on this conjecture, a proof for arbitrary N is 
certainly desirable. To furnish such a proof is the only 
objective of this note. 

A NEW REPRESENTATION OF I(W) 

If not defined otherwise, our terminology is that of 
Weinberg. We consider an arbitrary decomposition D 

* Supported in part by the U. S. Air Force through the Air Force 
Office of Scientific Research. 

1 S. Weinberg, Phys. Rev. 133, B232 (1964). 

fore, reinterpreting k accordingly, one may apply all 
the discussions and results concerning F of the previous 
sections to (27). 
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of the system of particles (1- • -N) into clusters. The 
Hamiltonian HD of this decomposed system is then the 
full Hamiltonian minus all interactions between differ
ent clusters. Weinberg has given an explicit expres
sion for I(W) in terms of all Green's functions 
GD= (W—HD)~1> However, in this form I{W) appears 
as a sum of operators which are not even completely 
continuous, and the connectedness is not evident. In 
order to prove that I(W) is of HS type, we have to put 
it in a different form. 

We consider all possible sequences S= (Di,D2, • • • ,DN) 
of cluster decompositions with the following properties: 
Di is the trivial decomposition into one cluster (1 • • -N), 
and Dk is obtained from J9&-1 by splitting one of the 
clusters of Dk-i into two parts. Therefore, each sequence 
S has N terms and ends with the finest possible de
composition DN= (1)(2)- • • (N). By aid of these se
quences we can write the connected part C(W) of G(W) 
in the form 

C(W)= J2 GDNVDNDN-\GDN-\' ' 'GD2VD2DIGDI 
al l S 

=I(W)G(W), (2) 

where VDkDk-i i s the sum of all interactions which are 
dropped in the transition from H-Dh_x to Hnk: VDkDk_x 

= HDk_1—Hi>k. Obviously GD^G, so that one gets 
from (2) an expression for I(W) simply by omitting the 
last factors GDX in the sum. In this form the connected
ness of C(W) and I{W) is evident. We do not want to 
prove here the equivalence of (2) with Weinberg's ex
pression—the reader may easily check it for N = 2, 3, 4. 
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Proof of a Conjecture of S. Weinberg* 
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A proof is given of Weinberg's conjecture1 that the irreducible iV-particle kernel is of Hilbert-Schmidt type 
if the potentials, which describe the pair interactions, are square integrable. 
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PROOF THAT I(W) IS OF HS TYPE 

We consider a single sequence S= (Dv • -DN) and 
simplify the notation by writing k instead of a label Dk, 
The term of I(W) corresponding to S is then 

GNVN,N-IGN-V ' *^2^2,1- (3) 

Note that the indices here denote numbers of clusters— 
they are not to be confused with Weinbergs labels. GN, 
for instance, is the free Green's function in our notation. 

Let us consider the product Ak of all factors up to, 
and including, Gk: 

AJC^GNVN^-IGN-V —Gk (N^k^2). (4) 

A k involves only the potentials which are present in Hk. 
Its kernel in momentum space will therefore contain k 
8 functions corresponding to the conservation of the 
momenta of the k clusters. To be more precise and to 
simplify the notation, let us consider the case k = 3y 

Dk= (1- • - i)( i+l- • • jO(i+l- * -N). Then Ak will be of 
the form 

i j 

(pl...N\Ak\p1'...N) = 8Z(pm-pm')&Il(pm-pm') 
1 i+l 

XBZipm-pm')(pl...N\Ak^^\p1\..N). (5) 
3+1 

It is natural to consider A k as an operator on the 
Hilbert space 3C& of the decomposed system formed by 
the k clusters of Dk (without the degrees of freedom 
corresponding to the motion of the centers of mass of the 
k clusters). In the previous example k~3, for instance, 
3C/t would be the space wave functions >F(£I...JV) with 
the scalar product 

(¥,*)= fdp1...NBCt Pm)i(£ pmWJL Pm) 
J 1 t+1 3+1 

X*(pi...K)<t>(pi...v). (6) 

Ak is an operator of HS type on 3Ck, if its HS norm 
corresponding to the scalar product (6) is finite. In the 
example k=3 this means 

>) IM*II2HS= [dp1...Ndp1'...Nd(i: pm)d(£ pm)8(z p« 
J 1 i+l 3+1 

X8(t Pn!)8(i: £»')*(E Pm) 
1 i+l 3+1 

X\(pi...N\AkM\pi'...v)\*<«>. (7) 

The main theorem, which we shall prove now by 
induction in k, is the following: 

Ak(W) is a HS operator on 3C& for 
N^k^2 and for W not on the spectrum of Hk, (8a) 

\\Ak(W)\\ns^c<m$t\ReW\-1 for ReTF-* - *> , (8b) 

if (and only if) the potentials are square integrable. 
Proof: The theorem obviously holds for k=N, 
since A N—GN—free Green's function and, on 3CJV, 
\\AN\U=\W\-K 

We assume now that the theorem holds for Ak and 
prove it for A &_!. In order to simplify the notation, we 
again take jfc=3 and Dk= (1- • -i)(i+l- • -j)(j+l' • -N), 
Dk-i= (1 • • • j) (j+1 • • • N), and we assume that the only 
interaction between the clusters (1- • -i), ( i+ l - • - j) is 
due to a force between the particles i, i+l—in other 
words, we only treat a typical term arising from the sum 
Ffc.fc-i. This does not restrict the general validity of the 
proof, since a finite sum of HS operators is again a HS 
operator. Thus we obtain: 

{pi...N | A kVk,k-i | PI'—N) 

• / • 

dpl...Nl£L(pm-pm')'WHpm-p*!)~\ 

Xdtl:(pm-pm')l(pl...N\Ak^\p1'...lf) 
3+1 

XV(q'-q")S(p'-p") i f S(pm'-pm"), 
mj*i,i+l 

where 
m++ipi—m{pm 

p'^pi'+p+i', «' = =ap/-pp^i', 
mi+mi+1 

and similarly"]for p", q". V is the Fourier transform of 
the potential between the particles i, i-\~l. After integra
tion over the 8 functions, one finds a kernel of type (5) 
with two 8 functions left, corresponding to the two 
clusters (l--j)(j+l--N). The HS norm of this 
kernel is then given by 

Ukvk Jfc-l H S 

- [dp1...Ndpi"...irBct #«)*(£ Pm)B(t Pm") 
J 1 3+1 1 

. . t — 1 , 
o+i 

Pi+Z(pm-Pm"), pi+l+Zipm-pm"), P"+2^N) I * 
1 i+2 

X | V[ai:(pm-pm")-p t(pm~pm")T- (9) 

pi" and pn-i" only occur in the argument of V and in 
B(HiJ pm")- The integration over these variables is 
therefore carried out first, yielding 

/ 
dpi"dptH"&<Xpm")\v(---)\* 

1 

= /"#/'! Vta-(a+0)pn\2, 
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a being independent of p". Since a+/3= 1, this gives In order to exhibit the connection of the last integral 
with the HS norm of A k we introduce the new variables 

dp\v(p)\*=\\v\\*. (io) mn t 

un—pn 2] pm (n=l'"i); 

The square integrability of V is therefore necessary. The l 

remaining integral in (9) is an integral over 2N—2 mn J 
variables only, p/f and pi+i' are missing. But we can un=pn—— 2] pm (n = i+l- • - j); 
write it again as a 2iV-fold integral by introducing new ^ 2 *+1 

dependent variables which are again denoted by _ . / __ . , 1 AT\ 
. ft . / / . un—pn [n—j-jri'''i\), 

pi , pi±\ . 
i-i where M\—m\-\— • +w4- and M 2 = w ; + H hwy are 

pif = pi+ 23{pm—pm"); the total masses of the clusters (1 • • • i) and (i+1 • • • j). 
(11) These variables are not independent, since 

I 

pi+lf = pi+l+Yl(pm — pm')' i 3 

£ « n = Z ) «»=0- (13) 
1 i+l 

In addition, we have to multiply the integrand, by two 
8 functions enforcing the relations (11). Then we get I n addition, we therefore introduce the total momenta 

of the clusters (1 • • • i) and (i+1 • • • j): 

= ||F||2 [dp1...Ndp1"...Nd(t #„)«(£ PndKH Pm") 
J i j+i y+i 

X5\£(pm-pm")l5£Z(pm-pn")l 
1 i+l 

% 3 

Pl=Y, pm] ^ 2 = 2 3 Pm, 
1 i+l 

so that 
i 3 

dpi...N=HH ^n)<5(23 un)du1...NdP1dP2. 
I i+i 

Defining un",Pi", P 2 " in the same way, we obtain 
X 1 (p1^N\Ak^^\p1

f/...N)\\ (12) after integration over d(Pi-Pi")6(P2-Pi") 

\AkVktk-l\\lto*=\\V\\* j'dPldP25(P1+P2)du1...Ndu1"...Ndd: UnWt « » ) * ( E « » ) « ( E « » " ) * ( £ « » " ) « ( E « « " ) 
J i i+i y+i I i+i y+i 

un-\ P i , w = l - • - i ; «»H P2 , n=i+l- • - j ; %i . . < i V | i^ r e d ) (FT) 
Ml i f o 

w„ ww M2 
|«n"H Pi , » = 1 - * -i; un"-\—-P2, n=i+l- "j; u/'+i...N )i . (14) 

Mi M 2 

For the values of un, un" permitted by the 5 functions in energy changes by an amount P i 2 /2Mi+P 2
2 /2M 2 . 

(14), the last matrix element is equal to Insertion of (15) in (14), integration over 5 ( P i + P 2 ) and 
comparison with (7) yields the desired relation 

/ P i 2 P 2
2 \ 

\ 2Mi 2MJ |M^Wn ) f c _i | | 2 Hs=| |F | | 2 47r / dpp2 

Jo 
The reason for this is that the potentials involved in A k 1 1 / M\-\-M2 \ 112 

are not affected by a common shift in the velocities of X \\Akl W P2 1 • (16) 
all particles belonging to the same cluster—the shift in 11 \ 2MiM2 / I IHS 
the total energy is then due entirely to the change in A c c o r d i t o o u r i n d u c t i o n a s s u m p t i o n the integrand is 
kinetic energy The 5 functions in 14) imply that the b o u n d e d b c o n s t x r 2 for p _ » „ s o t h a t t h e i n t a l 

momenta of the three clusters (1 • • • , ) , ( t + 1 • • • j) c o e s for {w_ w ) ^ w b e i t h e l o w e r e n d 

0 + 1 - • -N) are zero in the states JU l N) and ]«!...* ). Q{ ^ t r u m Qf H 

Therefore, if all the velocities in these clusters are 
shifted by Pi/Mu P2/M2, 0, respectively, the total \\Ak(W)V*,*_I||2HS< «> for a,ig(W-Wa)^0. (17) 

file:////Akl
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In addition we conclude from (16) that 

\\Ak(W)Vk,k-i\\
2Hs->0 for R e W - > - « > . (18) 

The product AB of a HS operator A with a bounded 
operator B is again a HS operator whose HS norm 
satisfies ||^4J3||Hs^ | M | | H S | | £ | | , ||-S|| being the operator 
norm of B. Therefore 

I M . - I W I I H S ^ I M . W F ^ ^ I I H S I I ^ - I W H . (19) 

But Gk~i(W) is the resolvent of the self-adjoint2 

operator Hk-i on 3Ck-i which is bounded from below.1 

Therefore Gk-i (W) is bounded whenever W is not on the 
spectrum of Hk~i, and ||Gfc_i(ffiO||^ const |ReTF|_ 1 for 
ReW —> — oo. Since the spectrum of Hk-i contains the 
set arg(JF— Wo) = 0 (in its continuous part), we con-

2 T . Kato, Trans. Am. Math. Soc. 70, 195 (1951). 

I. INTRODUCTION 

IT has long been part of the folklore of physics that 
the resonance observed in the T= §, / = § + scattering 

state of the pion-nucleon system is induced by the ex
change of a single nucleon in the "crossed" pion-
nucleon scattering channel. This belief very likely 
originated in the static-model calculations of Chew,1 

where it was found that a two-parameter (coupling 
constant and high-energy cutoff) fit could reproduce 
the position and width of the observed resonance. The 
belief was strengthened by the fact that the cou
pling constant determined by the two-parameter fit 
agreed with the one obtained subsequently from the 
forward-scattering dispersion relations.2 In this way 
the single-nucleon-exchange diagram was understood 
to provide the primary driving force in the 3, 3 scatter
ing amplitude. 

One would like to adopt the viewpoint that the static 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Institute of Theoretical Physics, Depart
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1 G . F. Chew, Phys. Rev. 94, 1748 (1954); 95, 1669 (1954); 
G. F. Chew and F. E. Low, ibid. 101, 1570 (1956). 

2 U. Haber-Schaim, Phys. Rev. 104, 1113 (1956). 

elude from (17), (18), and (19) Hint A ^(W) has indeed 
the properties (8a), (8b), so that our induction proof is 
completed. 

For & = 2, theorem (8) and (17) yield the final result: 
I(W) is a Hilbert-Schmidt operator on the space 3Ci 

for all W not on the continuous spectrum of the full 
Hamiltonian, if (and only if) the potentials, which 
describe the pair interactions, are square integrable. 

This is identical with Weinberg's conjecture, since 
the HS norm for 3Ci is the same as Weinberg's "center-
of-mass HS norm." 
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model is an approximation to a more complete, rela-
tivistic theory which would permit calculations free of 
arbitrarily imposed cutoff parameters. The discovery 
of the Mandelstam representation,3 from which partial-
wave dispersion relations were deduced, appeared to 
provide a means of doing this. Frautschi and Walecka4 

investigated this approach and were able to show that 
the single-nucleon-exchange force is more than suf
ficiently attractive to account for the 3, 3 resonance. 

Following the qualitative success of the Frautschi-
Walecka calculation, it was possible to feel that one 
had a reasonable understanding of pion-nucleon scat
tering over a substantial range of energies. For example, 
if the expression for the single-nucleon-exchange force 
is reduced to nonrelativistic form, a Yukawa potential 
is obtained with the sign (— l)l+J+T (a positive sign 
corresponding to an attractive interaction). This is 
roughly in agreement with what one is led to deduce 
from the observed scattering. 

The next step was to seek a sharper understanding 
by carrying through a more precise version of the 

3 S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741 and 
1752 (1959). 

4 S . C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960), referred to hereafter as F-W. 
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We have studied the partial-wave amplitudes for pion-nucleon scattering in the approximation where the 
"driving force" comes from single-nucleon exchange. We start from the assumption that the amplitudes 
satisfy dispersion relations, but find that this is not enough to define a unique problem. Some restrictions 
upon the choice of amplitude to be inserted in the dispersion relations are found, but some ambiguities re
main. Settling these in a "reasonable" way leads to the conclusion that the one-nucleon-exchange force is 
"too strong." 


